JPS58112014A - Pressure resistant mesh filter cylinder - Google Patents

Pressure resistant mesh filter cylinder

Info

Publication number
JPS58112014A
JPS58112014A JP56210948A JP21094881A JPS58112014A JP S58112014 A JPS58112014 A JP S58112014A JP 56210948 A JP56210948 A JP 56210948A JP 21094881 A JP21094881 A JP 21094881A JP S58112014 A JPS58112014 A JP S58112014A
Authority
JP
Japan
Prior art keywords
mesh
cylinder
hole
pressure
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56210948A
Other languages
Japanese (ja)
Inventor
Toshio Tokunaga
徳永 要雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56210948A priority Critical patent/JPS58112014A/en
Publication of JPS58112014A publication Critical patent/JPS58112014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To enhance filtering efficiency, by providing a filter mesh cylinder to the outer periphery of a rigid cylinder having plural piercing orifices through an auxiliary mesh cylinder to shorten the depth of a filtering orifice. CONSTITUTION:A filter cylinder is constituted from three cylinders, that is, a filter mesh cylinder 1, a reinforcing mesh cylinder 2 and a rigid cylinders 3 in the order of the passing direction of a fluid to be filtered and the filter mesh cylinder 1 is formed by molding a plain weave stainless steel net having a mesh size in conformity with desired filtering preciseness while the reinforcing mesh cylinder 2 is formed from a stainless steel net having a wire diameter resistant to filtering pressure and a mesh size not raising filtering pressure to reinforce the filter mesh cylinder 1 from the inner surface thereof and to prevent the reduction of the discharge passage of the filter mesh cylinder 1 due to direct contact of the inner surface of the filter mesh cylinder 1 with the rigid cylinder 3. The rigid cylinder has plural piercing orifices 4 provided thereto and introduces a filtrate thereinto but the total area of the piercing orifices 4 is wider than the area of an inflow pipe so as not to raise filtering pressure.

Description

【発明の詳細な説明】 本発明は耐圧網目f退部、詳しくは固形物を含む被f過
流体を1過精度数μm乃至数十μ綱程度の精密さで1遇
するのに適合した耐圧網目f退部に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a pressure-resistant network f-recess, specifically, a pressure-resistant network suitable for treating a passing fluid containing solids with an accuracy of several micrometers to several tens of micrometers. Regarding mesh f regression.

従来流体の精密C過には、素焼・焼結金嬌・スポンジプ
ラスチックス等線のf退部が多用さhでいる。併し乍ら
、これ等の在来型f退部は何れも、被f過流体がその1
孔を通過する際の圧力損失が大きく、1過に徒らな高1
過圧を必要とし、粘度の大きい流体や糊状のものやペイ
スト状のものの1過は全く不可能である。また、目詰り
の回復が至難で、再生1史用、目詰りの自動回復の可能
性は全く存在しない。
Conventionally, in precision C-filtering of fluids, the f-recessed part of lines such as bisque sintered metal, sintered metal, and sponge plastics is often used. However, in all of these conventional f-retraction sections, the f-passed fluid is one of them.
The pressure loss when passing through the hole is large, and the height is unnecessarily high.
Overpressure is required, and it is completely impossible to pass through highly viscous fluids, paste-like materials, or pasty-like materials. In addition, it is extremely difficult to recover from clogging, and there is no possibility of automatic recovery from clogging for playback 1 history.

在来型f退部のこの機能上の欠陥は、後述するように、
何れもその1孔の奥行きが異状に長いことに起因してい
る。すなわち、これ等の1過筒に何れもその構成素材粒
子を筒状に焼署結してつくっており、その素材粒子間の
1…隙が連なって筒壁を貫通しているものをその1孔と
して1史用しており、e孔の奥行きは筒壁の厚さと同一
であり、10乃至20絹程度の普通の厚さの場合でも、
1過梢度数十−1すなわち孔径数十μmの数6倍以上で
ある。併し乍ら、σ4過とは被1過流体をしである空隙
(1孔)を母過させ、これを通過し得ない大型固形物(
1滓)を分離除去して、より清泄度の高い1過済み流体
(1液)を得ることであり、この1過の原点から、C孔
に要求されるものは空隙の大きさと空隙が存在するとい
うことだけであり、空隙の奥行きなどというものは些か
の必我性もない。かような意味で、空隙のみがあり央行
きのない1孔こそ1孔としての理想的なものであるが、
埃実に存在する理想的1孔に近い空隙は金桐性網目であ
る。
This functional defect of the conventional f-recess is, as will be explained later,
This is due to the fact that the depth of each hole is unusually long. In other words, each of these tubes is made by sintering the constituent material particles into a cylindrical shape, and the one in which the gap between the material particles is continuous and penetrates the tube wall is called one. It has been used as a hole for a long time, and the depth of the hole is the same as the thickness of the cylinder wall.
1 transient degree of several tens of −1, that is, several six times or more of the pore diameter of several tens of μm. However, σ4 filtration is a process in which the fluid to be filtrated is passed through a gap (one hole), and large solids that cannot pass through this are removed.
1 slag) is separated and removed to obtain a 1 filtration fluid (1 liquid) with higher purity.From the origin of this 1 filtration, what is required for the C hole is the size of the void and the void size. It is just that it exists, and there is no sense of necessity in the depth of the void. In this sense, a hole with only a gap and no direction to the center is ideal as a hole,
The voids that exist in dust seeds and are close to the ideal pore are a paulownia-like network.

網目とは、その網を織成している縦横2杢ずつ計4本の
線材によって剖され、線材の囲きt−辺の長さとし線材
の径を奥行きとする四辺形筒状の空間である。この網目
空間の断面積は、第1A図〜第1C図に示す網目1孔模
型のA、H,c、uによって囲まれた区域(爾後最狭断
面部と呼称する)で最小面積(爾後最狭断面積と呼称す
る)となり、これを境にしてその#後は急速に末広がり
状となる。
A mesh is a quadrilateral cylindrical space that is woven by a total of four wire rods, two in length and two in width, and whose length is the wire enclosure (t) - the length of the side and the depth is the diameter of the wire. The cross-sectional area of this mesh space is the smallest area (hereinafter referred to as the narrowest cross-sectional area) in the area surrounded by A, H, c, and u of the one-hole mesh model shown in Figures 1A to 1C. (referred to as a narrow cross-sectional area), and after this point it rapidly widens toward the end.

f過のため被1過流体がこの網目空間に圧入されると、
流体中に混在している最狭断面積より大型の固形物は何
れも最狭断面部で流入を阻止され、その前面空間に分離
残置され所d4F滓となる。最狭断面部を通過し得た小
形固形物は何処にも停滞滞留することなく、すべて網目
空間の外に濡出する。すなわち、精度を超える大型固形
物を分離除去するという実質上の1孔的役割を果たすも
のは最狭断面部であり、従って機能的な意味では網目f
孔の英行きは零である。仮9に被r過流体が流過するま
での網目空間の奥行きを1孔の奥行きと看做しても、f
孔の英行きはf過n度の1倍前後に過ぎぬ。
When the fluid to be evaporated is pressurized into this mesh space due to f-filtration,
Any solid matter larger than the narrowest cross-sectional area mixed in the fluid is blocked from flowing in at the narrowest cross-sectional area, and is separated and left in the space in front of the narrowest cross-sectional area, becoming d4F slag. The small solids that have passed through the narrowest cross-section do not stagnate or stagnate anywhere, but all leak out of the mesh space. In other words, it is the narrowest cross section that effectively plays the role of one hole in separating and removing large solids that exceed precision, and therefore, in a functional sense, the mesh f
Kong's transfer to England is zero. Even if we assume that the depth of the mesh space until the passing fluid flows through 9 is the depth of one hole, f
The forward direction of the hole is only about 1 times the f degree.

