JPS58113208A - Continuous vapor phase polymerization of olefin - Google Patents

Continuous vapor phase polymerization of olefin

Info

Publication number
JPS58113208A
JPS58113208A JP20984781A JP20984781A JPS58113208A JP S58113208 A JPS58113208 A JP S58113208A JP 20984781 A JP20984781 A JP 20984781A JP 20984781 A JP20984781 A JP 20984781A JP S58113208 A JPS58113208 A JP S58113208A
Authority
JP
Japan
Prior art keywords
fluidized bed
zone
height
phase polymerization
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20984781A
Other languages
Japanese (ja)
Other versions
JPH0332562B2 (en
Inventor
Akifumi Kato
章文 加藤
Shigeo Kaminaga
上永 成男
Ryoichi Yamamoto
良一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP20984781A priority Critical patent/JPS58113208A/en
Publication of JPS58113208A publication Critical patent/JPS58113208A/en
Publication of JPH0332562B2 publication Critical patent/JPH0332562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/382Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it with a rotatable device only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain an uniform olefin polymer in stable condition, by carrying out an agitation, in a vapor phase polymerizer, so that the upper end of the agitating blade is imbedded in the fluidized bed zone, and detecting a pressure difference between said zone and the upper space to maintain the height of the above zone constant. CONSTITUTION:An olefin is preliminarily polymerized in a prepolymerizer 1 followed by continuously feeding the resultant intermediate product to a vapor phase polymerizer equipped with an agitator 4. While agitating the fluidized bed zone 3 so that the upper end of the agitating blade is imbedded in said zone 3, a pressure difference between said zone 3 and the space 2 above the zone 3 is detected through the pressure-detecting element 20 in the space 2 and the other element 21 set at a site within said zone 3 and higher than said upper end of the agitating blade. The olefin polymer produced is drawn through the pipe 19 according to the pressure difference value so that the height of said zone 3 is maintained to a nearly constant level, thus obtaining the objective polymer.

Description

【発明の詳細な説明】 本発明はオレフィン類の気相重合方法に関する。さらに
詳しくは長期間連続して安定な運転が可能であり、した
がって一定品質のオレフィン重合体の製造が可能なオレ
フィン類の連続気相重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gas phase polymerization of olefins. More specifically, the present invention relates to a method for continuous gas phase polymerization of olefins, which allows continuous and stable operation for a long period of time, and therefore enables the production of olefin polymers of constant quality.

とくに、本発明は、攪拌器を具備した気相重合槽中で、
攪拌条件下に流動床層を形成させながら連続的に気相重
合を行うオレフィン類の気相重合方法に於て、 (1)  該攪拌器の一拌翼の高さ上端部が該流動床層
区域中に埋没する状態で該区域を攪拌しながら気相重合
を行うこと、 (11)  該流動床層区域中で且つ該攪拌翼高さ上端
部を超える位置に設けた流動床層区域内圧力検出端と、
該流動床層区域より上方の上部空間区域に設けた上部空
間区域内圧力検出端とにより、該両区域間の差圧を検知
し、この検知された差圧に応じて、該流動床層区域高さ
がほぼ一定に維持されるように、該区域からオレフィン
重合体を抜き出すこと、を特徴とするオレフィン類の連
続気相重合方法に関する。
In particular, in the present invention, in a gas phase polymerization tank equipped with a stirrer,
In a gas phase polymerization method for olefins in which gas phase polymerization is carried out continuously while forming a fluidized bed layer under stirring conditions, (1) the upper end of the height of one stirring blade of the stirrer forms a fluidized bed layer; (11) Pressure within the fluidized bed area provided in the fluidized bed area and at a position exceeding the upper end of the stirring blade height. a detection end;
A pressure detection end in the upper space area provided in the upper space area above the fluidized bed area detects the differential pressure between the two areas, and according to the detected pressure difference, the pressure in the upper space area is increased. The present invention relates to a process for the continuous gas phase polymerization of olefins, characterized in that the olefin polymer is withdrawn from the zone so that the height is maintained substantially constant.

攪拌器を具備した気相重合槽中で、触媒を含有するオレ
フィン重合体粒子層の中に、ガス状オレフィンを吹き込
むことによって流動床層を形成しつつ連続的にオレフィ
ン類を気相重合させることは公知である。
Continuous gas phase polymerization of olefins while forming a fluidized bed by blowing gaseous olefin into a layer of olefin polymer particles containing a catalyst in a gas phase polymerization tank equipped with an agitator. is publicly known.

