JPS58112422A - Pump controller with solar battery as power source - Google Patents
Pump controller with solar battery as power sourceInfo
- Publication number
- JPS58112422A JPS58112422A JP56209025A JP20902581A JPS58112422A JP S58112422 A JPS58112422 A JP S58112422A JP 56209025 A JP56209025 A JP 56209025A JP 20902581 A JP20902581 A JP 20902581A JP S58112422 A JPS58112422 A JP S58112422A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- power source
- motor
- pump
- shows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/006—Solar operated
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Direct Current Feeding And Distribution (AREA)
- Electromagnetic Pumps, Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は太陽電池を電源とするポンプの制御装置に関
する。従来の太陽電池を電源とし、直流電動機でポンプ
を駆動するポンプ装置にあっては、ポンプ/直流電動機
の特性を太陽電池系の特性とマツ4ングさせることで基
本的な問題があった。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pump control device using a solar cell as a power source. A conventional pump device that uses a solar cell as a power source and drives a pump with a DC motor has a fundamental problem in that the characteristics of the pump/DC motor are incompatible with the characteristics of the solar cell system.
そこでこの発明ではパルス中変調方式のコンバータを使
用し、太陽電池系の動作点をその最適動作点に近づける
ようにしたものである。Therefore, in the present invention, a pulse modulation type converter is used to bring the operating point of the solar cell system closer to its optimum operating point.
図について説明すれば、第1図はたて軸に電流工、よこ
軸に電圧■をとったポンプ/直流電動機系の■−工時特
性あり、1は特性曲線を示し、点線2は始動の場合、同
じく3は停止の場合を夫々示している。ポンプが使用さ
れる配管系の特性が決まれば、特性曲線1は決定される
。To explain the diagrams, Fig. 1 shows the ■-working characteristics of a pump/DC motor system with electric current on the vertical axis and voltage ■ on the horizontal axis, where 1 shows the characteristic curve and dotted line 2 shows the starting characteristics. Similarly, 3 indicates the case of stop. Once the characteristics of the piping system in which the pump is used are determined, the characteristic curve 1 is determined.
第2図は太陽電池系の特性を日射強度Be をパラメー
タとして、たて軸に電流工、よこ軸に電圧Vをとって示
したものである。(同第3図以下もたて軸が電流工、よ
こ軸が電圧Vであることは同様である。)日射強度は、
Eel > Ke2 > Ee3であシ、即ち、曲線4
.5.6の順で日射強度が強い。FIG. 2 shows the characteristics of a solar cell system using the solar radiation intensity Be as a parameter, with the vertical axis representing the current and the horizontal axis representing the voltage V. (It is the same as in Figures 3 and below, where the vertical axis is the electric current and the horizontal axis is the voltage V.) The solar radiation intensity is
Eel > Ke2 > Ee3, that is, curve 4
.. The solar radiation intensity is highest in order of 5.6.
曲線4’、 5’、 6’は夫々日射強度の曲線4
.5.6に対応する太陽電池の出力を示し、最適動作点
の軌跡V。pは曲線7で示す如くなる。第3図はポンプ
/直流電動機系の■−■特性曲線1と太陽電池系の特性
とを同一グラフで表示したものであって、図から明らか
なように日射が弱くなるに従って、曲線1と7は、ずれ
て来て、低日射時の特性という点では太陽電池を充分利
用しているとは言えなかった。第4図はパルプ開度を変
化した場合の特性曲線1の変化を示し、1′、1′とな
るほどパルプ開度は小さい状態を示している。このよう
にポンプ系の動作特性は常に変化するので、いよいよ太
陽電池系の特性とずれ、ポンプ/直流電動機系の特性と
、太陽電池系の特性とを日射変動や、パルプ開度の変化
に応じてマツチングさせることは困難であった。Curves 4', 5', and 6' are curve 4 of solar radiation intensity, respectively.