例えば、400メツシエの平織ステンレス鋼製網では、
目の開き42μm、線径22μmで、C孔の奥行きはf
Ji11槽度の0.5倍に過ぎぬ。また、精度5μmの
在来型1過筒kL−231Q型フイルター(田辺曲工株
式会社ItりのP孔の奥行きと、400メツシユのステ
ンレスms網の織成線材に4金により18μmの肉盛り
金して調製した同じ5μ+aiiv度のaM!fli!
金帆網のe孔の奥行きを比較すると、前者の20龍に対
し後者は58μmで、金属網の1孔の奥行きは在来型1
過簡のそれの345分の1に過ぎない。上記の二つの1
孔の奥行きにおける著しい相違は、以下のように1過機
能の上に甚しい差違をもたらす。
For example, with 400 mesh plain weave stainless steel mesh,
The opening of the mesh is 42 μm, the wire diameter is 22 μm, and the depth of the C hole is f.
It is only 0.5 times the temperature of Ji11 tank. In addition, the conventional 1-tube kL-231Q type filter with an accuracy of 5 μm (Tanabe Kukou Co., Ltd.'s P hole depth and 400 mesh stainless steel mesh wire material with 18 μm overlay made of 4-karat gold) The same 5μ+aiiv degrees of aM!fli!
Comparing the depth of the e-holes in the metal net, the former has 20 µm, while the latter has 58 μm, and the depth of each hole in the metal net is 1 in the conventional type.
It is only 1/345th of the oversimplified version. Above two 1
Significant differences in the depth of the pores result in significant differences in single function as follows.

(1)1j過の圧力損失、従ってまた新装置過圧におけ
る差違 1)AReYの法則は、流体が在来型d4過筒の筒壁(
f3床)の構造に類似した多孔質)−を透過する際の圧
力損失が流体の粘度・透過速度・多孔質ノーの厚さに正
比例し、パーミアビリティ(多孔質層の透過性の尺度と
なる値で、単位多孔質層断面中に分布している4過孔の
面積に関係がある。単位はcdりに逆比例することを明
らかにしている。また1(A(jEN・)’(JIIE
LILLLEの法則は、その多孔質層中に分布する透過
孔中01個の透過孔にも比す可きi管の中を流体が流過
する際の圧力損失が、流体の粘度・流速・細管の長さに
正比例し、細管の半径の2乗に逆比例することを示して
いる。
(1) Difference in pressure loss over 1j, and therefore also in new equipment overpressure 1) AReY's law states that the fluid flows through the cylinder wall (
The pressure drop when permeating through a porous layer (similar to the structure of a f3 bed) is directly proportional to the fluid's viscosity, permeation rate, and thickness of the porous layer, and permeability (a measure of the permeability of the porous layer) The value is related to the area of 4 pores distributed in the cross section of a unit porous layer.It has been clarified that the unit is inversely proportional to cd.
LILLE's law states that the pressure loss when a fluid flows through a tube, which can also be compared to one of the permeation pores distributed in the porous layer, is a function of the fluid's viscosity, flow rate, and capillary. It shows that it is directly proportional to the length of the tube and inversely proportional to the square of the radius of the tube.

混在する固形物の分離除去という濾過目的を別にすれば
、透過もf過も共に流体が細孔の中を流過する同一の事
象であり、透過に関する法則はC過の法則としても妥当
する。従って、1過簡による1過のような所謂圧力1過
の場合には、C過の圧力損失は被1過流体の粘度・e過
速度・r孔の果行きに正比例し、f孔の断Il![i積
に逆比例するも5)と解される。
Apart from the purpose of filtration to separate and remove mixed solids, both permeation and f-filtration are the same phenomenon in which fluid flows through pores, and the law regarding permeation is also valid as the law of c-filtration. Therefore, in the case of so-called pressure 1 over, such as 1 over due to 1 oversimplification, the pressure loss of C over is directly proportional to the viscosity of the fluid to be overtaken, the overspeed e, and the end of the r hole, and the rupture of the f hole. Il! [i is inversely proportional to the product, which is also interpreted as 5).

上記の1過法則によれば、1過の圧力損失とf孔の長さ
とは正比例の関係にあるから、前述のように、網目1孔
の奥行きが同一1過精度の在来型f退部の、14孔の央
行きの数N分の−に過ぎぬということは、その1過に装
する圧力が数百外の−の僅かな圧力で済むということを
意味し、これを製作し操作するうえでの有利さには計り
知れぬものがある。
According to the above one-pass law, the pressure loss for one pass is in direct proportion to the length of the f-hole, so as mentioned above, the conventional f-recess with the same one-pass precision where the depth of each hole in the mesh is the same. The fact that it is only a few N towards the center of the 14 holes means that the pressure charged in one passage is only a few hundred -, and it is difficult to manufacture and operate it. The advantages of doing so are immeasurable.

在来型−4過筒が、糊状のもの、ベイスト状のもの、そ
の地鳥粘度流体の精密1過を全く不可能としている1噴
の事例もかような事情にもとすくものとして始めて理解
することができる。例えば、R−2310型フイルター
のカタログによれば、同フィルターで15℃の水を1遇
すると、0.2に〜の1過圧で毎分7.71の1過が可
能である。いま同フィルターで水に替えてナフテン系1
20番シリンダー油’fP遇するものとすると、15℃
における水の粘度は0.011)’()’(JISE)
、ナフテン系120番シリンダー油の粘度は290Pで
あるので、前記圧力濾過の1過法則により、シリンダー
油の濾過に要するC過圧はの超高濾過圧となり、R−2
510型フイルターの耐圧力の限界金遥かに逸脱してし
まい、七の濾過が全く不可能である。
This is the first time that a conventional four-pass cylinder has been used to solve the problem of one-jet cases where it is completely impossible to accurately pass through glue-like, beist-like, and local viscosity fluids. I can understand. For example, according to the catalog for the R-2310 type filter, when water at 15° C. is poured into the same filter, it is possible to pass 7.71 times per minute at an overpressure of 0.2 to 1. Now, using the same filter, replace water with naphthenic 1
Assuming No. 20 cylinder oil 'fP, 15℃
The viscosity of water is 0.011)'()' (JISE)
Since the viscosity of naphthenic No. 120 cylinder oil is 290P, according to the one-pass law of pressure filtration, the C overpressure required for filtration of cylinder oil becomes an ultra-high filtration pressure of R-2.
The pressure limit of the 510 type filter has been far exceeded, and filtration of 7 is completely impossible.

併し乍ら、この濾過を網目F孔で行なうものとすると、
前出のように1孔の奥行きが345分の1に過ぎないか
ら、所要C過圧もの通常の高圧の範囲内の1過圧となり
、在来型濾過筒にとってに絶対的に不可能であった濾過
も、網目濾過筒によってならば充分可能な範囲内の濾過
となる。
However, if this filtration is performed through mesh holes F,
As mentioned above, since the depth of one hole is only 1/345, the required C overpressure is 1 overpressure within the normal high pressure range, which is absolutely impossible for conventional filter cylinders. The mesh filtration cylinder also provides sufficient filtration.

