JPS58112533A - Reflected wave receiving system - Google Patents

Reflected wave receiving system

Info

Publication number
JPS58112533A
JPS58112533A JP21031881A JP21031881A JPS58112533A JP S58112533 A JPS58112533 A JP S58112533A JP 21031881 A JP21031881 A JP 21031881A JP 21031881 A JP21031881 A JP 21031881A JP S58112533 A JPS58112533 A JP S58112533A
Authority
JP
Japan
Prior art keywords
wave
reflected wave
signal
frequency
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21031881A
Other languages
Japanese (ja)
Inventor
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP21031881A priority Critical patent/JPS58112533A/en
Publication of JPS58112533A publication Critical patent/JPS58112533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は医療用の超音波装置に適する反射波受信方式に
関する。特に、被検体の内部で反射する反射波の侑号雑
音比および分解能を向上するための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a reflected wave receiving system suitable for a medical ultrasound device. In particular, the present invention relates to improvements for improving the signal-to-noise ratio and resolution of reflected waves reflected inside an object.

〔従来技術の説明〕[Description of prior art]

電気音醤変換素子を含む探触子を例えば生体の表面に当
接し、この探触子より短い超音波パルスを送信してこれ
が生体内部で反射して生じる反射波をこの探触子で受信
し、電気信号に変換して、超音波パルスの送信時刻から
の時間経過に従ってこの電気信号を視覚表示する方式が
知られている。
For example, a probe containing an electric sonic conversion element is brought into contact with the surface of a living body, and a short ultrasonic pulse is transmitted by this probe, and the reflected wave generated when this is reflected inside the living body is received by this probe. , a method is known in which the electrical signal is converted into an electrical signal and the electrical signal is visually displayed according to the passage of time from the transmission time of the ultrasonic pulse.

この方式により、例えば体内の断層像を映倫表示するこ
とができ、診断および治療に用いられる。
With this method, for example, tomographic images inside the body can be displayed visually, and are used for diagnosis and treatment.

超音波パルスの送信時刻を起点にして、時間経過が長く
なるに従って、受信される反射波の反射点は被検体の深
い部分になる。反射点が浅いときには反射波の高い周波
数成分に着目すると、信号雑音比および分解能が高くな
シ、反射点が深いときKFi反射技の低い周波数成分に
着目すると、信号雑音比および分解能が高くなることが
知られている。特開昭52−59975公報はこの現象
を利用するもので、受信装置に電圧可変形のダイナミッ
ク・フィルタを備え、超音波パルスの送信時刻を起点に
このフィルタの通過域を変更して、反射点の浅い部分か
ら深い部分まで、均一な分解能を得る方法が示されてい
る。
As time elapses from the transmission time of the ultrasonic pulse as a starting point, the reflection point of the received reflected wave becomes deeper in the subject. When the reflection point is shallow, focusing on the high frequency component of the reflected wave will result in a high signal-to-noise ratio and resolution; when the reflection point is deep, focusing on the low frequency component of the KFi reflection technique will result in a high signal-to-noise ratio and resolution. It has been known. Japanese Patent Application Laid-Open No. 52-59975 utilizes this phenomenon, and includes a voltage-variable dynamic filter in the receiving device, and changes the passband of this filter starting from the transmission time of the ultrasonic pulse to detect the reflection point. A method for obtaining uniform resolution from shallow to deep areas is shown.

この方法は優れた方法であるが、受信装置にダイナミッ
ク・フィルタを含み、多数の可変パラメータ素子を一斉
に制御する回路が必要であって、ような装置は高い安定
性を得ることが困難であり、この装置の製造および保守
には複雑な調整が必要である。
Although this method is an excellent method, it requires a circuit that includes a dynamic filter in the receiving device and controls many variable parameter elements all at once, making it difficult to obtain high stability with such a device. , the manufacture and maintenance of this device requires complex coordination.