この際、微細なオレフィン重合体粒子や触媒粒子のエン
トレインメントを防止するため、ガス流速を小さくし、
その代りに機械的攪拌によって流動層を攪拌して良好な
混合状態を得ようとする試みも知られている。しかしな
がらこのような試みにもかかわらず、流動床層内の混合
状態を均一にすることが困難であるため、オレフィン重
合体の塊状物が生成して、ガス吹込口やオレフィン重合
体抜き出し口を閉塞させ、長期間の運転を不可能ならし
めることが多い。また、このような気相重合を連続して
行う場合、流動床層区域の高さをできるだけ一定に維持
するようにオレフィン重合体を抜き出すことが均質な重
合体を得、かつ安定な運転を行うために必要である。
At this time, in order to prevent entrainment of fine olefin polymer particles and catalyst particles, the gas flow rate is reduced.
Alternatively, attempts to obtain a good mixing state by stirring the fluidized bed by mechanical stirring are also known. However, despite these attempts, it is difficult to make the mixing state uniform in the fluidized bed layer, resulting in the formation of olefin polymer lumps that clog the gas inlet and olefin polymer outlet. This often makes long-term operation impossible. In addition, when performing such gas phase polymerization continuously, it is important to extract the olefin polymer while maintaining the height of the fluidized bed zone as constant as possible to obtain a homogeneous polymer and to ensure stable operation. It is necessary for

そのためには、流動床層区域高さを計測し、それを一定
に保つように重合体排出弁の開閉を調節することが考え
られる。本発明者等は、このような着想にもとすいて、
流動床層区域高さを計測する方法として気相重合槽内に
上下2個所の圧力検出端を設け、その一方は流動床層区
域より上方の上部空間区域中に、他々は流動床層区域上
端又は流動床層区域内に設け、両者の差圧を測定するこ
とによって、流動床層区域高さを求める方法を試みた。
To this end, it is conceivable to measure the height of the fluidized bed zone and adjust the opening and closing of the polymer discharge valve to keep it constant. Based on this idea, the present inventors
As a method of measuring the height of the fluidized bed zone, two pressure detection ends are installed in the gas phase polymerization tank, one above the fluidized bed zone and the other in the upper space area above the fluidized bed zone. We tried a method of determining the height of the fluidized bed section by installing it at the top or within the fluidized bed section and measuring the differential pressure between the two.

その結果、流動床層区域上端に上記他方の圧力検出端を
設けた場合には、流動床層区域上端が圧力検出端に達し
たときに、上記上部空間区域との差圧が生ずることによ
り、これを検知し、この検知された差圧に応じて重合体
排出弁を開いて重合体を抜き出し、そしてこの抜き出し
に応−じて流動床層区域の高さが低下して上記他方の圧
力検出端より低レベルになると、上記上部空間区域との
圧力差がなくなることにより、これを検知して該重合体
排出弁を閉じるというコントロールシステムを採用せざ
るを得ないが、このような手段による場合には、流動床
層区域高さの微調製を可能とするようなコントロールが
操作上不可能であって、流動床層区域高さの変動がかな
り大きくなり、安定した運転がし難いという欠点がある
ことがわかった。
As a result, when the other pressure detection end is provided at the upper end of the fluidized bed area, when the upper end of the fluidized bed area reaches the pressure detection end, a pressure difference with the upper space area is generated. This is detected, and the polymer discharge valve is opened to withdraw the polymer in response to the detected differential pressure, and in response to this withdrawal, the height of the fluidized bed section is lowered to detect the other pressure. When the level is lower than the end, there is no pressure difference with the upper space area, so it is necessary to adopt a control system that detects this and closes the polymer discharge valve. The disadvantage of this method is that it is not operationally possible to control the height of the fluidized bed zone to make fine adjustments, and the height of the fluidized bed zone fluctuates considerably, making stable operation difficult. I found out something.

一方、流動床層区域内に上記他方の圧力検出端を設けた
場合には、その設置の位置によって検出端が攪1拌機の
影響を受けるために正確に圧力が検知されず、したがっ
て流動床層区域高さを一定に調節することが困難となる
ことがわかった。更に該検出端に詰りか生じ易く、測定
が不能となる場合さえでてくる不都合のあることがわか
った。流動床層区域の攪拌状態が不充分なところで計量
すればこのような恐れはないが、そのような状態を生ず
るような攪拌条件を採用したときには、均一な流動床状
態の形成が阻害されるため、安定な重合が行われず、塊
状重合体の生成するトラブルがあることがわかった。
On the other hand, if the other pressure detection end is installed in the fluidized bed area, the detection end will be affected by the agitator depending on the installation position, and the pressure will not be detected accurately. It has been found that it is difficult to constantly adjust the layer zone height. Furthermore, it has been found that there is a problem in that the detection end is likely to become clogged, even making measurement impossible. There is no risk of this if the measurement is carried out in an area where the agitation is insufficient in the fluidized bed area, but if agitation conditions that cause such a state are adopted, the formation of a uniform fluidized bed state will be inhibited. However, it was found that stable polymerization did not occur and there was a problem of formation of bulk polymers.