(2)  目詰り回復の難易さにおける差違r孔の奥行
きの相違がもたらす機能上の懸隔の第2は目詰りの回復
の難易さである。在来型濾過筒の目詰りはその長い奥行
き部分の各所に発生する。奥行きの深部に堆積した1滓
が表や裏からの洗浄やプツシ掛けで除去できる道理がな
く、逆洗もその長い道中で勢いが殺がれ実効がない。こ
れに反し、網目f孔においては、梢ft−超える大型固
形物としての1滓はすべて最狭断面部前面の網目空間に
残留堆積し、最狭断面部以降の網目空間には停滞滞留す
る固形物は皆無である。従って、目詰F)は、最狭断面
部前面の網目空間のみに限って発生し、而もこれ等の1
滓固形物は何れも1過積度を超える大きさであるから、
殆どがその大部分を網目空間外に食み出すことになる。
(2) Difference in the difficulty of clogging recovery The second functional difference brought about by the difference in the depth of the r-hole is the difficulty of clogging recovery. Clogging of conventional filter cylinders occurs at various locations along their long depths. There is no reason to remove the slag that has accumulated in the deep part by washing from the front or back or by pushing, and backwashing is also ineffective as it loses its momentum during the long process. On the other hand, in the mesh f hole, all the slag as large solids exceeding the treetops ft remains and accumulates in the mesh space in front of the narrowest cross section, and the solids stagnate and accumulate in the mesh space after the narrowest cross section. There are no objects. Therefore, clogging F) occurs only in the mesh space in front of the narrowest cross section, and only in these 1
Since all of the slag solids have a size exceeding 1 degree of volume,
In most cases, a large part of it extends outside the mesh space.

そのため目詰りは被1過流体流入側面だけの洗浄乃至ブ
ラシ掛けで極めて容易に回復できることになる。
Therefore, clogging can be very easily recovered by cleaning or brushing only the side where the fluid flows in.

以上は網目を耐圧的に補強してつくる網目濾過筒の場合
でも同様で、耐圧補強機構中に設けられる濾過済み流体
の通路の断面積f、c網の網目空間の最狭断面積よりも
充分に広くさえ保って置けば、目詰り発生の場所もその
回復方法も網目f孔単独の場合と些かも異るところがな
い。従って、固定させたブラシにそのf退園を接触させ
つつ、網目濾過筒を緩やかに回転させる機構と、取除か
れた1滓用の沈澱室およびその抜取り口を準備すれば、
濾過筒を濾過器外に取出すことなく、濾過器内に組付け
たまま目詰りを回復することが可能となり、更にこれ等
の操作を自動化することにより従来不可能視されていた
濾過筒の目詰りの自動回復も、水乃至はこれに類する低
粘度流体においては充分可能なものとなる。
The above is the same in the case of a mesh filtration tube made by reinforcing the mesh to withstand pressure, and the cross-sectional area f of the passage for filtered fluid provided in the pressure-resistant reinforcing mechanism is sufficiently larger than the narrowest cross-sectional area of the mesh space of the mesh. As long as the holes are kept wide, the location where clogging occurs and the method for clogging are no different from those using mesh f-holes alone. Therefore, by preparing a mechanism for gently rotating the mesh filtration cylinder while bringing its f exit into contact with the fixed brush, and a settling chamber for the removed slag and its extraction port,
It is now possible to recover from clogging while the filter tube is assembled inside the filter without taking it out of the filter, and by automating these operations, it is possible to repair the clogging of the filter tube, which was previously considered impossible. Automatic recovery from clogging is also fully possible with water or similar low viscosity fluids.

金輌網目f孔は、上述のとお9濾過の圧力損失が僅少で
濾過にさしたる1過圧を要せぬことをその優れた長所と
しているが、濾過条件が苛酷になると、濾過法則の示す
とおり、条件相応の高r過圧を必要とする。併し乍ら、
これにこたえる所要の耐圧性を完全に備えた耐圧網目濾
過筒は未だ存在していない。事実、圧力損失僅少、目詰
りの回復容易という長所を損うことなく所要の剛性と耐
圧性を賦与するには、特別の工夫が必要である。
The gold mesh f-hole has the excellent advantage of having minimal pressure loss during filtration as mentioned above, and not requiring much overpressure for filtration, but when the filtration conditions become severe, , a high r overpressure corresponding to the conditions is required. However,
There is still no pressure-resistant mesh filter cylinder that is completely equipped with the required pressure resistance to meet this requirement. In fact, special measures are required to provide the required rigidity and pressure resistance without sacrificing the advantages of low pressure loss and easy recovery from clogging.

本発明は、第1には金楓性網目の1孔としての優れた特
徴を発見確認した上でこれをf孔として便用せんとの選
択、第2にはその特徴を損うことなく所要の両件および
耐圧性を賦与するための構造上の特別の工夫を基として
なされたものであり、本発明による耐圧網目濾過筒は、
筒状m部にr過済み流体が流過可能の多数の貫通孔が設
けられた剛性筒と、所望の1過梢#iを有し…1記剛性
筒の外1目す方に配設された1網筒と、前記剛性筒の外
周向との間の1過済み流体を前記N通孔に導くための直
路面積を前記e網筒の網目の最狭断thl積より広くし
得る?#径を有し削dピ剛性筒と前記1網筒との間に配
設された補強網筒であって、前記1網筒を支持する強度
を有するとともにso gピ貴通孔上における1過圧お
よび1過器内圧に耐える強度を有する補強網筒とを有す
るものである。
The present invention firstly discovered and confirmed the excellent characteristics of the gold maple mesh as one hole, and then selected it as an F-hole for a convenience bottle. The pressure-resistant mesh filtration cylinder according to the present invention has been developed based on both of the above conditions and special structural innovations to impart pressure resistance.
A rigid tube in which a cylindrical portion m is provided with a large number of through holes through which the passed fluid can flow, and a desired 1-periphery #i...disposed on the outer side of the rigid tube 1. Is it possible to make the straight path area between the 1-mesh tube and the outer circumferential direction of the rigid tube for guiding the 1-pass fluid to the N hole wider than the narrowest thl product of the mesh of the e-mesh tube? A reinforcing mesh tube having a diameter of It has a reinforced mesh tube that has the strength to withstand overpressure and one-overpressure vessel internal pressure.

以下本発明による耐圧網目1過筒の夷#l汐1jについ
て図面を参照して説明する。 ゛ 耐圧網目1過簡は、第2A図〜第2B図に示す曲り、1
網筒1、補強網筒2、剛性筒6の三つの尚からなる。1
網筒1は与えられた1過精度に通合する目の開きの平織
のステンレスw4#網を筒状に成形してつくられ、後述
する剛性筒6の外1M+1方に配設される。平織のステ
ンレス鋼製網の精度は、現状においては、400メツシ
ユ、42μmが限度であり、それ以上の精度はさしあた
りのところとしては鍍金による織成線材の肉盛りによっ
てこれを調製しなければならない。但し空間率を減少し
目詰り回復の容易という長所を幾分損う点があるから根
本的にはステンレス鋼よりも展性延性がより優れた金属
線を織成線材とするなど製鋼技術の一段の向上に俟たね
ばならない。
Hereinafter, the pressure-resistant mesh 1-pass cylinder 夷#lshio 1j according to the present invention will be explained with reference to the drawings.゛The pressure-resistant mesh 1 is curved as shown in Fig. 2A to Fig. 2B.
It consists of three tubes: a mesh tube 1, a reinforced mesh tube 2, and a rigid tube 6. 1
The mesh tube 1 is made by molding a plain weave stainless W4# mesh into a cylindrical shape with an opening that meets the given 1-overaccuracy, and is disposed on the outside 1M+1 side of the rigid tube 6, which will be described later. At present, the accuracy of plain weave stainless steel mesh is limited to 400 mesh and 42 μm, and higher accuracy must be achieved by overlaying woven wire with plating. However, since there are some disadvantages in reducing the void ratio and making it easier to recover from clogging, it is fundamentally necessary to use a higher level of steelmaking technology, such as using woven wire with a metal wire that has better malleability than stainless steel. We must continue to improve our skills.

