JPS58113718A - Measuring apparatus for flow rate of gas - Google Patents

Measuring apparatus for flow rate of gas

Info

Publication number
JPS58113718A
JPS58113718A JP56212767A JP21276781A JPS58113718A JP S58113718 A JPS58113718 A JP S58113718A JP 56212767 A JP56212767 A JP 56212767A JP 21276781 A JP21276781 A JP 21276781A JP S58113718 A JPS58113718 A JP S58113718A
Authority
JP
Japan
Prior art keywords
resistance wire
support
flow rate
temperature
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56212767A
Other languages
Japanese (ja)
Inventor
Tokio Kohama
時男 小浜
Hideki Obayashi
秀樹 大林
Hisashi Kawai
寿 河合
Tsuneyuki Egami
常幸 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP56212767A priority Critical patent/JPS58113718A/en
Priority to US06/376,133 priority patent/US4425792A/en
Publication of JPS58113718A publication Critical patent/JPS58113718A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the accuracy of the flow rate measurement and the responsiveness, by forming a supporting body for coil winding provided in a flow rate measuring tube in channel shape by removing a frame part of the upper stream side, to construct so that a flow of a fluid is hardly affected by the supporting body. CONSTITUTION:Each resistance wire 10-12 is supported by the first and the second supporting bodies 14, 15 and is arranged in a flow of inhaled air. Each body 14, 15 is made of an electric insulator such as ceramics or synthetic resin and is formed nearly in H shaped plate. The resistance wire 10 for an electric heater and the first temperature dependent resistance wire 11 affected by the heat of the heater 10 are wound around the first supporting body 14, to said two plate-like supporting bodies 14, 15. On this occasion, both wires 10, 11 are wound >= two times alternately in parallel and also closing to each other. Further, both ends of winding are connected to a copper foil on the surface of the body 14 and are connected to a measuring circuit through said foil.

Description

【発明の詳細な説明】 この発明は気体流量測定装置に関し、例えばエンジンの
吸入空気量を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas flow rate measuring device, for example, a device for measuring the intake air amount of an engine.

燃料噴射式エンジンにお−て祉、吸入空気流量を重量流
量として正確に測定し、燃料の供給量を吸入空気量に見
合った最適量に5IIllする必glカある。このため
の吸入空気量測定装置として、吸入空気の流れの中に電
熱ヒータ用抵抗線と8本の温度依存抵抗線とを適当な関
係で配置し、これらの各抵抗a!からの信号で吸入空気
量を測定するものが公知である。このものでは、電熱ヒ
ータ用抵抗線によって吸入空気に熱が加えられ、それに
伴う吸入空気の湿度上昇量が2本の温度依存抵抗#に:
よって検知される。し必して、吸入空気に加えられる熱
量とそれに伴う温度上昇量との関係は吸入空気の重量流
量に依存して変化することムら、これを利用して吸入空
気量が一定される。
In a fuel injection type engine, it is necessary to accurately measure the intake air flow rate as a weight flow rate and adjust the fuel supply amount to an optimum amount commensurate with the intake air amount. As an intake air amount measuring device for this purpose, a resistance wire for an electric heater and eight temperature-dependent resistance wires are arranged in an appropriate relationship in the flow of intake air, and each of these resistances a! There is a known method that measures the amount of intake air using a signal from the engine. In this case, heat is added to the intake air by the electric heater resistance wire, and the resulting increase in humidity of the intake air is caused by the two temperature-dependent resistors #:
Therefore, it is detected. The relationship between the amount of heat added to the intake air and the resulting temperature rise necessarily changes depending on the weight flow rate of the intake air, and this is used to keep the intake air amount constant.

この吸入空気量漏電装には、小型かつ簡Sな構成で正確
に流量を1定し得る利点を持つ。しかし、その東用化に
あたっては、各抵抗I!lt−いかにして吸入空気の流
れの中に支持するかが大きな間−となる。
This intake air flow leakage device has the advantage of being small and simple in structure and capable of accurately regulating the flow rate. However, each resistance I! The big question is how to support it in the intake air flow.