〔本発明の目的〕[Object of the present invention]

本発明は、多数の可変パラメータ素子とその制御回路を
持つダイナミック・フィルタを不要とし、簡単な装置構
成により、反射点の深度に対しても均一な分解能をもち
、高い信号雑音比の得られる反射波受信方式を提供する
ことを目的とする。
The present invention eliminates the need for a dynamic filter with a large number of variable parameter elements and their control circuits, has a simple device configuration, has uniform resolution even with respect to the depth of the reflection point, and can obtain reflections with a high signal-to-noise ratio. The purpose is to provide a wave reception method.

〔本発明の要点〕[Key points of the invention]

本発明は、超音波パルスの送信時刻を起点に時間の経過
に従って出力周波数が連続的に変化する発振手段と、こ
の発振手段の出力と受信反射波の電気信号とを乗算する
手段と、この手段の出力信号を通過させる低域戸波手段
とを含むことを特徴とする。
The present invention provides oscillation means whose output frequency changes continuously over time starting from the transmission time of an ultrasonic pulse, means for multiplying the output of this oscillation means by an electrical signal of a received reflected wave, and this means. and low-frequency door wave means for passing the output signal of.

〔実施例による駅間〕[Station distance according to example]

第1図は本発明実施例装置のブロック構成図である。探
触子の電気音響変換素子Tは、被検体の表面に当接され
、超音波パルスを被検体内に送信し、その反射波を受信
する。その電気端子には、結合回路Hを介してバルサP
L8の出力が接続され、またこの結合回路Ht介して受
信用の増幅器A10人力が接続される。パルサPL8は
クロック信号OLKに同期する。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. The electroacoustic transducer T of the probe is brought into contact with the surface of the subject, transmits ultrasonic pulses into the subject, and receives the reflected waves. The electrical terminal is connected to the balsa P via a coupling circuit H.
The output of L8 is connected, and the receiving amplifier A10 is also connected via this coupling circuit Ht. Pulsar PL8 is synchronized with clock signal OLK.

増幅器ム1の出力は、レベル制御回路’1.W’lを介
して、第二の増幅器ム2に加えられる。前記クロック信
号OLEに同期する鋸歯状波発生回路WGNを備え、こ
の出力によシレベル制御回路LITおよび、電圧制御発
振器VCOが制御される。電圧制御発振器vCOFi、
送信超音波パルスの繰返し周波数の4倍の周波数を発生
する回路で、その出力は分周器り工Vに加えられて4分
周され、位相が互いに90度異なる二つの出力を得る。
The output of amplifier M1 is sent to level control circuit '1. It is applied to the second amplifier 2 via W'l. A sawtooth wave generation circuit WGN synchronized with the clock signal OLE is provided, and the output of the sawtooth wave generation circuit WGN controls the level control circuit LIT and the voltage controlled oscillator VCO. voltage controlled oscillator vCOFi,
This is a circuit that generates a frequency that is four times the repetition frequency of the transmitted ultrasonic pulse, and its output is added to a frequency divider V and divided by four to obtain two outputs whose phases differ by 90 degrees from each other.

上記第二の増幅器ム2の出力は、部分されてそれぞれ乗
算器M1、M2に導かれる。この乗算器M1、M2には
上記分周器DIVの二つの出力が供給されていて、その
乗算出力は、それぞれ低域F波器LP?、およびLPF
zを通過して、合成増幅器ムSの二つの入力に与えられ
る。この合成増幅器Asけ、二つの入力aS bの各絶
対値の和Ial + lbl に比例する信号を送出する。この出力は公知の視覚表示
装置DPLに入力され表示される。
The output of the second amplifier M2 is divided and guided to multipliers M1 and M2, respectively. The two outputs of the frequency divider DIV are supplied to the multipliers M1 and M2, and the multiplier outputs thereof are respectively the low-frequency F frequency filter LP? , and LPF
z and is applied to two inputs of a combining amplifier S. This composite amplifier As outputs a signal proportional to the sum Ial + lbl of the respective absolute values of the two inputs aS b. This output is input and displayed on a known visual display device DPL.