ところが、更に検討を続けた結果、前記(1)及び(I
I)を充足する条件下に、上記差圧の検知を行う方法を
採用することにより、流動床層区域の高さをほぼ一定に
コントロールすることができ、しかも流動床層区域の良
好な混合状態が得られ、安定した重合が可能となり、塊
状重合体の生成や重合体の壁付着のトラブルが防止でき
ることが発見された。従って、本発明の目的は、オレフ
ィン類の改善された連続気相重合方法を提供するにある
However, as a result of further investigation, the above (1) and (I)
By adopting the method of detecting the differential pressure described above under conditions that satisfy I), it is possible to control the height of the fluidized bed area to be almost constant, and to maintain a good mixing state in the fluidized bed area. It was discovered that stable polymerization was possible, and troubles such as the formation of bulk polymers and the adhesion of polymers to walls could be prevented. It is therefore an object of the present invention to provide an improved continuous gas phase polymerization process for olefins.

本発明のオレフィン重合は、定常状態においては、オレ
フィン重合体および触媒からなる流動床層区域へ、攪拌
条件下に、触媒を連続的に供給するとともに、ガス状オ
レフィンを該流動床層区域の下部から吹き込むことによ
って流動状態を維持し、かつ重合を行わしめる。流動床
層区域内は、攪拌機、好ましくはイカリ型(アンカー型
)攪拌機によって攪拌し、これにより横方向においても
良好な混合状態を得ることができる。
In the olefin polymerization of the present invention, in a steady state, a catalyst is continuously supplied under stirring conditions to a fluidized bed section consisting of an olefin polymer and a catalyst, and a gaseous olefin is transferred to the lower part of the fluidized bed section. The fluid state is maintained and polymerization is carried out by blowing into the solution. The inside of the fluidized bed zone is stirred by a stirrer, preferably an anchor type stirrer, thereby making it possible to obtain a good mixing state also in the lateral direction.

流動床層区域の下端部(底部)は好ましくは多孔板とな
っており、ガス状オレフィンの均一な分散を助けるとと
もに、重合体粒子等の落下を防止する。分子量調節の目
的で水素を用いることができるが、ガス状オレフィンと
共に流動床層区域下端部から供給してもよく、あるいは
流動床層区域内に直接供給してもよい。
The lower end (bottom) of the fluidized bed zone is preferably a perforated plate to aid in uniform dispersion of the gaseous olefin and to prevent falling of polymer particles, etc. Hydrogen can be used for molecular weight control purposes and may be fed from the lower end of the fluidized bed section with the gaseous olefin or directly into the fluidized bed section.

重合器の流動床層区域は、截頭円錐状又は円柱状のもの
が好ましく使用される。本発明において用いられる攪拌
器、好ましくはイカり型攪拌機は、これら截頭円錐状、
円柱状等をなす流動層の底面(通常は多孔板からなる)
および側壁面に近接して攪拌翼が回転する構造となって
いるものであり、回転軸から流動床層区域の底面に沿っ
て側壁部近辺まで伸び、そこからさらに側壁部に沿って
立上って伸びる攪拌翼を複数枚有する構造をなしている
のが普通である。複数枚有する攪拌翼の高さは必ずしも
同一である必要はない。イヵリ型攪拌機はまた上記のよ
うな基本構造を有している限り、補助的な攪拌翼が設け
られていたり、その他の変更態様設計のものであっても
よい。
The fluidized bed section of the polymerization reactor preferably has a truncated conical or cylindrical shape. The stirrer used in the present invention, preferably a squid type stirrer, has a truncated conical shape,
The bottom of a fluidized bed shaped like a cylinder (usually made of a perforated plate)
It has a structure in which the stirring blade rotates close to the side wall surface, and extends from the rotating shaft along the bottom surface of the fluidized bed area to the vicinity of the side wall section, and then further rises along the side wall section. Usually, it has a structure with a plurality of stirring blades that extend from one side to the other. The heights of the plurality of stirring blades do not necessarily have to be the same. The Ikari type stirrer may also be provided with auxiliary stirring blades or may have other modified designs as long as it has the basic structure as described above.

オレフィン類の重合時において、流動床層区域高さが、
攪拌器の攪拌翼の高さ上端部までの高さの好ましくは1
.02ないし1.4倍、より好ましくは1.02ないし
1.2倍となるように維持し、しかも好ましくはできる
だけ流動床層区域高さの変動がなく、はぼ一定に維持で
きるようにオレフィン重合体を連続的又は間欠的に抜き
出すのがよい。攪拌器の攪拌翼の高さ上端部までの高さ
とは、流動床層区域底面から該攪拌翼の上端部までの距
離であって、複数の攪拌翼を有し且つその高さが異なる
場合には、もつとも高いものを基準とする。
During the polymerization of olefins, the height of the fluidized bed zone is
The height of the stirring blade of the stirrer to the upper end is preferably 1
.. The olefin weight is maintained at 0.02 to 1.4 times, more preferably 1.02 to 1.2 times, and preferably so that the height of the fluidized bed area does not vary as much as possible and is maintained approximately constant. It is preferable to extract the coalescence continuously or intermittently. The height to the upper end of the stirring blade of the stirrer is the distance from the bottom of the fluidized bed zone to the upper end of the stirring blade, and when the stirrer has multiple stirring blades and their heights are different, is based on the highest standard.