すなわち、エンジンではしばしばパック7アイヤが生じ
るので、その際の衝撃によっても冬抵抗纏カIIrII
sすることのないよう、各抵抗線を支持する会費がある
。また、流量一定の精度および応答性の向上のために、
電熱ヒータ用抵抗線の熱量の全て1!Phm人空気に加
えられ かつそれによる吸入空気の温度上昇が速やかに
8本の温度依存抵抗線で検出され得るようにすることが
、きわめて重要である。
In other words, pack 7 air often occurs in the engine, so the shock caused by this also reduces winter resistance.
There are dues to support each line of resistance so that you don't lose. In addition, in order to improve the accuracy and responsiveness of constant flow rate,
All about the amount of heat of resistance wire for electric heaters! It is extremely important that the temperature increase added to the Phm human air and the resulting intake air can be quickly detected by the eight temperature-dependent resistance lines.

本発明社上述の点に鑑みて各抵抗線の支持**を改良し
た1ので、その目的とするところは、各抵抗線の断mを
防止し、かつ流量測定の精度および応答性を向上させる
ことにある。
In view of the above-mentioned points, the present invention has improved the support** of each resistance wire.The purpose is to prevent disconnection of each resistance wire and improve the accuracy and responsiveness of flow rate measurement. There is a particular thing.

本発明によれば、各抵抗gii[a絶縁材よりなる支持
体に巻付社られて被測定気体の流れの申KltfIhれ
、衝撃波の作用によっても断線しないようKtされる。
According to the present invention, each resistor is wound around a support made of an insulating material so as to prevent wire breakage due to the flow of the gas to be measured and shock waves.

しかも電熱ヒータ用抵抗−とその熱の影響を受けるべき
第1の温度依存抵抗線とは、互いに近接し合って交互に
、1巻き以上づつ同一の支持体上に巻付けられ、かつ被
測定気体の流れに60°〜110°の角度で*!^する
ように′&される。これによ〉、ヒータ用抵抗線のll
1kが高感度で連fかに第1の温度依存抵抗線に伝えら
れる。
Furthermore, the electric heater resistor and the first temperature-dependent resistance wire that should be affected by the heat thereof are wound alternately one or more turns on the same support in close proximity to each other, and At an angle of 60° to 110° to the flow *! ^To be ′& done. With this, the resistance wire for the heater
1k is transmitted continuously to the first temperature-dependent resistance line with high sensitivity.

本発明の望ましい実施態様では、支持体の熱容量の影響
ができるだけ少なくなるよう、支持体が構成され、また
支持体の設置及び形状による被測定気体の流れの乱れが
流量測定にできるだけ畜を与えな−よう、支持体の設置
及び構造が選定される。
In a preferred embodiment of the present invention, the support is constructed such that the influence of the heat capacity of the support is as small as possible, and the disturbance of the flow of the gas to be measured due to the installation and shape of the support is as intrusive as possible to the flow rate measurement. - the installation and structure of the support are selected accordingly;

以下、本発明を、エンジンの吸入空気量測定装置に通用
した場合につき、図示の実施例に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments when applied to an engine intake air amount measuring device.

第111!Jにおいて、エンジンlには燃焼用の空気が
エアクリーナ3および吸入導管8を経由して、吸気弁−
の開弁により吸入される。一方、燃料は吸入4管8に設
置された電磁式燃料噴射弁bbら噴射供給される。上記
吸入空気の流量祉、吸入導管畠に設けられたスロットル
弁6により制御され、燃料の量#1lIIIII11ユ
ニツ)7によって噴射弁すの開弁l#間を制御すること
Kより制御される。
111th! At J, combustion air is supplied to the engine l via the air cleaner 3 and the intake conduit 8 to the intake valve -
is inhaled by opening the valve. On the other hand, fuel is injected and supplied from an electromagnetic fuel injection valve bb installed in the four suction pipes 8. The flow rate of the intake air is controlled by a throttle valve 6 provided at the intake conduit, and the opening period of the injection valve is controlled by the amount of fuel #1lIII11 unit).

吸入空気流量の測定のため、吸入導管8の内部にはスロ
ットル弁6の上fitmKIL量測定管8が配置され、
その上流側K11人空気の流れを整流するための、例え
ばハニカム状をなした整流格子9が設置Mされる。これ
により吸入空気・の一定割合いが一定管8内に通過する
ようKなされる。測定管8は支住81’t’吸入導管3
に保持される。
In order to measure the intake air flow rate, a fitmKIL amount measuring tube 8 is arranged above the throttle valve 6 inside the intake conduit 8,
On the upstream side K11, a rectifying grid 9 having a honeycomb shape, for example, is installed to rectify the flow of air. This causes a certain proportion of the intake air to pass into the pipe 8. The measuring tube 8 is the support 81't' suction conduit 3
is maintained.