.. 5.6 shows the output of the solar cell corresponding to the trajectory V of the optimal operating point. p is as shown by curve 7. Figure 3 shows the ■-■ characteristic curve 1 of the pump/DC motor system and the characteristics of the solar cell system in the same graph.As is clear from the figure, as the solar radiation weakens, curves 1 and 7 However, the solar cells were not fully utilized in terms of their characteristics under low solar radiation. FIG. 4 shows the change in characteristic curve 1 when the pulp opening degree is changed, and the more the pulp opening degree becomes 1' or 1', the smaller the pulp opening degree is. As the operating characteristics of the pump system constantly change in this way, it is time to adjust the characteristics of the solar cell system, the characteristics of the pump/DC motor system, and the characteristics of the solar cell system depending on solar radiation fluctuations and changes in pulp opening. It was difficult to match the two.
釦、5図はこの発明における制御装置dのブロック図を
示し、第6図は従来装置を示している。Figure 5 shows a block diagram of the control device d according to the present invention, and Figure 6 shows a conventional device.
図において、20F′i、太陽電池21は逆流防止用ダ
イオード、22はチョッパ、23はチョッパ23が開い
ているときに、太陽電池のエネルギを蓄積するだめのコ
ンデンサー、24,25.26は夫々平滑回路用のりア
クドル、ダイオード、コンデンサーを示す。27は直流
電動機、28はポンプである。30it発振回路、31
はパルス巾変調回路、32は基準電圧(vo)の発生回
路、33は電圧比較回路である。In the figure, 20F'i, solar cell 21 is a backflow prevention diode, 22 is a chopper, 23 is a capacitor that stores the energy of the solar cell when chopper 23 is open, and 24, 25, and 26 are smoothing capacitors, respectively. Shows circuit glue, diodes, and capacitors. 27 is a DC motor, and 28 is a pump. 30it oscillation circuit, 31
3 is a pulse width modulation circuit, 32 is a reference voltage (vo) generation circuit, and 33 is a voltage comparison circuit.
第7図はこの発明の場合の=gth機及び太陽電池系の
動作点をV−工時性で示したものである。FIG. 7 shows the operating points of the =gth machine and solar cell system in the case of this invention in terms of V-workability.
第5図で直流電動機27に流れる電圧v2 、 電流
工2ti、チョッパ22の一次側工11 Vlに対して
、チョッパの電力損失を無視し、又チョッパのデユーテ
ィサイクルをαとすれは、V、=α■1 %工2−工1
/αとなる。第7図において、Vlは一定であるから、
双曲線8上を変化する。しかしてv2工2は電動機の動
作点、■IVIは太陽電池の動作点である。即ちSの一
次側v!工1 がチョッパ22によって二次側の■2工
2 となる。このように、泥′7図に示す如く、従来の
装置では■2工2 の動作ケさせる艮はms (図の
曲線4)という日射が必要であるのに対し、この発明の
制御を行なうことによシ、Be” (図の曲線5)の日
射で■2v2 の動作が可能になる。即ちこの発明にお
いては二次電圧v2 を検出し、回路32で発生する
基準電圧vOと回路35で比較し、vo−■2なる演算
を行なわせ、■2 が大きいはと(即ち日射強度が大
きいほど)チョッパSのデユーティサイクルを1に近づ
ける。In FIG. 5, with respect to the voltage v2 flowing through the DC motor 27, the current line 2ti, and the primary side line 11 Vl of the chopper 22, ignoring the power loss of the chopper and assuming that the duty cycle of the chopper is α, V, = α ■ 1 % engineering 2 - engineering 1
/α. In FIG. 7, since Vl is constant,
Changes on hyperbola 8. Therefore, v2 is the operating point of the electric motor, and ■IVI is the operating point of the solar cell. That is, the primary side of S v! Work 1 becomes work 2 on the secondary side by the chopper 22. In this way, as shown in Fig. 7, in the conventional device, the solar radiation required for the operation of 2 ms (curve 4 in the figure) is ms (curve 4 in the figure). 2v2 operation becomes possible due to solar radiation (curve 5 in the figure). That is, in this invention, the secondary voltage v2 is detected and compared with the reference voltage vO generated in the circuit 32 in the circuit 35. Then, the calculation vo-■2 is performed, and the duty cycle of the chopper S is brought closer to 1 as ■2 is larger (that is, the solar radiation intensity is larger).