本発明においては、このように攪拌器の攪拌翼を流動床
層区域内に埋没させるように運転する。
In the present invention, the stirring blade of the stirrer is thus operated so as to be buried within the fluidized bed zone.

もし攪拌翼の上部の一部が流動床層区域から露出して上
部空間区域に延びていると、その部分でオレフィン重合
体の付着や塊状化が起こり、安定運転を妨げる。また、
流動床層区域高さを前記好ましい範囲よりも高く維持す
ると、流動床層区域全系の混合が不充分となり、壁付着
等を起こすおそれがあるため、上記好ましい範囲で適宜
に選択するのがよい。イカリ型攪拌器を用い、流動床層
区域高さを好ましくは前記範囲内の適当な位置に調節す
ることによって、重合体の壁付着や塊状化を防止するこ
とが可能でしかも安定した運転を行うことができる。
If a part of the upper part of the stirring blade is exposed from the fluidized bed zone and extends into the head space area, the olefin polymer will adhere or form agglomerates in that part, which will impede stable operation. Also,
If the height of the fluidized bed zone is maintained higher than the above-mentioned preferred range, mixing of the entire system of the fluidized bed zone may become insufficient and there is a risk of wall adhesion, etc., so it is recommended to appropriately select the height within the above-mentioned preferred range. . By using an agitation type stirrer and adjusting the height of the fluidized bed zone to an appropriate position, preferably within the above range, it is possible to prevent the polymer from adhering to the wall or clumping, and to achieve stable operation. be able to.

さらに、このような構成をとることにより差圧方式によ
る流動床層区域高さを正確に測定することもできるよう
になり、したがって、該区域高さをほぼ一定に保つよう
に、検知された差圧に応じてオレフィン重合体抜き出し
弁の開閉を行うように指示することによって、自動制御
が可能である。
Furthermore, such a configuration also makes it possible to accurately measure the height of the fluidized bed zone using the differential pressure method, so that the detected difference can be adjusted to keep the zone height approximately constant. Automatic control is possible by instructing the olefin polymer extraction valve to open and close depending on the pressure.

すなわち流動床層区域内と上部空間区域の差圧を測定す
れば流動層高さを測定することが可能である。しかし一
般に流動床層区域内の圧力検出端は詰り易く、しかも攪
拌機の影響を受は易い。ところが上記のように流動床層
区域高さを攪拌翼の高さ上端部までの高さよりも好まし
くは1.02ないし1.4倍程度の高さに維持し、該流
動床層区域中で且つ攪拌翼高さ上端部を超える位置に流
動床層区域内圧力検出端を設置すると、詰りもなく、シ
がも攪拌機の影響も受けず、したがって正確な測定が長
期間に亘って行うことが可能となる。この結果、流動床
層区域内圧力検出端と上部空間区域内圧力検出端とによ
り、該両区域間の差圧を検知し、この検知された差圧に
応じて流動床層区域高さをほぼ一定にするように、オレ
フィン重合体を抜き出すことが可能であり、長期間連続
運転を自動的に行うことができる。流動層側の圧力検出
端の位置は、好ましくは攪拌翼の高さ上端部までの高さ
の1.05ないし1.15倍の高さにするのがよい。
That is, it is possible to measure the height of the fluidized bed by measuring the differential pressure between the fluidized bed area and the upper space area. However, the pressure sensing end in the fluidized bed zone is generally prone to clogging and is also easily affected by the agitator. However, as mentioned above, the height of the fluidized bed zone is preferably maintained at about 1.02 to 1.4 times the height of the stirring blade to the upper end, and in the fluidized bed zone and By installing the pressure detection end in the fluidized bed area at a position exceeding the upper end of the stirring blade height, there will be no clogging, no leakage, and no influence from the stirrer, so accurate measurements can be made over a long period of time. becomes. As a result, the fluidized bed area pressure detection end and the upper space area pressure detection end detect the pressure difference between the two areas, and the height of the fluidized bed area is approximately adjusted according to the detected pressure difference. It is possible to draw out the olefin polymer in a constant manner, and continuous operation for long periods of time can be carried out automatically. The pressure detection end on the fluidized bed side is preferably located at a height of 1.05 to 1.15 times the height of the stirring blade to the upper end.