本発明になる流量測定装置社上記測定管a内を通過する
空気量から吸入空気量km定するものて、センサ部8と
測定囲路18とを含む。七ンf部S社上記測定管8の内
部に配置される。
The flow measuring device according to the present invention determines the amount of intake air km from the amount of air passing through the measuring pipe a, and includes a sensor section 8 and a measuring circuit 18. It is arranged inside the measuring tube 8 mentioned above.

上記センサ部1Ifi、吸入空気に熱を加える電熱ヒー
タ用抵抗!l!lOと、温度に応じて抵抗値の変る第1
1第雪の温度依存抵抗m1ll、1mとを含む。第1の
温度依存抵抗m1ll lti電熱ヒータ用抵抗[10
,6らの熱によって加熱された吸入空気の温度を検知し
、一方、第3の温度依存抵抗gi1mは上記熱を受けな
い状態での吸入空気の温度を検知するよう、電熱ヒータ
用抵抗線に対する各々の配置位置が選定される。電熱ヒ
ータ用抵抗@10は例えば白金抵抗線よりなり、111
、第3の温度依存抵抗gill、1mは互−に同一の温
度−抵抗特性を有する、例えば白金線、白金合金線、タ
ングステン線等よりなる。
The above sensor part 1Ifi is a resistor for the electric heater that adds heat to the intake air! l! 1O, and the first whose resistance value changes depending on the temperature.
The temperature-dependent resistance of the first snow m1ll, 1 m is included. First temperature dependent resistance m1ll lti electric heater resistance [10
, 6, etc., while the third temperature-dependent resistor gi1m is connected to the resistance wire for the electric heater so as to detect the temperature of the intake air when it is not receiving the heat. Each arrangement position is selected. The electric heater resistor @10 is made of platinum resistance wire, for example, and is 111
, the third temperature-dependent resistor gill, 1m are made of, for example, platinum wire, platinum alloy wire, tungsten wire, etc., having the same temperature-resistance characteristics.

測定回路Imは上記各抵抗4110〜1mと接続され、
その各々に電圧を印加する一方、各々春もの信号に基い
て吸入空気量を演算する。演算結果は制−ユニット?に
人力され、燃料の噴射量の制御Kmかされる。
The measurement circuit Im is connected to each of the above-mentioned resistors 4110 to 1m,
While applying a voltage to each of them, the amount of intake air is calculated based on the respective spring signals. Is the calculation result controlled by the unit? The fuel injection amount is controlled manually by Km.

電熱ヒータ用抵抗線10に電力を供給して発熱さ髪ると
、第1.第3の温度依存抵抗l[1!11゜1m間には
、吸入空気の加熱に伴う温度上昇(温度差が生じる。こ
の温度上昇量は電熱ヒータ用抵抗11i110の発熱量
と吸入空気の重量流量とに依存して縦比する。しかして
、測定@絡11a例えば、温度上昇量が一定になるよう
電熱ヒータ用抵抗線lGの発熱量(供給電力量)t?制
彎し、この供給電力量から吸入空気量を演算する。この
ような測定−路11の具体的細路構成は、例えd特開昭
h&−6M116号公報に示されているので、ここては
説明を省略する。
When power is supplied to the electric heater resistance wire 10 to generate heat, the first. A temperature rise (temperature difference occurs) due to the heating of the intake air between the third temperature-dependent resistance l[1!11°1m. Measurement@Circuit 11aFor example, the amount of heat generated by the electric heater resistance wire IG (amount of power supplied) t? is controlled so that the amount of temperature rise is constant, and the amount of power supplied is The intake air amount is calculated from the following.The specific structure of the measurement path 11 is shown in, for example, Japanese Unexamined Patent Publication No. 116-6M116, so the explanation thereof will be omitted here.

上記吸入空気量測定装置にお−て、本発明によれdセン
を部8が次のように構成される。
In the above-mentioned intake air amount measuring device, according to the present invention, the d-sen section 8 is constructed as follows.