第8図は電動機の特性1と太陽電池の動作点のなるデユ
ーティサイクルでチョッパSを作動させる。前記の如<
v2=αvlであるから、第7図で示す如<vlと■2
の差(VtVz)は’V+ (1a )となる。第8図
でv、 II点を10. 、 v2r、点を102、次
第に日射が弱くなりv11工l′点を10<、V、’■
2′点を102’ 、v、#工1′点を1 o1# 、
v2#工2′点を102′ とし、■2 のときのデ
ユーティサイクルをα、■2′のときαl 、V211
のときα′ ・・・ とすれば、α〉α′〉α′であ
るから、(1−α)〈(1−α’)<(1−α′)とな
シ10、と102 の間の開きよシ、101′と102
′の間、101′と102′の間の開きが次第に大きく
なシ、曲線9は第7図に示す最適動作曲線7に近い傾き
を与えることができ太陽電池は低日射時においてもその
最適動作点に近い点で作動させることができる。In FIG. 8, the chopper S is operated at a duty cycle that corresponds to characteristic 1 of the electric motor and the operating point of the solar cell. As mentioned above
Since v2=αvl, as shown in Fig. 7, <vl and ■2
The difference (VtVz) becomes 'V+ (1a). In Figure 8, point v and II are 10. , v2r, point is 102, and as the solar radiation gradually weakens, v11kl' point is 10<, V, '■
2' point is 102', v, #work 1' point is 1 o1#,
v2 #work2' point is 102', ■ the duty cycle at the time of 2 is α, ■ at the time of 2', αl, V211
When α'..., then α〉α'〉α', so (1-α)〈(1-α')<(1-α'), and between 10 and 102 Opening, 101' and 102
', and the difference between 101' and 102' gradually increases, curve 9 can be given a slope close to optimal operation curve 7 shown in FIG. 7, and the solar cell can operate optimally even under low solar radiation. It can be operated at a point close to the point.
第9図はチョッパ制御用の回路の説明図であって、第9
図(A)Fi発振回路30からの三角波とVO−Vl
、VO−V2’ 、Vo−Vz’ノ関係を示し、(b)
t−を低日射時のチョッパを駆動する方形波、(C)は
高日射時の方形波であって、t2Vi−サイクルの時間
、tl l”j波の出ている時間であって、デユーテ
ィサイクルαはα=−してあう、αrv。−Vl で
ある。FIG. 9 is an explanatory diagram of a chopper control circuit, and FIG.
Figure (A) Triangular wave from Fi oscillation circuit 30 and VO-Vl
, VO-V2', Vo-Vz', (b)
t- is the square wave that drives the chopper during low solar radiation, (C) is the square wave that drives the chopper during high solar radiation, the time of the t2Vi- cycle, the time when the tl l"j wave is output, and the duty The cycle α is α=−, αrv.−Vl.
2
この発明はこのようにパルス変調方式のコンバータを用
いて、低日射時においても太陽電池の動作点をその最適
動作点に近づけることができる制御装置を得たものであ
る。2 In this way, the present invention uses a pulse modulation type converter to obtain a control device that can bring the operating point of a solar cell close to its optimum operating point even during low solar radiation.
第1図は直流電動機のV−X特性曲線を示す図、第2図
は太陽電池のV−■特性曲線を示す図、第3図は直流電
動機のV−工時性曲線と太陽電池の特性の比較を示す図
、第4図はパルプ開度による直流電動機のV−工時性曲
線の変化を示す図、第5図はこの発明の装置のブロック
線図、第6図は従来の装置を示す図、第7図、第8図は
電動機の動作点と太陽電池の動作点の関係を示す図、第
9図(a)は発振回路からの三角波、第9図(b)は低
日射時の方形波、第9図(Q)は高日射時の方形波を夫
々示す図である。
符号の説明
1・・・直流電動機のV−1特性曲線
4.5.6・・・太陽電池のV−1特性曲線7・・・最
適動作点の軌跡
8・・・■工の槓が一定の双曲線
9・・・−次入力のV−4特性曲線
20・・・太陽′電池
22、・、チョッパ
27・・・直流電動機
28・・・ポンプ
30・・・発信回路
31・・・パルス巾変調回路
32・・・基準電圧発生回路
36・・・電圧比較回路
(ほか3名)
(7)
■
第 2 図Figure 1 shows the V-X characteristic curve of a DC motor, Figure 2 shows the V-characteristic curve of a solar cell, and Figure 3 shows the V-workability curve of a DC motor and the characteristics of a solar cell. 4 is a diagram showing a change in the V-workability curve of a DC motor depending on the pulp opening, FIG. 5 is a block diagram of the device of the present invention, and FIG. 6 is a diagram showing a conventional device. Figures 7 and 8 are diagrams showing the relationship between the operating points of the motor and the solar cell, Figure 9 (a) shows the triangular wave from the oscillation circuit, and Figure 9 (b) shows the relationship between the operating points of the motor and the solar cell. FIG. 9 (Q) is a diagram showing a square wave at a time of high solar radiation. Explanation of symbols 1...V-1 characteristic curve of DC motor 4.5.6...V-1 characteristic curve of solar cell 7...Locus of optimum operating point 8...■The mechanical strength is constant Hyperbola 9...-Next input V-4 characteristic curve 20...Solar cell 22, . . ., Chopper 27...DC motor 28...Pump 30...Emission circuit 31...Pulse width Modulation circuit 32...Reference voltage generation circuit 36...Voltage comparison circuit (3 others) (7) ■ Fig. 2