本発明においては、流動床層区域内圧力検出端の少し上
部にさらに他の圧力検出端を設け、これと流動層上部の
圧力検出端との差圧を測定し、流動床層区域高さの上限
をこの差圧によって制御する態様を、前記した制御と組
合せて採用してもよい。
In the present invention, another pressure detection end is provided slightly above the pressure detection end in the fluidized bed zone, and the pressure difference between this end and the pressure detection end at the upper part of the fluidized bed is measured, and the height of the fluidized bed zone is measured. You may adopt the aspect which controls an upper limit by this differential pressure in combination with the above-mentioned control.

本発明におけるオレフィン重合は、オレフィンの単独重
合のみならず、オレフィン同志の共重合、オレフィンと
ジエンの共重合なども包含する。オレフィンの例として
は、エチレン、プロピレン、1−ブテン、1−ペンテン
、1−ヘキセン、4−メチル−1−ペンテン、1−オク
テン、1−デセンなどを例示することができる。とくに
エチレン又はプロピレンを主体とし、例えばこれら単量
体を90モル%以上で含有する結晶性重合体の製造に好
適である。
Olefin polymerization in the present invention includes not only homopolymerization of olefins, but also copolymerization of olefins, copolymerization of olefins and dienes, and the like. Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene. In particular, it is suitable for producing a crystalline polymer mainly composed of ethylene or propylene, and containing, for example, 90 mol% or more of these monomers.

重合触媒としては、チーグラー型触媒、フィリップス型
触媒など種々の触媒系を使用することができる。例えば
チタン、バナジウム、クロム、ジルコニウムなどの化合
物を触媒成分として用いることができる。とくにマグネ
シウム化合物に担持されたチタン触媒成分と有機アルミ
ニウム化合物触i成分を使用すると触媒活性が大きいの
で好適である。これら触媒系についてはすでに広く知ら
れている。重合においては、分子量、分子量分布、立体
規則性などを制御する目的で、水素、電子供与体、ハロ
ゲン化合物、その他各種添加剤を使用することができる
。これら触媒成分や添加剤は、重合器の任意の場所に供
給することができる。重合においてはまた除熱目的のた
め、易揮発性の不活性度化水素を共存させることもでき
る。これらは重合器中で気化することによって除熱目的
を果す。
As the polymerization catalyst, various catalyst systems such as Ziegler type catalyst and Phillips type catalyst can be used. For example, compounds such as titanium, vanadium, chromium, zirconium, etc. can be used as catalyst components. In particular, it is preferable to use a titanium catalyst component supported on a magnesium compound and an organic aluminum compound catalyst component because the catalyst activity is high. These catalyst systems are already widely known. In the polymerization, hydrogen, electron donors, halogen compounds, and other various additives can be used for the purpose of controlling molecular weight, molecular weight distribution, stereoregularity, and the like. These catalyst components and additives can be supplied to any location in the polymerization vessel. In the polymerization, easily volatile inert hydrogen can also be present for the purpose of heat removal. These serve the purpose of heat removal by being vaporized in the polymerization vessel.

オレフィンの重合温度は、オレフィンの種類によっても
異なるが一般には約30℃ないし約90℃程度の温度範
囲が採用される。また反応圧力は、オレフィンの液化す
る圧力より小さければ任意の圧力でよく、例えば約2な
いし約30 kq/ax2・Gである。
The polymerization temperature of the olefin varies depending on the type of olefin, but generally a temperature range of about 30°C to about 90°C is adopted. Further, the reaction pressure may be any pressure as long as it is lower than the pressure at which the olefin is liquefied, and is, for example, about 2 to about 30 kq/ax2.G.

オレフィンは流動床層区域下部から、線速度が1ないし
60備7/sea、とくには約3ないし約4037se
cとなるように吹込むのが好ましい。重合熱除去のため
、液状のオレフィンを重合器に供給してもよい。液状の
オレフィンを供給する場合には、流動層より上方に供給
するのが好ましい。
The olefin is transported from the lower part of the fluidized bed section at a linear velocity of 1 to 607/sea, particularly about 3 to about 4037/sea.
It is preferable to blow it so that it becomes c. In order to remove the heat of polymerization, a liquid olefin may be supplied to the polymerization vessel. When a liquid olefin is supplied, it is preferably supplied above the fluidized bed.

オレフィン重合体は流動床層区域の側面から、流動層高
さが一定となるよう連続的又は間欠的に抜き出される。
The olefin polymer is withdrawn continuously or intermittently from the side of the fluidized bed section to maintain a constant fluidized bed height.

このような方法を採用して連続重合を長期間行うこと−
ができる。
Adopting such a method to carry out continuous polymerization for a long period of time -
I can do it.

本発明の一実施態様を第1図に示す。予備重合槽1にお
いてマグネシウム化合物に担持されたチタン触媒成分と
有機アルミニウム化合物成分を用いてオレフィンを予備
重合した後、管11を介して連続的に気相重合槽の流動
床層区域3に供給する。追加の有機アルミニウム化合物
を管12から気相重合槽の流動床層区域3に供給する。
One embodiment of the invention is shown in FIG. After the olefin is prepolymerized in the prepolymerization tank 1 using a titanium catalyst component supported on a magnesium compound and an organoaluminum compound component, it is continuously supplied to the fluidized bed zone 3 of the gas phase polymerization tank via a pipe 11. . Additional organoaluminum compound is fed via line 12 to the fluidized bed section 3 of the gas phase polymerization vessel.