このように構成された装置の動作を説明すると、変換素
子Tが超音波反射波を受信し、これを電気信号に変換し
た信号は、増幅器A1、ム2で所定レベルに増幅される
。一般に超音波反射波の反射点深度が浅いときには反射
波のレベルは高く、深くなるとレベルが低くなるので、
レベル制御回路LIVでは、その深度に応じて深い反射
点から反射した信号はど高い利得で増幅するように制a
を行う。
To explain the operation of the device configured in this way, the conversion element T receives an ultrasonic reflected wave, and the signal converted into an electric signal is amplified to a predetermined level by the amplifiers A1 and M2. Generally, when the reflection point depth of the ultrasonic reflected wave is shallow, the level of the reflected wave is high, and as it becomes deeper, the level becomes lower.
The level control circuit LIV controls the signal reflected from a deep reflection point to be amplified with a high gain depending on its depth.
I do.

また、電圧制御発振器VCOの出力は、反射波の反射点
が浅−ときにはその周波数が高く、深くなるに従って低
くなるように制御されているので、各乗算器M1および
M2の出力では、反射波の電気信号がこの周波数によシ
変調された信号となる。
In addition, the output of the voltage controlled oscillator VCO is controlled so that the frequency is high when the reflection point of the reflected wave is shallow and becomes low as the reflection point becomes deeper, so the output of each multiplier M1 and M2 is The electrical signal becomes a signal modulated by this frequency.

これは固定的な通過帯域の低域P波器LPF、またはL
PF2を通過し、いわゆる同期検波されたことになる。
This is a fixed passband low-pass P-wave filter LPF, or L
It passes through PF2 and is subjected to so-called synchronous detection.

第2図はこの様子を説明する図で、横軸に周波数、縦軸
に出力レベルをとると、受信される超音波反射波の周波
数スペクトラムが破線で示すように、#景ぼfLからr
Hまで分布しているものとする。
Figure 2 is a diagram explaining this situation.If the horizontal axis is the frequency and the vertical axis is the output level, the frequency spectrum of the received ultrasonic reflected wave is shown by the broken line, from #view fL to r
It is assumed that the distribution is up to H.

低域戸波器の通過帯域がほぼ零周波数からfy tでで
あるとすると、電圧制御発振器VaOの出力周波数が高
いとき、すなわち送信超音波パルスが送信された直後は
、第2図(a)に示すように中心周波数f、で帯穢幅f
yの信号を受信している状態にある。時間の経過ととも
にこの中心周波数f、が図の矢印のように次第に左方に
移動して、深い反射点からの反射波を受信する時点では
、第2図(1,)のようになる。
Assuming that the passband of the low-pass wave detector is from approximately zero frequency to fy t, when the output frequency of the voltage controlled oscillator VaO is high, that is, immediately after the transmitting ultrasonic pulse is transmitted, as shown in Fig. 2 (a). As shown, the band width f at the center frequency f,
y signal is being received. With the passage of time, this center frequency f gradually moves to the left as shown by the arrow in the figure, and at the time when the reflected wave from a deep reflection point is received, it becomes as shown in FIG. 2 (1,).

本実施例装置ではこれを90度位相の異なる局部発振信
号でそれぞれ同期検波して、それを合成増幅器ムSで合
成する。合成増幅器ムSの特性はその出力に、二つの入
力a% bについてム2+b2 に比例する信号を得ることが望ましいが、前述のように
その代用として lal + lbl を得る簡単な回路で構成することが実用的である。
In the apparatus of this embodiment, these are each synchronously detected using local oscillation signals having a phase difference of 90 degrees, and the signals are combined by a combining amplifier S. As for the characteristics of the composite amplifier M, it is desirable to obtain a signal proportional to M2 + b2 for the two inputs a% b at its output, but as mentioned above, it is preferable to construct it with a simple circuit that obtains lal + lbl as a substitute. is practical.