剛性筒6は、1過簡に1過圧・1過器内圧に耐えるだめ
の剛性を与えるための強堅な材質の筒である。剛性筒の
耐圧目標は第−義的にはC過圧である。C過圧の大きさ
は対象流体の粘度・1過積度・1過速度等によって定ま
るf過の圧力損失のほか、r過器に連なる前後の管路の
圧力損失等がυ■りて定るものであるが、これは必ずし
も定常な値として終始するものではなく、1過が進行し
1過筒が目詰りし始めると共に増大し完全目詰り時に最
高に達する。爾後f退部に加えられる圧力蝶e過器内圧
となり、f過器の安全弁圧力に到達するまで上昇し続け
る。従って、C退部が最終的に耐えねばならぬ圧力はこ
の1過器の安全弁圧力であり、剛性筒はこの安全弁圧力
に耐え得る剛性を保持せねばならぬ。
The rigid cylinder 6 is a cylinder made of a strong material to provide sufficient rigidity to withstand one overpressure and one overpressure inside the vessel. The target pressure resistance of the rigid cylinder is essentially C overpressure. The magnitude of C overpressure is determined by the pressure loss of f over, which is determined by the viscosity of the target fluid, 1 overload, 1 overspeed, etc., as well as the pressure loss of the pipes before and after the r overpressure, etc. However, this value does not necessarily end up as a steady value, but increases as one pass progresses and one pass cylinder begins to become clogged, and reaches a maximum when it is completely clogged. The pressure applied to the retraction section then becomes the internal pressure of the evaporator and continues to rise until it reaches the safety valve pressure of the evacuator. Therefore, the pressure that the C-recessed section must ultimately withstand is the safety valve pressure of this single-pass device, and the rigid cylinder must maintain rigidity to withstand this safety valve pressure.

剛性筒の筒壁にはこれを内外に貫く多数の貫通孔4が設
けられ、r過器の1過済み流体を器外に排出するための
通路の役割を果たす。貫通孔径は、大なれば大なるほど
1過済み流体流過の際σ)圧力損失を小にし、1過圧増
大への懸念を除くことカニできるが、大に過ぎると剛性
筒自体の強度σ〕保持を妨げ、且つその上に配置される
補強網等σ)耐圧を困難にする。貫通孔は出来得る限り
多数、そσ)総断面積におい°て少なくとも被1過流体
σ)流入管路の断面積以上を剛性筒壁面上に平均して分
布せしめることが望ましい。、 ′  1網筒および剛性筒の二部によって耐圧網目1過
筒としての1孔および1体の剛性は一応整う力;、ただ
単にf網筒を剛性筒上に直接配置するのでは次のような
支障が生じる。
A large number of through holes 4 are provided in the cylindrical wall of the rigid cylinder, penetrating both the inside and the outside, and serve as passages for discharging the evaporated fluid from the evaporator to the outside of the evaporator. The larger the diameter of the through-hole, the smaller the pressure loss and the elimination of concerns about an increase in overpressure when fluid flows through the tube, but if it is too large, the strength of the rigid cylinder itself will be reduced. Reinforcing nets, etc. disposed above it that impede retention and make it difficult to withstand pressure. It is desirable that the number of through-holes be as large as possible, and that the total cross-sectional area of the through-holes should be at least one permeable fluid (σ) that is larger than the cross-sectional area of the inlet pipe on the rigid cylinder wall surface. , 'The two parts of the 1-mesh tube and the rigid tube are enough to adjust the rigidity of 1 hole and 1 body of the pressure-resistant mesh 1-trans-tube; If you simply place the f-mesh tube directly on the rigid tube, the following will occur. This will cause serious problems.

(リ 1網がX通孔上に位置して、他σ)例もσ)によ
っても支持されることなく直接C過圧を受けた場合、そ
の繊細脆弱な織成線材がこれに耐え得ず、破断・復元不
能の変形を受ける虞れが多大である。
(1) If the mesh is placed over the X hole and receives direct C overpressure without being supported by the other σ), the delicate and fragile woven wire material will not be able to withstand this. , there is a great risk of breakage and irreversible deformation.

(2)f網が他の何ものをも介在させることなく直接剛
性筒壁面上に位置した場合、網目1孔の裏側が壁面によ
って塞がれ1過済み流体の排出用通路が失なわれるため
、1孔として働き得るものは貫通孔上に位置した網部分
中の網目1孔のみとなり、筒全体としての1過効率の甚
しい低下を来たす。
(2) If the f mesh is placed directly on the rigid cylinder wall surface without any other intervention, the back side of the mesh hole 1 will be blocked by the wall surface, and the passage for draining the fluid that has passed through the mesh will be lost. , the only hole that can function as one hole is the one hole in the mesh portion located above the through hole, resulting in a severe decrease in the permeability efficiency of the cylinder as a whole.

補強網筒2は、以上のような支障の発生を防止する目的
を以て、適当な目の開きの平織のステンレス鋼製網を筒
状に成形してつくられ、f網筒1と剛性筒6との間に配
設され、次のような役割を果す。r過希件の如451に
より複数個σ〕補強網筒を使用する必要のある場合には
、自明のこと乍ら太目のものほど剛性部寄りに配置され
る。
The reinforcing mesh tube 2 is made by forming a plain weave stainless steel net with an appropriate mesh size into a cylindrical shape for the purpose of preventing the above-mentioned problems. It is placed between the two and plays the following roles: If it is necessary to use a plurality of reinforcing net tubes due to the rarity of circumstances 451, it is obvious that the thicker the reinforcing net tubes, the closer to the rigid part they are placed.

(リ 貫通孔上に位置しては、先ず自らがそσ〕耐圧力
を以て加えられる1過圧、最終的には1過器の安全弁圧
力に耐え、同時にその織成線材を以てe網金支持し、こ
れを1過器の安全弁圧力に耐え得しめる。
(If it is located above the through hole, it will first withstand the overpressure applied by itself with withstanding pressure, and eventually the safety valve pressure of one overpass, and at the same time support the e-mesh using the woven wire material.) , which can withstand the pressure of the safety valve of one overpass.

(1−イ)ステンレス調製網が貫通孔上にあって、D0
見られる安全弁圧力に耐え得る条件は次のとおりである
(1-a) The stainless steel preparation net is above the through hole, and D0
The conditions for withstanding the safety valve pressure seen are as follows.

線径d(m、その引張強さσ〜、目の開き1cWLなる
平織ステンレス鋼製網が孔径XcWLなる貫通孔上にあ
って安全弁圧力p ’%を受けるものとする。貫通孔上
の網部分に含まれるx 117本の織成線材は貫通孔縁に支えられた両端支持パ
リの集団として、この網の部分に加えられる総圧力(7
)2・πりに等しい荷重を受け、その各支点における断
面に総計において荷重(−y)t−ff−1)に等しい
反力を生じる。
Assume that a plain weave stainless steel net with a wire diameter d (m, a tensile strength σ~, and an opening of 1 cWL is placed over a through hole with a hole diameter XcWL and receives a safety valve pressure p'%.The net portion above the through hole x 117 woven wire rods are supported on the edges of the through-holes as a group of supporting holes at both ends, and the total pressure (7
) is subjected to a load equal to 2·π, and a total reaction force equal to the load (-y)t-ff-1) is generated on the cross section at each fulcrum.

他方、これに対応する許容応力は、充分な安全度を見込
んだ安全率isとするとき、各各ハリごとに2・(i)
2・E@−;、  両端支持パリの集団全部としては1
百112 a (、)2 m @ a 。
On the other hand, the corresponding allowable stress is 2・(i) for each tension, assuming a safety factor is that takes into account a sufficient degree of safety.
2・E@−;, the whole group of both ends support Paris is 1
112 a (,)2 m @a.