Claims (1)
いて、パルス巾変調方式のDC−DCコンバータを取付
け、日射量が大きい程その変換率を小さくし、日射量が
小さい和変換率を大きくとシ、太陽電池の動作点をその
最適動作点に近づけるように制御することを特徴とする
太陽電池を電源とするポンプの制御装置。In a pump device driven by a DC motor using a solar cell as a power source, a pulse width modulation type DC-DC converter is installed, and the greater the amount of solar radiation, the smaller the conversion rate, and the smaller the amount of solar radiation, the larger the sum conversion rate. A control device for a pump using a solar cell as a power source, characterized by controlling the operating point of the solar cell to approach its optimum operating point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56209025A JPS58112422A (en) | 1981-12-25 | 1981-12-25 | Pump controller with solar battery as power source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56209025A JPS58112422A (en) | 1981-12-25 | 1981-12-25 | Pump controller with solar battery as power source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58112422A true JPS58112422A (en) | 1983-07-04 |
Family
ID=16566016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56209025A Pending JPS58112422A (en) | 1981-12-25 | 1981-12-25 | Pump controller with solar battery as power source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58112422A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686030A (en) * | 1979-11-26 | 1981-07-13 | Exxon Research Engineering Co | Method and device for controlling application of dc output from solar battery to load |
-
1981
- 1981-12-25 JP JP56209025A patent/JPS58112422A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686030A (en) * | 1979-11-26 | 1981-07-13 | Exxon Research Engineering Co | Method and device for controlling application of dc output from solar battery to load |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6058035A (en) | Method and apparatus for supplying AC power to commercial power line by using sunlight | |
US6657417B1 (en) | Power factor correction with carrier control and input voltage sensing | |
US9184674B2 (en) | Power conversion apparatus that provides power conversion between AC and DC power | |
CN203747681U (en) | Switching power supply and control chip therefor | |
KR102318326B1 (en) | Power conversion device and three-phase ac power supply device | |
US11368109B2 (en) | Power conversion system with PWM carrier transition smoothing and autotuning | |
CN102916593A (en) | Power converter circuit | |
JP6185860B2 (en) | Bidirectional converter | |
GB2248351A (en) | Driver circuit for an inverter device | |
JP2000152647A (en) | System interconnection inverter | |
CN115694167B (en) | Multimode voltage conversion circuit and control thereof | |
CN106533210A (en) | Single-phase buck-boost AC-DC converter and control method thereof | |
JPS58112422A (en) | Pump controller with solar battery as power source | |
JP3258137B2 (en) | Motor drive | |
JPH09135571A (en) | Power converter for photovoltaic power generation | |
JP3862320B2 (en) | Grid-connected inverter device | |
JP4107113B2 (en) | DC-DC converter | |
JP4683365B2 (en) | Grid interconnection inverter | |
JP3373882B2 (en) | Solar cell power supply and control method thereof | |
JP3488348B2 (en) | DC power supply device combined with solar cell and control method thereof | |
JP3214687B2 (en) | Step-down high power factor converter | |
JPH0727831Y2 (en) | Buck-boost DC-DC converter | |
JPH1094266A (en) | Inverter device | |
JP4595218B2 (en) | Grid interconnection inverter | |
JPH0454873A (en) | Power converter |