気相重合槽の反応床である流動床層区域3は、イカリ型
攪拌機4により攪拌する。ガス状オレフィンは凝縮器6
で凝縮しなかったものを管16を通り、あるいは新たに
管14を通って重合槽の下部に供給し、多孔板5を通っ
て流動床層区域3に入り、反応床を流動させるとともに
重合に使用する。分子量調節に使用される水素は、g1
5を通り重合槽に供給する。重合槽から排出される未反
応オレフィンは管16を通り凝縮器6で凝縮させ、ドラ
ム7から管17を通り、散布部18から反応床に散布さ
せる。
The fluidized bed zone 3, which is the reaction bed of the gas phase polymerization tank, is stirred by an agitation type stirrer 4. For gaseous olefin, condenser 6
The material that is not condensed is fed to the lower part of the polymerization tank through the pipe 16 or through the new pipe 14, and enters the fluidized bed layer section 3 through the perforated plate 5, fluidizing the reaction bed and starting the polymerization. use. Hydrogen used for molecular weight adjustment is g1
5 and supplied to the polymerization tank. Unreacted olefin discharged from the polymerization tank passes through a pipe 16 and is condensed in a condenser 6, passes through a drum 7 through a pipe 17, and is sprayed from a spraying section 18 onto the reaction bed.

流動床層区域3の高さは、上部空間区域2に検出端を有
する低圧側ライン20と流動床層区域3中で且つ攪拌翼
高さくhl)上端部を超える位置に検出端を有する高圧
側ライン21の差圧をレベル計23で測定し、流動床層
区域高さくh2)を一定に保つヨウに、レベルコントロ
ールバルブ24の開閉を指示して重合体を管19から抜
き出す。高圧側ライン21の詰りを防止するため管22
よりパージガスを流しておくのがよい。
The height of the fluidized bed section 3 is determined by the low pressure side line 20 having a detection end in the upper space section 2 and the high pressure side line 20 having a detection end at a position within the fluidized bed section 3 and beyond the upper end of the stirring blade. The differential pressure in the line 21 is measured with a level meter 23, and the polymer is extracted from the pipe 19 by instructing the opening and closing of the level control valve 24 while keeping the height h2 of the fluidized bed section constant. Pipe 22 to prevent clogging of high pressure side line 21
It is better to keep the purge gas flowing.

実施例1 くチタン触媒成分の調製〉 市販の無水塩化マグネシウム30g1安息香酸エチル7
.5mA’およびメチルポリシロキサン(粘度2Qc、
a、(25℃))4.5mlを窒素雰囲気中、振動ボー
ルミルで40時間接触させた。得られた固体処理物20
gを2000m1のTlC14中に懸濁させ、80℃で
2時間攪拌下に接触した。反応終了後、デカンテーショ
ンにより上澄部を精製ヘキサンで洗浄した。上澄ヘキサ
ン中に塩素が検出されなくなるまでこの操作を繰り返し
た。得られたチタン触媒成分には原子換算でチタンi、
9wt%、塩素65wt%含有されていた。上記操作を
数回繰り返すことにより、以下の重合に供した。
Example 1 Preparation of titanium catalyst component> Commercially available anhydrous magnesium chloride 30 g 1 ethyl benzoate 7
.. 5mA' and methylpolysiloxane (viscosity 2Qc,
a, (25° C.)) were brought into contact for 40 hours using a vibrating ball mill in a nitrogen atmosphere. Obtained solid treated product 20
g was suspended in 2000 ml of TIC14 and contacted at 80° C. for 2 hours with stirring. After the reaction was completed, the supernatant was washed with purified hexane by decantation. This operation was repeated until no chlorine was detected in the supernatant hexane. The obtained titanium catalyst component contains titanium i,
It contained 9 wt% and 65 wt% chlorine. By repeating the above operation several times, the following polymerization was carried out.

く予備重合処理〉 前記チタン触媒成分をヘキサン中、1.5n+mol/
l、トリエチルアルミニウム(以下TEAと略す)6m
mol//、 p−)ルイル酸メチル(以下MPTと略
す)2mmol/A!及び添加プロピレンはチタン触媒
成分に対して2倍重量で行った。
Prepolymerization treatment> The titanium catalyst component was added to 1.5n+mol/in hexane.
l, triethyl aluminum (hereinafter abbreviated as TEA) 6m
mol//, p-) Methyl ruylate (hereinafter abbreviated as MPT) 2 mmol/A! The amount of propylene added was twice the weight of the titanium catalyst component.