す亀わち、第31図および第j!1図はその第1実施例
を示すもので、各抵抗線lO〜1mは第11第3の支持
体14.16によシ支持されて吸入空気の流れの中に配
置される。各支持体14.16はセラ文ツタとか合成樹
脂などの電気絶縁材からなり、略H形の板状に形成され
る。この3枚の板状の支持体に対し、電熱ヒータ用抵抗
4110とその熱の影響管受けるべき第1の温度依存抵
抗線11とは共に第1の支持体l−に巻付けられる。
Okay, figure 31 and j! FIG. 1 shows a first embodiment of the present invention, in which each resistance wire lO~1m is supported by an eleventh third support 14, 16 and placed in the flow of intake air. Each of the supports 14 and 16 is made of an electrically insulating material such as ivy or synthetic resin, and is formed into a substantially H-shaped plate. With respect to these three plate-shaped supports, the electric heater resistor 4110 and the first temperature-dependent resistance wire 11 to be subjected to the heat influence tube are both wound around the first support l-.

その場合この両4110,11は互いに平行かつ近接し
合って交互に、l[[11以上の巻数づつ(図で韓す巻
き)巻付けられる。そして、巻線の両端蝶第1の支持体
14の表面上の−IK!I続され、これ管介して測定−
路II(第1図)と接III&される。
In that case, both 4110 and 11 are wound parallel to each other and close to each other, alternately, with a number of turns equal to or greater than 11 (in the figure, a square winding). -IK! on the surface of the first support 14 at both ends of the winding! I was connected and measured through the tube.
It is connected to Route II (Fig. 1) and III&.

tb、図で蝶、抵抗線16の一端、抵抗線11の他端が
それぞれ接続される鋼箔lam、lobのみを示すだけ
であるが、第1の支持体16にはその他に、抵抗gil
lの一端が接続される鋼箔と抵抗線10の他端が接続さ
れる#ii箔とが、上記鋼箔xo*、lxbとは反対側
に設けられる。
In the figure, only the steel foil lam and lob to which one end of the resistance wire 16 and the other end of the resistance wire 11 are connected are shown.
A steel foil to which one end of the resistance wire 10 is connected and a #ii foil to which the other end of the resistance wire 10 is connected are provided on the opposite side from the steel foils xo* and lxb.

第8の温度依存抵抗911tj第3の支持体16に単独
で巻付けられ、@1illa、llbを介して測定囲路
13と接続される。
The eighth temperature-dependent resistor 911tj is wound individually on the third support 16 and is connected to the measuring circuit 13 via @1illa, llb.

上記第11第1の支持体14%1itj測定管8の内部
に、吸入空気の流れに)に対して平行な状態で保持され
る。しかもこの場合、第1の支持体上の崗抵抗線101
11は各々の各春目の部分が吸入空気の流れ(4)に対
し角f0で対尚するようになされる。この角度−は60
0〜110’の範囲内に迩定される。これにより電熱に
一夕用抵抗線lOとJIIlf)IIA度依存抵抗線1
1とは、空気の流れに沿って上流側から下流軸へと、1
11者の1春目、111の1春目、IIJiif1m巻
目、後書の3春目、・・・のjllK交互に配列される
The 11th first support is held inside the measuring tube 8 in a state parallel to the flow of intake air). Moreover, in this case, the resistance wire 101 on the first support body
11 is arranged such that each spring portion faces the intake air flow (4) at an angle f0. This angle - is 60
It is set within the range of 0 to 110'. This results in electric heating with overnight resistance line lO and JIIlf) IIA degree-dependent resistance line 1
1 means 1 from the upstream side to the downstream axis along the air flow.
The 1st spring of 11 people, the 1st spring of 111, the 1mth volume of IIJiif, the 3rd spring of the afterword, etc. are arranged alternately.

第3の支持体1jitj第1の支持体l−とは所定の開
−を確保して保持され、電熱ヒータ用抵抗線1Gからの
熱が第8の温度依存抵抗線11には作用しないようにな
される。第3の支持体l墨線、場合によっては、第1の
支持体l慟より上流側に配置することもできる。
The third support member 1jitj is held with a predetermined opening from the first support member l-, so that the heat from the electric heater resistance wire 1G does not act on the eighth temperature-dependent resistance wire 11. It will be done. The third support may be placed upstream of the first support depending on the case.

上記構成のセンナ部によれば、電熱ヒータ用抵抗麹10
と第1の温度依存抵抗線11.!:が互−に近接し合っ
て、−一の第1の支持体14に巻付けられて−るので、
第1の温度依存抵抗線11に触れることとなる吸入空気
を電熱ヒータ用抵抗線10によって有効に加熱で禽、熱
損失を低減することができる。また、加熱され大吸入空
気の温度を速かに第1の温度依存抵抗線11によって検
知することができる。従って、流量測定の精度および応
答性が向上する。
According to the senna section having the above configuration, the resistance koji for electric heater 10
and the first temperature-dependent resistance line 11. ! : are wrapped around the first support 14 in close proximity to each other, so that
The intake air that comes into contact with the first temperature-dependent resistance wire 11 can be effectively heated by the electric heater resistance wire 10, thereby reducing heat loss. Further, the temperature of the heated large intake air can be quickly detected by the first temperature-dependent resistance line 11. Therefore, accuracy and responsiveness of flow rate measurement are improved.