となる。この総許容応力と総反力との間に■・2・(i
)2・E−1≧(i)2・E−pなる関係が成立するこ
とが、当該ステンレス鋼製網が孔径X(mなる貫通孔上
にあってp〜の安全弁圧力を受けたとき破断も復元不能
な変形も受けることのない完全な耐圧力を備えるための
条件である。そして、この両辺を等しいとした場合のx
lすなわち 4d2   σ X=iT丁m =  =°−−−=−−−−  (りは
酋該ステンレス鋼義網がpk絢なる安全弁圧力下に完全
なる耐圧力を保持し得る限界的な貫通孔径である。
becomes. Between this total allowable stress and total reaction force, ■・2・(i
) 2・E-1 ≧ (i) 2・E-p holds true, which indicates that the stainless steel mesh will break when it is placed over a through hole with a hole diameter of X (m) and receives a safety valve pressure of p ~. This is a condition for complete pressure resistance without undergoing any irreversible deformation.If both sides are assumed to be equal, x
l, that is, 4d2 σ It is.

従って、このXの値がkLCWLを超えるステンレス鋼
製網は何れも、孔径1も口の貫通孔上にあってp〜なる
安全弁圧力に完全、lK耐え得るステンレス鋼製網であ
るということができる。例えば、安全率を8とし、安全
弁圧力を25〜とする場合、Xの値が1 (:mを超え
るステンレス鋼製網を既製市販の平織ステンレス鋼製網
中に求め・・ると、48メツ7−より太目の網(メッシ
ェ数48より小さな網)の全部がこれに該当する。従っ
て、48メツ7エより太目の平織ステンレス鋼製網は倒
れも、孔径1CIrLの貫通孔上にあって25〜の安全
弁圧力に耐え得る、補強網としての第一の条件を充分に
充たし得るステンレス鋼JR網であるということができ
る。(表1参照) 表1 ステンレス鋼製網の諸元 メ; □□ (1−口)補強網が1網を支持して、加えられる安全弁
圧力に耐えしめ得る条件μ次のとおりである。
Therefore, any stainless steel net whose value of . For example, if the safety factor is 8 and the safety valve pressure is 25~, the value of This applies to all meshes thicker than 48 mesh (mesh number smaller than 48).Therefore, even if a plain weave stainless steel mesh that is thicker than 48 mesh 7e falls over, it will fall over a through hole with a hole diameter of 1 CIrL. It can be said that this is a stainless steel JR net that can fully satisfy the first condition as a reinforcing net, being able to withstand the safety valve pressure of ~. (See Table 1) Table 1 Specifications of stainless steel net; □□ (1-Port) The conditions μ for the reinforcing net to support the 1 net and withstand the applied safety valve pressure are as follows.

P網が補強網上にあって安全弁圧力を受ける状態は、補
強網が貫通孔上にあって安全弁圧力を受ける状態に近似
しており、補強網が貫通孔縁に支えられて安全弁圧力に
耐えるように、PM4μ補強網の網目受量縁、すなわち
当該補強網の織成線材の線径をd(1’lFL、目の開
きをi確とした場合の一辺a−4−iなる四辺形状網目
空間縁に支えられて安全弁圧力に耐える。従って、この
−辺d十iなる網目空間縁上にめる線径DC1ft、引
張強ざσ〜、目の開き2工備とする織成線材の1網が安
全弁圧力p〜に耐え得るための必要な条件は、負通の織
成線材の断面に生じる反力の総合計1+[(d−1−i
)’pと、これに対応する応力の酩合耐値2−傷卸一・
2・(”)2−E−!!−(但Sに安全率)1)−)−
L    2    S・ との間に 2止・2・(i)′・E・i≧(d−4−i)”・pL
l−)−1 すなわち なる関係が成立することである。
The state in which the P net is on the reinforcement net and receives the safety valve pressure is similar to the situation in which the reinforcement net is on the through hole and receives the safety valve pressure, and the reinforcement net is supported by the edge of the through hole and withstands the safety valve pressure. As shown in FIG. It is supported by the edge of the space and can withstand the pressure of the safety valve.Therefore, one of the woven wire rods with a wire diameter DC1 ft, tensile strength σ~, and opening 2 is placed on the edge of the mesh space with side d1. The necessary condition for the net to withstand the safety valve pressure p~ is the total reaction force generated on the cross section of the negative threaded woven wire 1+[(d-1-i
)'p and the corresponding stress resistance value 2 - damage resistance 1.
2・(”)2-E-!!-(However, safety factor for S) 1)-)-
2 stops・2・(i)′・E・i≧(d−4−i)”・pL between L 2 S・
l-)-1 In other words, the following relationship holds true.

そして、この両辺r等しいとした場合のcl+iの値は
、当該f網がそれによって支持されpマ9の安全弁圧力
に耐え得る限界的な補強網の網flll空間縁の一辺の
長さを示すものである。すなわち、それ′に満足する補
強網用ステンレス鋼製網はすべて、線径i) cfIL
、引張強さσ愕臼、目の開き1cFILなるrl14を
支えてp′%!なる安全弁圧力に耐えさせることのでき
る目の開きを備えたステンレス鋼製網である。
When both sides r are equal, the value of cl+i indicates the length of one side of the marginal reinforcing net space edge by which the f net is supported and can withstand the safety valve pressure of the p ma9. It is. That is, all stainless steel nets for reinforcing nets that satisfy this requirement have a wire diameter i) cfIL
, tensile strength σ, eye opening 1cFIL supporting rl14 p'%! It is a stainless steel mesh with openings that can withstand the pressure of the safety valve.

例えば、40ロメツシエの平織ステンレス鋼製網を1網
とするf過積度42μmのグリ−と0.0861cWL
となる。d−1−iの1直がこのo、os3tcIIL
より小なるステンレスms網を既製市販の平織ステンレ
ス鋼製網中に求めると(表1参照)、32メツ7ユより
細目Q)網(メッシ5d32より大なる網)のすべてが
これに該尚する。すなわち、62メツシユより細目の網
はすべて4υ0メツ7ユの1網を支えて25最劇の安全
弁圧力に耐えしめ得る適当な目の開き金備えた補強網と
しての第2の条件を充分に充たし得るステンレス鋼製網
であるということになる。
For example, one mesh is made of 40 Rometsushie plain weave stainless steel mesh and the f overload degree is 42μm, and the other is 0.0861cWL.
becomes. The first shift of d-1-i is this o, os3tcIIL
When looking for smaller stainless steel meshes among ready-made commercially available plain weave stainless steel meshes (see Table 1), all of the meshes (fine mesh Q than 32 mesh 7U) (mesh larger than mesh 5d32) fall under this category. . In other words, all nets finer than 62 mesh fully satisfy the second condition as reinforcing nets with appropriate openings that can support one mesh of 4υ0 mesh and 7 units and withstand the pressure of the safety valve of 25. This means that it is a stainless steel mesh.

以上に述べて来たところから明らかなように、補強網は
1掲の耐圧に関する(1−イ)、(1−口)の二つの条
件を同時に満足させ得る濾過精度42μmのグリース1
適用e過筒に同音とれば、同1過筒用の補強網は48メ
ツ7ユよ・Q太目で、同時に62メツンユより細目の3
2.36.42.48の各メツシュのステンレスs4製
網の中の何れかでなければならぬということである。
As is clear from what has been described above, the reinforcing net is grease 1 with a filtration accuracy of 42 μm that can simultaneously satisfy the two conditions (1-a) and (1-mouth) regarding pressure resistance listed in 1.
If the same sound is applied to the applicable e-tube, the reinforcing net for the same 1-pass tube is 48 meters and 7 yu.
2.36.42.48 Each mesh must be made of stainless steel S4.