くポリプロピレンの気相重合> 前記のように予備重合処理された触媒を使用して第1図
に示したフローダイヤグラムに従って重合を行った。
Gas Phase Polymerization of Polypropylene> Using the catalyst prepolymerized as described above, polymerization was carried out according to the flow diagram shown in FIG.

気相重合槽の内径は500mm、イカリ型攪拌機4の攪
拌翼高さ上端部までの高さくhl)は多孔板5から45
3mm、高圧側ライン21は内径2mmのSUS製であ
って、その流動床層区域内圧力検出端は、重合槽内壁か
ら150mm、攪拌翼上端から30mm上部に挿入した
0 イカリ型攪拌機を200 rpmで回転させる一方、前
記予備重合処理されたチタン触媒成分i mmol/h
r(チタン原子換算)、TEA 50mmol/hr、
  5M P T 12 mm o l/h r %プ
ロピレンガス(循環ガスを含む)を重合槽中40117
 s e cとなる速度で、またプロピレン液を45k
g/hrの速度で散布s18から散布し、重合温度70
°C1重合圧力18に9/4Gの条件でプロピレンの連
続重合を行った。また流動床層区域高さくh2)が多孔
板から490mmの高さとなるようにレベル計の指示に
したがってポリマーを管19から10kg/hrの速度
で抜き出した。
The inner diameter of the gas phase polymerization tank is 500 mm, and the height (hl) of the stirring blade of the Ikari type stirrer 4 to the upper end is 45 mm from the perforated plate 5.
3 mm, and the high pressure side line 21 is made of SUS with an inner diameter of 2 mm, and the pressure detection end in the fluidized bed zone is set at 200 rpm with a zero-point stirrer inserted 150 mm from the inner wall of the polymerization tank and 30 mm from the upper end of the stirring blade. While rotating, the prepolymerized titanium catalyst component i mmol/h
r (titanium atom equivalent), TEA 50 mmol/hr,
5M P T 12 mm o l/hr % propylene gas (including circulating gas) in the polymerization tank 40117
45k of propylene liquid at a speed of s e c
Spraying from spraying s18 at a rate of g/hr, polymerization temperature 70
Continuous polymerization of propylene was carried out under the conditions of 9/4 G and 18° C. polymerization pressure. Further, the polymer was extracted from the pipe 19 at a rate of 10 kg/hr according to the instructions of the level meter so that the height h2) of the fluidized bed zone was 490 mm above the perforated plate.

なお高圧側ラインの詰り防止のため、管22よりプロピ
レンガスを100Nl/hrの速度で供給した。
In order to prevent clogging of the high pressure side line, propylene gas was supplied from the pipe 22 at a rate of 100 Nl/hr.

MI=9.1、n−ヘプタン不溶分が93.5重量%の
ポリプロピレンを長期間安定して製造することができた
Polypropylene having an MI of 9.1 and an n-heptane insoluble content of 93.5% by weight could be produced stably for a long period of time.

比較例 高圧側ライン21の検出端の位置を、攪拌翼の高さ及び
攪拌器上端部から440mm下部にした場合はいずれも
レベルの検出が難かしくレベルの増減を検知することが
できなかった。
Comparative Example When the detection end of the high-pressure side line 21 was set at the height of the stirring blade and 440 mm below the top end of the stirrer, it was difficult to detect the level and it was not possible to detect an increase or decrease in the level.

【図面の簡単な説明】[Brief explanation of the drawing]

添付第1図は、本発明方法実施の一態様を示す8示的装
置図である。 出願人  三井石油化学工業株式会社 代理人  小田島 平 吉 (外1名)第1図
FIG. 1 of the accompanying drawings is an illustrative apparatus diagram illustrating one embodiment of carrying out the method of the present invention. Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Heikichi Odashima (1 other person) Figure 1

Claims (1)