その上、上記両[1G、I Il111以上づつ交互に
巻付け、し春もこれを吸入空気の流れに対して、l1l
lOの1春目、1lillの1春目、1111Oの8春
目、線11のS巻目、−・順に交互に配列して−るので
、電熱ヒータ用抵抗線10の各巻am分での熱はその下
流側の第1の温度依存抵抗線11の各春目部分に作用す
ることとなる。この結果、流量測定の感度が向上し、よ
多正確′&流量測定が可能となる。
In addition, the above two [1G, Il111 or more are wound alternately, and the spring is also applied to the flow of intake air.
The first spring of 1O, the first spring of 1lill, the 8th spring of 1111O, the S turn of wire 11, etc. are arranged alternately in this order, so the heat in each turn am of the resistance wire 10 for electric heater acts on each spring portion of the first temperature-dependent resistance line 11 on the downstream side thereof. As a result, the sensitivity of flow rate measurement is improved and more accurate and flow rate measurement becomes possible.

今、電熱ヒータ用抵抗Ii[1Of)14I龜当抄の発
熱量をrlそれによる空気の温度上昇量をΔ!験大入空
気量G(g/g)とすると、上記両線10゜11の1巻
自当りで祉次の式が成立する。
Now, the amount of heat generated by the electric heater resistor Ii[1Of)14I is rl, and the amount of air temperature rise due to it is Δ! Assuming that the air intake amount is G (g/g), the following equation holds true when the above-mentioned two lines are 10°11 per roll.

I思 ・ΔチーF/G(ただしに8社定歇) −(1)
しかして、第1の温度依存抵抗1[11の1春目での温
度上昇ΔTq上記(1)式となるのに対し、両線10.
11の巻WIf vrとして上述の如く構成すれば、鰻
下鬼のn春目での温度上昇は、その上流価ての温度上昇
のすべてを加えたム・ΔTとなる。
I think ・ΔChi F/G (However, 8 companies are fixed) -(1)
Therefore, while the temperature rise ΔTq in the first spring of the first temperature dependent resistance 1[11 is expressed by the above equation (1), both lines 10.
If it is constructed as described above as volume 11 WIf vr, the temperature rise at the nth spring of the eel is equal to Mu·ΔT, which is the sum of all the temperature rises at its upstream price.

従って、この場合のΔT、P、Gの関係1−1とめると
、 1≦・ 烏  (l干瓢i+・・・十馳 )ΔT=皇1
−P/Gとなり、これから次の(2)式が成立する。
Therefore, if we take the relationship 1-1 between ΔT, P, and G in this case, 1≦・karasu (l ganryo i+...juchi) ΔT=Kou 1
-P/G, and from this the following equation (2) is established.

L、  ・ΔT−g±=P/u   ・・・・・・・・
・(g)つまり、181にの電熱ヒータ用抵抗線の熱を
作用させるだけの場合(に1・ΔT′=P/G)に比し
て、(n+1)78倍だけ^い温度上昇が得られること
となり、その分感度が向上する。
L, ・ΔT−g±=P/u ・・・・・・・・
・(g) In other words, compared to the case where only the heat of the resistance wire for the electric heater is applied to 181 (1・ΔT'=P/G), a temperature increase of 78 times (n+1) can be obtained. Therefore, the sensitivity is improved accordingly.

上記センを部8によれば、各抵抗!l1110〜11【
支持体l−11Mに巻付けて空気の流れの中に置くこと
により、各抵抗il管単独で配設する場合よりもlll
il度が向上するのは勿論である。従って、振動とかエ
ンジンのパック7アイヤによる衝撃的な圧力の作用によ
って一1各抵抗線の断1mを防止で禽、センナ部の信頼
性が大幅に向上する。
According to part 8, each resistance! l1110~11 [
By wrapping it around the support l-11M and placing it in the air flow, the resistance is lower than when each resistance tube is installed alone.
Of course, the degree of illumination is improved. Therefore, the reliability of the wire and senna parts is greatly improved by preventing each resistance wire from breaking by 1 m due to vibration or impact pressure from the engine's pack 7 tires.