〔効果の説明〕[Explanation of effects]

以上述べたように、本発明によれば超音波パルスが送信
された時刻を起点に、時間の経過とと本に反射波の着目
する受信帯斌が実質的に変化するので、反射波の反射点
の深度に応じて、その分解能を高くしかも信号鍵音比を
高く受信することができる。本発明の回路はこれを実現
するために、いわゆるダイナミック・フィルタを使用し
ない。
As described above, according to the present invention, starting from the time when an ultrasonic pulse is transmitted, the receiving band at which the reflected waves are focused changes substantially as time passes, so that the reflected waves are reflected Depending on the depth of the point, it is possible to receive the signal with high resolution and a high signal-to-tone ratio. The circuit of the invention does not use so-called dynamic filters to achieve this.

本発明のP波器はその通過帯域は固定的であって、反射
波が受信されている時間に複雑な変更制御を行う必要は
ない。本発明の回路ではこれを電圧制御発振器の制御入
力に、鋸歯状波を与えることにより実現するので、その
動作は安定であり、回路構成は簡単である。また、この
回路の製造および保守に複雑な調整金必要としない。
The P-wave device of the present invention has a fixed passband, and there is no need to perform complicated change control during the time when reflected waves are being received. In the circuit of the present invention, this is achieved by applying a sawtooth wave to the control input of the voltage controlled oscillator, so its operation is stable and the circuit configuration is simple. Also, the manufacture and maintenance of this circuit does not require complicated adjustment fees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置のブロック構成図。 第2図は動作説明用の周波数特性図。 PLEI・・・超音波パルスを発生させるパルサ、T・
・・電気音響変換器、ム1、ム2・・・増幅器、LIl
iV・・・レベル制御回路、DPL・・・視覚表示装置
、WGN・・・鋸歯状波発生回路、VCO・・・電圧制
御発振器、DIV−・・分局器、Ml、M2 ・・・乗
算器、LPF、、LPF2・・・低埴p波器、ムS・・
・合成増幅器。 特許出願人 株式会社横河電機製作所 −代理人 弁理
士 井 出 直 孝゛
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. FIG. 2 is a frequency characteristic diagram for explaining operation. PLEI... Pulsar that generates ultrasonic pulses, T.
...Electroacoustic transducer, M1, M2...Amplifier, LII
iV: Level control circuit, DPL: Visual display device, WGN: Sawtooth wave generation circuit, VCO: Voltage controlled oscillator, DIV: Branch unit, Ml, M2: Multiplier, LPF, LPF2...Low p-wave device, MuS...
・Synthetic amplifier. Patent applicant: Yokogawa Electric Corporation - Agent: Patent attorney Nao Takashi Ide

Claims (2)

【特許請求の範囲】[Claims] (1)  被検体内に送信された超音波パルスによシこ
の被検体内で生じる超音波反射波を電気信号に、変換す
る手段と、この電気信号を検波増幅する手段と、この手
段の出力を上記超音波パルスの送信された時刻からの時
間経過に対応して視覚表示する手段とを備えた反射波受
信方式において、上記検波増幅する手段に、 上記超音波パルスの送信された時刻を起点に時間の軽過
に従いその出力周波数が連続的に変化する発伽手段と、 上記変換する手段から得られる電気信号を増幅し良信号
にこの発振手段の出力信号を乗算する手段と、 この手段の出力信号を通過させる低域p波手段と を含むことを特徴とする反射波受信方式。
(1) A means for converting the ultrasonic reflected wave generated within the subject by an ultrasound pulse transmitted into the subject into an electrical signal, a means for detecting and amplifying this electrical signal, and an output of this means. In the reflected wave receiving method, the reflected wave receiving method includes a means for visually displaying a time corresponding to the time elapsed from the time when the ultrasonic pulse was transmitted, and the means for detecting and amplifying the detected wave has a starting point at the time when the ultrasonic pulse was transmitted. oscillation means whose output frequency changes continuously as time passes; means for amplifying the electric signal obtained from the converting means and multiplying the good signal by the output signal of the oscillation means; A reflected wave receiving system comprising: low-frequency p-wave means for passing an output signal.
(2)発振手段が互いに位相が90度異なる2つの出力
を送出するように構成され、乗算する手段がこの2つの
出力に対応して2個設けられ、低域P波手段がこの2個
の乗算する手段の出力に対応して2個設けられこの2個
の低MP波手段の出力を合成して出力信号とするように
構成された特許請求の範囲第(1)項に記載の反射波受
信方式。
(2) The oscillation means is configured to send out two outputs having a phase difference of 90 degrees from each other, two multiplying means are provided corresponding to these two outputs, and the low-frequency P wave means Two reflected waves are provided corresponding to the outputs of the multiplication means, and the reflected waves according to claim (1) are configured to combine the outputs of the two low MP wave means to form an output signal. Reception method.
JP21031881A 1981-12-25 1981-12-25 Reflected wave receiving system Pending JPS58112533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21031881A JPS58112533A (en) 1981-12-25 1981-12-25 Reflected wave receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21031881A JPS58112533A (en) 1981-12-25 1981-12-25 Reflected wave receiving system