補強網が最終的に補強網として選定され得るためには、
これ等の耐圧に関する二つの条件に適うほか、次に述べ
る1過済み流体の通らぬ。
In order for the reinforcement net to be finally selected as the reinforcement net,
In addition to meeting these two conditions regarding withstand pressure, it also does not allow the passing of fluids that have already passed.

(2)剛性筒の壁面上に位置してはその織成線材金以て
同壁面との間に1過済み流体を貫通孔に導くための通路
用間隙を形成確保する。この間隙の断面積は目詰りの発
生、1過済み流体通過の際の圧力損失の増加を一切懸念
せしめぬほどに充分に広大でなければならず、また当該
網目空間へ流入する1過済み流体の全量を支障なく空間
の外に排出し得る充分な広さの線断面t*ヲ備えねばな
らぬ。従って、補強網の織成線材にはそれを可能にする
充分な線径の太さが求められ、補強網はこの点に関する
慎重な吟味を経てその充分なることが確かめられて、始
めて決定されることになる。
(2) A passage gap is formed between the woven wire metal and the wall surface of the rigid cylinder to guide the evaporated fluid to the through hole. The cross-sectional area of this gap must be sufficiently large so that there is no concern about clogging or increase in pressure loss when the evaporated fluid passes, and the evacuated fluid flowing into the mesh space must be sufficiently large. The line cross-section t* must be wide enough to allow the entire amount of water to be discharged out of the space without any hindrance. Therefore, the woven wire material of the reinforcing net must have a sufficient wire diameter to make this possible, and the reinforcing net is determined only after careful examination of this point and confirmation of its sufficiency. It turns out.

例えば、前出の42μm精度のグリース1過用1過簡の
補強網用各ステンレス鋼製網のうちの一つ、32メツシ
ユの網について吟味すると、その織成線材の線径29υ
μmはC網の目の開き42μmの6.9倍に相当し、こ
の太い線材と剛性筒壁向との間に形成される間隙の断面
積は約81500μl112で、1孔網目空間最狭断面
積約1764μ−の46倍に当り、1過済み流体中に混
在するe孔を通り得た1764μl112よりも小型な
固形物によって目詰りの発生する可能性は殆ど皆無にち
がい。また、1過の圧力損失はC孔の断面積に逆比例す
るので、その1過圧への影−#は僅少であり、特に介意
する盛装もない。
For example, when we examine one of the 32-mesh stainless steel meshes mentioned above for reinforcing meshes with 42μm precision grease for one pass and one pass, the wire diameter of the woven wire is 29υ.
μm corresponds to 6.9 times the opening of the C mesh, which is 42 μm, and the cross-sectional area of the gap formed between this thick wire and the rigid cylinder wall is approximately 81,500 μl112, and the narrowest cross-sectional area of the 1-hole mesh space. It is approximately 46 times larger than 1764μl, and there is almost no possibility that clogging will occur due to solids smaller than 1764μl112 that have passed through the e-hole and are mixed in the fluid that has passed through the passage. In addition, since the pressure loss per 1 overpressure is inversely proportional to the cross-sectional area of the C hole, its influence on the 1overpressure is small, and there is no special arrangement.

耐圧網目濾過筒を構成する以上の三筒は、各節ともそれ
自身隙間なく接着成形されるとともに、三筒相互はその
上下の端部において隙間なく接着され、被1過流体が順
次IP網の網目、補強網の網目、−1j性簡の貫通孔を
経て流過するよう構成されねばならぬ。
The above three cylinders constituting the pressure-resistant mesh filtration cylinder are adhesively molded at each joint without any gaps, and the three cylinders are adhered to each other without any gaps at their upper and lower ends, so that the fluid to be filtered is sequentially passed through the IP network. It must be configured to flow through the mesh, the mesh of the reinforcing mesh, and the through holes of the -1j strip.

本発明による耐圧網目1過筒は、以上に述べて来た構成
によって製作されることにより、以下のよりな1過筒と
しては他に例倉見ぬ優れた機能的長所を、床付し得るに
至る。
By manufacturing the pressure-resistant mesh one-pass cylinder according to the present invention with the configuration described above, it can be attached to the floor and has the following excellent functional advantages not found in other single-sieve cylinders. reach.

(リ 1過済み流体の排出路tl−なす補強網の網目、
補強網と剛性筒壁向との間の間隙、貫通孔、それぞれの
各断面に、何れも網目1孔の断面積に比べて著しく大で
あり、被1過流体がこれ等を流過するに際しての圧力損
失は本来の1過の圧力損失に比べて極めて微々たるもの
である。従って、1過の圧力損失僅少という網目P孔の
優れた長所はそのまま杢1過尚の長所となる。
(1) Reinforcement network formed by the discharge path tl of the 1-filtered fluid,
The gaps between the reinforcing net and the rigid cylinder wall, the through-holes, and their respective cross-sections are all significantly larger than the cross-sectional area of one hole in the mesh, and when the fluid passes through them, The pressure loss is extremely small compared to the original pressure loss per passage. Therefore, the excellent advantage of the mesh P hole, which is the small pressure loss in one pass, is the same as the advantage of one pass.

(2)  目詰り発生の場所は網目1孔iII向の空間
のみに限られ、その回復ri極めて容易であるというf
14月1孔の優れた長/fiは、これまたそのまま本P
lil!尚の長所となる。
(2) The location where clogging occurs is limited to the space in the direction of mesh hole iII, and recovery from it is extremely easy.
The excellent length/fi of the 1st hole in 14th is also the same as this P
lil! This is an advantage.

(5)  杢1過筒はかなりの高圧にも耐えることがで
き、濾過圧213’町d、安全弁圧力251程度の耐圧
はさしたる難事ではない。而して、20〜の濾過圧は単
なる1過圧としてはさしたる超高濾過圧でもないが、1
過にむく殆どの流体はこの1過圧によってならば充分e
遇され得る筈である。
(5) The heathered one-pass cylinder can withstand quite high pressures, and withstanding pressures of about 213'm filtration pressure and 251 degrees of safety valve pressure are not very difficult. Therefore, the filtration pressure of 20~ is not a very high filtration pressure as just 1 overpressure, but it is 1
This one overpressure is sufficient for most fluids that flow too much.
I'm sure it will be treated well.

以上のような観点からすれば、杢1過簡によれば、e過
に適するあらゆる流体が、25%以下という通常の高圧
の範囲内の1過圧ですべてd4過可能であるとの結論と
なる。正に、耐圧網目濾過筒の長所の集約された結論と
いい得るであろう。
From the above point of view, it can be concluded that all fluids suitable for e-transfer can be subjected to d4-transfer at one overpressure within the normal high pressure range of 25% or less, according to the first summary. Become. This can truly be said to be a summary of the advantages of pressure-resistant mesh filter cylinders.

次に杢発濃による耐圧網目1過筒の応用例について説明
する。
Next, an example of application of a pressure-resistant mesh one-pass tube using heathering will be explained.