また、支持体14.16Fiコ字形をしており支持体に
よる流れの乱れが少なりh杉状となっているために測定
精度が向上する。
In addition, the support 14.16Fi has a U-shape, and the flow is less disturbed by the support and has a cedar-like shape, which improves measurement accuracy.

第3ム図および第8B[は本発明の@;S実施例を示す
。この実施例は支持体14.1hとこれに巻付けられる
各抵抗11i11G〜l!との接触部管できるだけ少な
くした点で、上記第1*!Ii例と相違する。
Figures 3 and 8B illustrate the @;S embodiment of the present invention. This embodiment includes a support 14.1h and each resistor 11i11G~l! which is wound around the support 14.1h. The first *! point is to minimize the contact area with the tube as much as possible! This is different from Example II.

各支持体14.16において、棒状の基部141゜15
1の両側部、すなわち看付けられる抵抗線の折返し部と
なる部分には、基部141,161の一一個へ突出する
1本と、他画側へ突出する1本と、基$141,1!l
の側方へ突出する1本との、合#畠本の突条141、I
IIがそれぞれ般社られる。そして各抵抗線1G−1m
a各突条141.1 i so′先端面との4II触し
て対応する支持体14、liに巻付けられ、基部141
゜161からttii−良状態に亀される。
At each support 14.16, a rod-shaped base 141°15
On both sides of 1, that is, the part that becomes the folded part of the resistance wire to be noticed, there are one wire protruding to each of the bases 141 and 161, one protruding to the other side, and the base $141,1. ! l
141, I
II will be sold separately. And each resistance wire 1G-1m
a Each protrusion 141.1 i so' is wrapped around the corresponding support 14, li in contact with the tip surface, and the base 141
From ゜161 to ttii-good condition.

このような構成で各抵抗−と支持体との接触m−を低減
すれば、電熱ヒータ用抵抗1110の熱が支持体に逃け
ることが少なくなる。従って応答性か向上する。また、
各抵抗線と支持体との接触面積が低減されることにより
、汚れの付着によって汚れと各抵抗線とが汚れを介して
間接的に接触するthl?I#Iの増加が低減されるこ
とにより、電熱ヒーターから温度計に伝達される熱量の
変化割合が小さくなる。
By reducing the contact m between each resistor and the support with such a configuration, the heat of the electric heater resistor 1110 will be less likely to escape to the support. Therefore, responsiveness is improved. Also,
By reducing the contact area between each resistance wire and the support, the dirt and each resistance wire come into indirect contact through the dirt due to the adhesion of dirt. By reducing the increase in I#I, the rate of change in the amount of heat transferred from the electric heater to the thermometer becomes smaller.

なお、支持体14(15)の両@部に第す図の如<ll
l&の$9144を所定の間隔で設け、抵抗線をこの溝
を通して巻付けると、抵抗線の巻付は作JIIが容易に
なると共に、巻付けのバラツキをなくすることができ、
また抵@線の位置ずれを防止してその耐久性を向上させ
ることができるので、有用である。
In addition, both parts of the support body 14 (15) are marked as shown in the figure.
By providing $9144 of l& at predetermined intervals and winding the resistance wire through these grooves, the winding of the resistance wire becomes easy and the variation in winding can be eliminated.
It is also useful because it can prevent the resistance wire from shifting and improve its durability.

この見頃でti同一支持体上に電熱ヒータ1O111I
lの温度依存抵抗11を巻きつけているため、電熱ヒー
タの熱が一部支持体に奪われるが、その支持体に奪われ
た熱線支持体を介し第1の温度依存抵抗11に伝わるこ
とから電熱ヒータの熱損失tin止てき測定精度は大幅
に向上する。
At this peak, ti electric heater 1O111I on the same support.
Since the temperature-dependent resistor 11 of 1 is wound around, some of the heat from the electric heater is taken away by the support, but the heat is taken away by the support and is transferred to the first temperature-dependent resistor 11 via the hot wire support. The accuracy of measuring the heat loss tin of the electric heater is greatly improved.

また同一支持体上に電熱ヒータIoと第1の温度依存抵
抗11を巻きつけるという構造から電熱ヒータと第1の
温度依存抵抗#i極〈近接して設けることが可能となる
ことより、空気量測定装置の応答性/fi極めて向上す
る。
In addition, since the structure in which the electric heater Io and the first temperature-dependent resistor 11 are wound around the same support, the electric heater and the first temperature-dependent resistor #i pole can be provided close to each other, which increases the amount of air. The responsiveness/fi of the measuring device is greatly improved.