【特許請求の範囲】 (1)攪拌器を具備した気相重合槽中で、攪拌条件下に
流動床層を形成させながら連続的に気相重合を行うオレ
フィン類の気相重合方法に於て、 (1)該攪拌器の攪拌翼の高さ上端部が該流動床層区域
中に埋没する状態で該区域を攪拌しながら気相重合を行
うこと、 (11)該流動床層区域中で且つ該攪拌翼高さ上端部を
超える位置に設けた流動床層区域内圧力検出端と、該流
動床層区域より上方の上部空間区域に設けた上部空間区
域内圧力検出端とにより、該両区域間の差圧を検知し、
この検知された差圧に応じて、該流動床層区域高さがほ
ぼ一定に維持されるように、該区域からオレフィン重合
体を抜き出すこと、 を特徴とするオレフィン類の連続気相重合方法0 (2)該流動床層区域高さが、該攪拌翼の高さ上端部ま
での高さの1.02〜1.4倍の範囲にある特許請求の
範囲第1項に記載の方法。 (5)  該流動床層内のガス流速を1〜6017秒と
する特許請求の範囲第1項もしくは第2項記載の方法。
[Scope of Claims] (1) A method for gas phase polymerization of olefins, in which gas phase polymerization is carried out continuously while forming a fluidized bed layer under stirring conditions in a gas phase polymerization tank equipped with an agitator. (1) Performing gas phase polymerization while stirring the fluidized bed zone with the upper end of the stirring blade of the stirrer buried in the fluidized bed zone; (11) In the fluidized bed zone. In addition, a pressure detection end in the fluidized bed section provided at a position exceeding the upper end of the height of the stirring blade, and a pressure detection end in the upper space section provided in the upper space section above the fluidized bed bed section, Detects the differential pressure between areas,
A method for the continuous gas phase polymerization of olefins, characterized by: extracting the olefin polymer from the fluidized bed bed zone so that the height of the zone is maintained substantially constant according to the detected differential pressure. (2) The method according to claim 1, wherein the height of the fluidized bed zone is within a range of 1.02 to 1.4 times the height of the stirring blade to the upper end. (5) The method according to claim 1 or 2, wherein the gas flow rate in the fluidized bed layer is 1 to 6017 seconds.
JP20984781A 1981-12-28 1981-12-28 Continuous vapor phase polymerization of olefin Granted JPS58113208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20984781A JPS58113208A (en) 1981-12-28 1981-12-28 Continuous vapor phase polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20984781A JPS58113208A (en) 1981-12-28 1981-12-28 Continuous vapor phase polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS58113208A true JPS58113208A (en) 1983-07-06
JPH0332562B2 JPH0332562B2 (en) 1991-05-13

Family

ID=16579601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20984781A Granted JPS58113208A (en) 1981-12-28 1981-12-28 Continuous vapor phase polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS58113208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246909A (en) * 2007-03-26 2007-09-27 Mitsui Chemicals Inc Apparatus for controlling feeding amount of catalyst and discharging amount of polymer in vapor-phase polymerization apparatus
US7655192B2 (en) 1998-11-12 2010-02-02 Borealis Technology Oy Method and apparatus for discharging polymerization reactors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655192B2 (en) 1998-11-12 2010-02-02 Borealis Technology Oy Method and apparatus for discharging polymerization reactors
US7812102B2 (en) 1998-11-12 2010-10-12 Borealis Technology Oy Method and apparatus for discharging polymerization reactors
JP2007246909A (en) * 2007-03-26 2007-09-27 Mitsui Chemicals Inc Apparatus for controlling feeding amount of catalyst and discharging amount of polymer in vapor-phase polymerization apparatus

Also Published As

Publication number Publication date
JPH0332562B2 (en) 1991-05-13

Similar Documents

Publication Publication Date Title
US8258245B2 (en) Method and device for optimising catalyst supply to a polymerisation reactor
EP1159305B1 (en) Method and apparatus for discharging polymerization reactors
US4687381A (en) Device for introducing a powder with catalytic activity into a fluidized-bed polymerization reactor
JPH10511890A (en) Twin fluid nozzle
CA1146697A (en) Olefin polymerization in a vertical fluid bed reactor system containing an internal cooler and apparatus therefore
US6384157B1 (en) Method of detecting and correcting local defluidization and channeling in fluidized-bed reactors for polymerization
JPS58113208A (en) Continuous vapor phase polymerization of olefin
RU2348651C2 (en) Periodic measurement of catalyst and auxiliary substance quantity in process in gas phase reactor with pseudoliquefied layer
EP3393644B1 (en) A method for withdrawing agglomerates from a fluidised bed reactor
EP0191877B1 (en) Apparatus for gas phase polymerization of vinyl chloride
WO2001009196A1 (en) Method of detecting and correcting local defluidization and channeling in fluidized-bed reactors for polymerization
JPS6166705A (en) Method of continuous gaseous-phase polymerization for propylene
JP2006208154A (en) Powder height level measuring method, powder height level measuring device, and method for manufacturing polyolefin using measuring device thereof
RU2050364C1 (en) Method and reaction vessel for gas-phase polymerization of alpha-olefins
PT1446428E (en) Polymerisation control process
JPH0477502A (en) Height control of bed of fluidized bed in vaporphase polymerization
JP2024517959A (en) Process for preparing an olefin polymer including withdrawing a gaseous sample for analysis - Patents.com
KR820002050B1 (en) Vertical fluid bed reactor for exothermic poly-merization
JP2002322205A (en) Method for carrying out vapor phase polymerization of olefin
KR820002026B1 (en) Exothermic polymerization in a vertical fluid bed reactor system containing cooling means therein
JP4092511B2 (en) Olefin gas phase fluidized bed polymerization reactor, olefin polymerization method and olefin polymer production method
JPS6364442B2 (en)
JPH0332564B2 (en)
US20160200837A1 (en) Process for the (co-)polymerisation of olefins