第6図は、杢1過筒を組イ;−けたグリース1過器の断
面図である。11は濾過筒で、その上部には操作用把手
12が取付けてあり、その下方はテーパーパルプの凹部
16となっている。14は貫通孔、15は補強網筒、1
6はf網筒でめる。17は1過器の蓋であり、18は空
気抜きピーコック取付ネジ部、19は1過器本体とネジ
締めするための雌ネジ部である。20は1過器本体であ
り、21は1過器蓋とネジ締めするための雄ネジ部、2
2はQ +)ング装看用溝、26は凹部16に対応する
テーパーバルブの凸部である。24は被1過流体流入孔
、25はC過済み流体流出孔である。
FIG. 6 is a cross-sectional view of a grease 1-pass tube assembled with a heather 1-pass tube. Reference numeral 11 denotes a filter cylinder, an operating handle 12 is attached to the upper part of the filter cylinder, and a concave portion 16 of the tapered pulp is formed below the filter cylinder. 14 is a through hole, 15 is a reinforced mesh tube, 1
6 is fitted with an f-mesh tube. Reference numeral 17 denotes a lid of the first passer, 18 a threaded portion for attaching an air vent peacock, and 19 a female screw portion for tightening with the first passer main body. Reference numeral 20 is the main body of the 1st overpass, 21 is a male screw part for tightening the 1st overpass lid with a screw, and 2
Reference numeral 2 denotes a Q+) ring mounting groove, and 26 a convex portion of the tapered valve corresponding to the concave portion 16. Reference numeral 24 indicates an inflow hole for the fluid to be passed through, and reference numeral 25 indicates an outflow hole for the fluid to be passed through.

1過のため濾過筒11tf’過器20に組付けんとする
場合には、゛把手12を侍ってf退部11を宇過器本体
20内に装入し、蓋17を被せネジ締めする。ネジ締め
の進行につれ、1過向11は、把手12を介して本体2
00妊都に押し付けられ、凹バルブ部16は凸パルプ部
26に気密にIE着する。また、s22中の0リングは
看17の内側部により抑え1jllされるため、1過器
内の流体は器外に対して完全に密封されるに至る。
When assembling the filter tube 11tf' into the filter 20 for 1 filtration, insert the f-recessed part 11 into the filter body 20 while following the handle 12, cover with the lid 17, and tighten the screws. do. As the screw tightening progresses, the first direction 11 is attached to the main body 2 via the handle 12.
00, the concave valve portion 16 is airtightly attached to the convex pulp portion 26. In addition, since the O ring in s22 is held down by the inner part of 17, the fluid inside the first passage vessel is completely sealed from the outside of the vessel.

以上によりf退部の1過器への組付けが光子すると、被
1過流体流入孔24から4IItfX114流体が圧入
されるが、今や被1過流体の流過可能な通路は1孔が残
されて伝るのみである。従って、被1過流体はすべて・
f孔を通過して1過筒11の内側に流入することとなり
、この間に所期の1過が行なわれ、1過済み流体は流出
孔25から器外に排出されることとなる。目占吉り回イ
震のため、その他1退部を器外に取り出す盛装がある場
合には、被1過流体流入側および1過済み流体流出側の
各パルプを閉じ、ピーコックを開けた後蓋17を取外せ
ば、e退部は器外に容易に取り出すことができる。
As described above, when the f-recessed part is assembled into the first passer, the 4IItf It is only communicated by Therefore, all the passing fluids are
The fluid passes through the f-hole and flows into the inside of the one-pass cylinder 11, and during this period, the intended one-pass is performed, and the fluid that has undergone one pass is discharged from the outflow hole 25 to the outside of the vessel. If there is a device to take out the other part outside the vessel due to a sudden earthquake, close each pulp on the inlet side of the fluid to be passed through and the outflow side of the fluid that has passed through the vessel, and then open the peacock. By removing the lid 17, the e-recessed portion can be easily taken out of the device.

第4図は、潤滑油の製造装置の配管中に杢1過筒を組付
けた潤滑油田1過器の断面図である。Oす/グ装着用#
122は1過筒11の外側に設けられており、0リング
は1過器杢体2Uの内側向によって抑えrlされて器外
に対して密封される点以外は、第6図のグリース1適用
1過器の場合とほぼ同様の構造となっている。
FIG. 4 is a cross-sectional view of a lubricating oil field one-pass tube in which a heather one-pass tube is assembled into the piping of a lubricating oil manufacturing apparatus. For installing Os/G
Grease 1 in FIG. 6 is applied except that 122 is provided on the outside of the first pass cylinder 11, and the O ring is held inward by the first pass cylinder 2U and sealed against the outside of the vessel. The structure is almost the same as the one-pass device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は網目1孔模型の平面図、 第1B図は第1A図のX−X線断面側面図、第1C図は
第1A図のY−Y’線断面full而面、第2A図は本
発明による耐圧網目e退部の実施例の部分断rkJ側面
図、 第2B図は第2A図のA部拡大図、 $6図は本発明による耐圧網目1過筒のグリース1過器
への応用例の断面図、 第4図は本発明による耐圧網目1過簡の潤滑油1過器へ
の応用例の断面図である。 1 ・・・ 1網筒 2 ・・・ 補強網筒 6 ・・・ 剛性筒 4 ・・・ 貫通孔 11 ・・・ 1過器 14 ・・・ 貫通孔 15 ・・・ 補強網筒 16 ・・・ 1網筒 20 ・・・ 1過器本体 24 ・・・ 被1過流体流入孔 25 ・・・ 1過済み流体流出孔 代理人 弁理士  藤 本    礒 中1八■ +Ic図 中5霞 手続補正書 昭和57年9月25[」 特許庁長官       殿 1、事件の表示 昭和56年 特 許 1第210948号2、発明の名
称  耐圧網目濾過筒 3、 補正をする者 事件との関係  特許出願人 4、代 理 人 〒103  電話O5−274−54
668、補正の内容 別紙のとおり 9、添付書1lIIの@鎌 同時に出願審査請求書を提
出してありtす補正の内容 (リ 特許請求の範囲の記載を別紙のとおり訂正する。 (2)  明細書#I3頁第11行〜第12行の「必要
性もない。」をr必要性もなく、あれば却って後述のよ
うな機能的欠陥をもたらす。」と訂正する。 (3)  同第4頁第15行の「空間の奥行き」を「空
間の奥行き全部」と訂正する。 (4)  同第4頁第20行の「また」を「従って」と
訂正する。 (5)  同第10頁第18行〜第11頁第12行の「
ための・・・・・・・・・説明する。」を「ための以下
のような構造上の特別の工夫からなる。」と訂正する。 (6)  同第11頁第17行〜第18行の「つくられ
、・・・・・・・・・配設される。」を「つくられ、濾
過筒の被r過流体流入側最外側に配設される。」と訂正
する。 (7)  同第12頁第5行の「製鋼」を「製網」と訂
正する。 (8)  同第14頁第9行〜第11行の「補強網筒2
は、・・・・・・・・・つくられ、」を「補強網筒2r
i、r網より太目の平織ステンレス鋼製網を筒状に成形
してつくられ、以上のような支障の発生を防止する目的
を以て、」と訂正する。 (9)  同第25頁第1行の「でもないが、」の次に
「濾過の圧力損失の極微な本耐圧網目f退部を以てすれ
ば、」を加入する。 特許請求の範囲
Figure 1A is a plan view of the one-hole mesh model, Figure 1B is a cross-sectional side view taken along line X-X in Figure 1A, Figure 1C is a full cross-sectional view taken along Y-Y' line in Figure 1A, and Figure 2A is a side view of the cross-section taken along line Y-Y' in Figure 1A. Figure 2B is an enlarged view of part A in Figure 2A, and Figure 6 is a side view of the embodiment of the pressure-resistant mesh e-recessed part according to the present invention. Cross-sectional view of applied example FIG. 4 is a cross-sectional view of an applied example of the present invention to a lubricating oil single-pass container having a one-simplified pressure-resistant mesh. 1...1 mesh tube 2...reinforced mesh tube 6...rigid tube 4...through hole 11...1 passer 14...through hole 15...reinforced mesh tube 16... 1 mesh tube 20 ... 1 passing device body 24 ... 1 passing fluid inflow hole 25 ... 1 passing fluid outflow hole Agent Patent attorney Isochika Fujimoto 18■ + Ic Figure 5 Kasumi procedure amendment September 25, 1980 ['' Commissioner of the Patent Office 1, Indication of the case 1988 Patent 1 No. 210948 2, Title of the invention Pressure-resistant mesh filter tube 3, Relationship with the person making the amendment Patent applicant 4, Agent Address: 103 Telephone: O5-274-54
668, Contents of amendment As shown in Attachment 9, Attachment 1lII @ Kama Contents of amendment for which a request for examination of the application was submitted at the same time (li. The statement of the scope of claims is corrected as shown in Attachment. (2) Specification ``There is no necessity.'' in lines 11 to 12 of Book #I, page 3, is corrected to read, ``There is no necessity, and if it were, it would actually cause a functional defect as described later.'' (3) Same as No. 4 Correct “depth of space” in line 15 of the same page to “total depth of space”. (4) Correct “also” in line 20 of page 4 to “therefore”. (5) Page 10 of the same page. Line 18 to page 11, line 12 “
For......explain. '' is corrected to ``It consists of special structural devices such as the following.'' (6) In the same page 11, lines 17 to 18, "created,......arranged." It is corrected as follows. (7) "Steel manufacturing" in line 5 of page 12 is corrected to "net manufacturing." (8) “Reinforcement mesh tube 2” on page 14, lines 9 to 11.
is......made," is replaced with "reinforced mesh tube 2r.
It is made by forming a plain-woven stainless steel mesh thicker than the I and R meshes into a cylindrical shape, and is intended to prevent the above-mentioned problems from occurring.'' (9) In the first line of page 25 of the same document, next to ``Not even though'', add ``If the pressure loss of filtration is extremely small with the withdrawal of this pressure-resistant mesh f''. Scope of claims