また構造的にパンクファイア等の衝撃波に対して彊〈な
り、信頼性を大きく向上させることが可能となる。
In addition, the structure is resistant to shock waves such as a puncture fire, making it possible to greatly improve reliability.

また本発明て雌部11第露の支持体にお−て電熱ヒータ
、第11第8の温度依存抵抗を巻き付ける部分の枠の内
部及び上流価に支持体−bhない構造となっているため
に支持体による流れの乱れが極めて小さくなり、特に被
測定流体の遷移域の乱れが極めて小さくなる。
Furthermore, in the present invention, the electric heater, the 11th and 8th temperature dependent resistors are wound around the female part 11th support body, and the structure is such that there is no support body inside or upstream of the frame. Disturbance of the flow caused by the support becomes extremely small, especially in the transition region of the fluid to be measured.

また本発明では電熱し一部10及び第1の温度依存抵抗
体11が流れに対し60°〜1110”の角度で対当す
るよう支持体14を被測定気体中に配置して−るので電
熱ヒータ線の熱は第1の温度依存抵抗線に少なくとも5
1g1以上伝熱させることがで自る為感度向上(ΔTu
p)を計ることができる。
Furthermore, in the present invention, the support 14 is disposed in the gas to be measured so that the electrically heated part 10 and the first temperature dependent resistor 11 are opposed to the flow at an angle of 60° to 1110''. The heat of the wire is at least 5
Sensitivity is improved (ΔTu
p) can be measured.