Publications (1)

Publication Number Publication Date
JPS58112533A true JPS58112533A (en) 1983-07-05

Family

ID=16587433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21031881A Pending JPS58112533A (en) 1981-12-25 1981-12-25 Reflected wave receiving system

Country Status (1)

Country Link
JP (1) JPS58112533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151571A (en) * 1984-01-19 1985-08-09 Yokogawa Medical Syst Ltd Echo signal handling system of base band type sonar
JPS6273162A (en) * 1985-09-27 1987-04-03 Toshiba Corp Ultrasonic diagnostic apparatus
JPH01223940A (en) * 1988-03-03 1989-09-07 Olympus Optical Co Ltd Endoscopic diagnostic apparatus
JPH0387682A (en) * 1989-06-01 1991-04-12 Paul H Patrick Underwater acoustic sonar apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151571A (en) * 1984-01-19 1985-08-09 Yokogawa Medical Syst Ltd Echo signal handling system of base band type sonar
JPH0231354B2 (en) * 1984-01-19 1990-07-12 Yokokawa Medeikaru Shisutemu Kk
JPS6273162A (en) * 1985-09-27 1987-04-03 Toshiba Corp Ultrasonic diagnostic apparatus
JPH01223940A (en) * 1988-03-03 1989-09-07 Olympus Optical Co Ltd Endoscopic diagnostic apparatus
JPH0387682A (en) * 1989-06-01 1991-04-12 Paul H Patrick Underwater acoustic sonar apparatus and method

Similar Documents

Publication Publication Date Title
US6095980A (en) Pulse inversion doppler ultrasonic diagnostic imaging
US4660565A (en) Ultrasonic imaging apparatus using pulsed Doppler signal
JPS6034434A (en) Vingmed as
JPS6244494B2 (en)
JPH0221258B2 (en)
CN105662464A (en) Ultrasonic-wave fetal heart monitor and digital demodulation method for echo signal of ultrasonic wave fetal heart monitor
US4543826A (en) Ultrasonic acoustic imaging apparatus
JPH0120366B2 (en)
Cathignol et al. Transcutaneous blood flow measurements using pseudorandom noise Doppler system
JPS58112533A (en) Reflected wave receiving system
JPH01293854A (en) Ultrasonic doppler blood flow apparatus
US4556067A (en) Bandwidth indicator for Doppler blood flowmeters
JPH0651035B2 (en) Ultrasonic pulse Doppler blood flow meter
JPH0547212B2 (en)
Burns et al. Design for an ultrasound-based instrument for measurement of tissue blood flow
JP2563656B2 (en) Ultrasonic Doppler imaging device
JPH05200024A (en) Ultrasonic wave doppler diagnosing apparatus
JPH0451941A (en) Ultrasonic diagnostic device
JPS6132643Y2 (en)
JPH02246949A (en) Ultrasonic doppler blood flow meter
JPH0518943A (en) Method and device for detecting internal defect
SU785756A1 (en) Material quality control apparatus
JPS6395037A (en) Ultrasonic pulse doppler apparatus
JPH0425015B2 (en)
JPS6279042A (en) Ultrasonic receiving apparatus