Claims (1)

【特許請求の範囲】[Claims] 筒状胴部にC過済み流体が流過可能の多数の貫通孔が設
けられ1過圧およびPi&器内圧に耐え得る剛性を有す
る1刈1性筒と、nτ望のC過梢耽に適合する目の開き
金有する金m線製網が筒状に成形されrvi記剛性筒の
外側方に配設された1網筒と、前記剛性筒の外周面との
間の1過済み流体を111記貫通孔に導くための通路面
I*を前記1網簡の網目の最狭断面積より広くし得る線
径を有する金媚線製網が筒状に成形され前記剛性筒と0
11記1網筒との間に配設された補強網筒であって、前
記1網筒を支持する強度を有するとともにMiJ記貫通
孔上における1過圧および1過器内圧に耐える強健を有
する補強網筒とを有し、被14過流体が順次前記2y′
J網筒の網目、前記補強網筒の網目、1ridピ剛性筒
の貫通孔を流過するように配設されることを¥j徴とす
る耐圧網目濾過筒。
The cylindrical body has numerous through holes through which the C-filtered fluid can flow, and has the rigidity to withstand overpressure and internal pressure, and is compatible with the desired C-overflow. A gold m-wire mesh having a mesh opening is molded into a cylindrical shape, and the fluid that has passed through the space between the mesh tube and the outer circumferential surface of the rigid tube is 111 A metal wire mesh having a wire diameter that can make the passage surface I* for leading to the through hole wider than the narrowest cross-sectional area of the mesh of the one mesh strip is formed into a cylindrical shape, and is connected to the rigid tube.
11 A reinforcing mesh tube disposed between No. 1 and No. 1 mesh tube, which has the strength to support the No. 1 mesh tube and is strong enough to withstand the No. 1 overpressure above the MiJ through hole and the No. 1 overpressure inside the vessel. 2y'
A pressure-resistant mesh filtration cylinder, characterized in that the flow is arranged so as to flow through the mesh of the J mesh cylinder, the mesh of the reinforced mesh cylinder, and the through hole of the 1rid rigid cylinder.
JP56210948A 1981-12-26 1981-12-26 Pressure resistant mesh filter cylinder Pending JPS58112014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210948A JPS58112014A (en) 1981-12-26 1981-12-26 Pressure resistant mesh filter cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210948A JPS58112014A (en) 1981-12-26 1981-12-26 Pressure resistant mesh filter cylinder

Publications (1)

Publication Number Publication Date
JPS58112014A true JPS58112014A (en) 1983-07-04

Family

ID=16597743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210948A Pending JPS58112014A (en) 1981-12-26 1981-12-26 Pressure resistant mesh filter cylinder

Country Status (1)

Country Link
JP (1) JPS58112014A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07899A (en) * 1992-11-02 1995-01-06 Nippon Steel Corp Apparatus for drying and baking coated body
JP2011005419A (en) * 2009-06-25 2011-01-13 Hitachi Metals Ltd Y-type strainer and pressure tank
JP2013244446A (en) * 2012-05-25 2013-12-09 Niikura Kogyo Kk Strainer
JP2013249934A (en) * 2012-06-04 2013-12-12 Shinryo Corp Strainer, and method for installing element of the strainer
JP2015051393A (en) * 2013-09-06 2015-03-19 日野自動車株式会社 Joint bolt structure with filter member
JP2015066465A (en) * 2013-09-26 2015-04-13 三菱製紙株式会社 Wrinkle adhesion preventing nonwoven fabric
JP2022097908A (en) * 2020-12-21 2022-07-01 株式会社スギノマシン Ultra high pressure filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07899A (en) * 1992-11-02 1995-01-06 Nippon Steel Corp Apparatus for drying and baking coated body
JP2011005419A (en) * 2009-06-25 2011-01-13 Hitachi Metals Ltd Y-type strainer and pressure tank
JP2013244446A (en) * 2012-05-25 2013-12-09 Niikura Kogyo Kk Strainer
JP2013249934A (en) * 2012-06-04 2013-12-12 Shinryo Corp Strainer, and method for installing element of the strainer
JP2015051393A (en) * 2013-09-06 2015-03-19 日野自動車株式会社 Joint bolt structure with filter member
JP2015066465A (en) * 2013-09-26 2015-04-13 三菱製紙株式会社 Wrinkle adhesion preventing nonwoven fabric
JP2022097908A (en) * 2020-12-21 2022-07-01 株式会社スギノマシン Ultra high pressure filter

Similar Documents

Publication Publication Date Title
DE112015003072B4 (en) Filter device and filter element
DE69914581T2 (en) Hollow fiber membrane cartridge
PL183910B1 (en) Method of and system for in situ testing the filtering membranes for their integrity
DE2036830B2 (en) Filtration method and device
JPS58112014A (en) Pressure resistant mesh filter cylinder
US4732673A (en) Device for the ultrafiltration of a pressurized high-temperature liquid
CA1242979A (en) Pressure filter (hpc clarifil)
TW422720B (en) Filter for removing solids from liquids
US8641904B2 (en) Method for membrane backwashing and backwashing apparatus
WO2019069520A1 (en) Filtration device
TWI531403B (en) Underdrain filter for power generation and liquid process filtration vessels and method of using the same
JPH0437729B2 (en)
US3312352A (en) Filter assembly having a support grid
JPS6144527B2 (en)
JP7445144B2 (en) filtration device
JPH0761420B2 (en) Hollow fiber type filter
DE305845C (en)
JPH08108014A (en) Filter element
AT98999B (en) Filter with exchangeable strainer bodies.
JPS60206405A (en) Hollow yarn membrane filter apparatus
JPH0435202B2 (en)
DE3724805A1 (en) Combined main flow filter and partial flow filter
CH408860A (en) Filter press
US702814A (en) Oil-filter.
DE202020102006U1 (en) Precoat filter