また本発明の第3の発明では支持体16.15に突起杉
状を持たせることにより支持体の熱容量の影響を小さく
で自応答性を向上できる。さらに本発明の第3の発明で
は支持体14.16に溝を設けている。この結果製作時
のバラツキを低減できるとともに撮動あるいはパックフ
ァイアなどの嚢撃波により抵抗線の位kがづれることが
防止可能となり耐久性が向上できるといった優れた効果
を有する。
Further, in the third aspect of the present invention, by providing the supports 16 and 15 with a protruding cedar shape, the influence of the heat capacity of the supports can be reduced and the self-responsiveness can be improved. Furthermore, in the third aspect of the present invention, grooves are provided in the support body 14,16. As a result, it is possible to reduce variations during manufacturing, and it is also possible to prevent the position of the resistance wire from shifting due to shooting waves or pack fire waves, thereby improving durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を備えたエンジンの構成図、#lI
lム図は本角明装置の第1実施例を示す斜視図、第8B
図はその一部の正面図、第8ム図は本発明装置の第1I
JII施例の斜視図、第8B図社その一部の一向@山図
、第4m(11)、(b) i同第」爽施例の変形例を
示す第si図と同等の図、第6図は第33図の支持体の
正Ig図である。 $・・・流量蘭定管、10−・・電熱ヒータ用抵抗線。 11.11−・第11第3の温度依存抵抗線、1−11
 M−・・第1.第Sの支持体、14!、16m−突条
、 144−・溝。 代理人弁場士 岡 部   隆
Figure 1 is a configuration diagram of an engine equipped with the device of the present invention, #lI
Figure 8B is a perspective view showing the first embodiment of the present invention.
The figure is a front view of a part of it, and the 8th figure is the 1I part of the device of the present invention.
A perspective view of the JII example, Figure 8B, a part of the Ikko @ mountain view, Figure 4m (11), (b) a view equivalent to Figure si showing a modification of the example of the FIG. 6 is a normal Ig diagram of the support of FIG. 33. $...Flow rate constant tube, 10-...Resistance wire for electric heater. 11.11-・11th third temperature dependent resistance line, 1-11
M-... 1st. Sth support, 14! , 16m - ridge, 144 - groove. Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】 (1)被測定気体が流れる流量測定管と、この流量漏電
管内に設けられた電気絶縁材よりなる第1の支持体と陶
記亀1の支持体に互ψに短絡しないよう近接し合って交
互に2巻き以上巻きつけられた電熱ヒータ川抵抗線およ
び第1の温度依存抵抗線と、前記集雪の支持体に巻きつ
けられた第2の温度依存抵抗線と、前記電熱ヒータ用抵
抗編集1および第8のm度依存抵抗線に電圧を印加して
被測定気体の流量を求める測定回路を備える気体流量測
定に置において、前記第11第怠の支持体の構ikk、
上tit軸枠軸管部未したコの字形状とし、流体の流れ
が前記I11、第3の支持体に影畳され鎧−構造とした
ことを特徴とする気体流量測定装置。 (露)上記第1の支持体に巻付けられた電熱と−タ用抵
KIIAおよび第1の温度依存抵抗線が上記被測定気体
の流れに翅し60’〜Igo’の角度で整列1回するこ
とを特徴とする特許曽求の範囲第1項又は第8項に記載
の気体流量測定装置。 (8)上記第1、第2の支持体が、これに巻付けられる
上記各抵抗線と部分的に接する突条t−有し、各抵抗M
がこの突条と接して対応する支持体に響き付けられた特
許請求の範囲第1項に記載の気体流量測定装置。 (4)上記第11第8の支持体が、これに巻き付は測定
装置。
[Scope of Claims] (1) A short-circuit between the flow measuring tube through which the gas to be measured flows, the first support made of an electrical insulating material provided in the flow leakage tube, and the support of the recorder turtle 1. an electric heater river resistance wire and a first temperature-dependent resistance wire that are alternately wound two or more turns in close proximity to each other so as not to prevent the snow from falling; and a second temperature-dependent resistance wire that is wound around the snow collecting support; In the gas flow rate measurement including a measurement circuit for applying a voltage to the electric heater resistance editing 1 and the eighth m-degree dependent resistance wire to obtain the flow rate of the gas to be measured, ikk,
A gas flow measuring device characterized in that it has a U-shape with no upper tit shaft frame shaft tube portion, and has an armor-like structure in which the fluid flow is reflected by the third support member. (Dew) The electric heating resistor KIIA and the first temperature-dependent resistance wire wound around the first support are aligned once with the flow of the gas to be measured at an angle of 60' to Igo'. A gas flow rate measuring device according to claim 1 or 8, characterized in that: (8) The first and second supports have protrusions t that are partially in contact with the respective resistance wires wound thereon, and each of the resistors M
2. The gas flow rate measuring device according to claim 1, wherein the protrusion is in contact with the corresponding support. (4) A measuring device on which the eleventh and eighth supports are wound.
JP56212767A 1981-05-08 1981-12-26 Measuring apparatus for flow rate of gas Pending JPS58113718A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56212767A JPS58113718A (en) 1981-12-26 1981-12-26 Measuring apparatus for flow rate of gas
US06/376,133 US4425792A (en) 1981-05-08 1982-05-07 Apparatus for measuring a fluid flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212767A JPS58113718A (en) 1981-12-26 1981-12-26 Measuring apparatus for flow rate of gas

Publications (1)

Publication Number Publication Date
JPS58113718A true JPS58113718A (en) 1983-07-06

Family

ID=16628055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212767A Pending JPS58113718A (en) 1981-05-08 1981-12-26 Measuring apparatus for flow rate of gas

Country Status (1)

Country Link
JP (1) JPS58113718A (en)

Similar Documents

Publication Publication Date Title
US4304130A (en) Flow rate meter with temperature dependent resistor
US4517837A (en) Air flow rate measuring apparatus
EP0023970B1 (en) Air flow meter
US4393697A (en) Air flow rate measuring apparatus
US4381668A (en) Gas flow measuring apparatus
US4513615A (en) Thermal air flow meter
US4821700A (en) Device for determining mass flow and direction of flow
US4433576A (en) Mass airflow sensor
US4833912A (en) Flow measuring apparatus
EP0118117A1 (en) Thermal air flow meter
US5186051A (en) Device for measuring a flowing air quantity
JPH045945B2 (en)
CA1291883C (en) Hot wire air flow meter
US2612047A (en) Probe device for fluid condition measuring apparatus
US5717136A (en) Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine
JPS604815A (en) Flow rate measuring apparatus
JPH10500490A (en) Flow sensor
US4425792A (en) Apparatus for measuring a fluid flow rate
GB2025061A (en) Hot-wireanemometer
US5090241A (en) Flow rate sensor
US5058426A (en) Flow rate sensor
JPS58113718A (en) Measuring apparatus for flow rate of gas
GB2025062A (en) Hot-wire Anemometer
KR100244360B1 (en) Process and device for measuring air flow
US5544527A (en) Flow meter having a main passage and a branch passage partially partitioned into plural regions