JPS58111729A - Color resolving head - Google Patents

Color resolving head

Info

Publication number
JPS58111729A
JPS58111729A JP56213472A JP21347281A JPS58111729A JP S58111729 A JPS58111729 A JP S58111729A JP 56213472 A JP56213472 A JP 56213472A JP 21347281 A JP21347281 A JP 21347281A JP S58111729 A JPS58111729 A JP S58111729A
Authority
JP
Japan
Prior art keywords
face
color separation
optical fiber
light
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56213472A
Other languages
Japanese (ja)
Inventor
Hiroaki Kodera
小寺 宏「あ」
Kunio Yoshida
邦夫 吉田
Yukifumi Tsuda
津田 幸文
Motohiko Naka
中 基孫
Yoshimitsu Sugano
菅野 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56213472A priority Critical patent/JPS58111729A/en
Publication of JPS58111729A publication Critical patent/JPS58111729A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To form the compact, light, inexpensive color resolving head, by utilizing an optical fiber fundle, and performing the decomposition of a picture element and the spectral action into a plurality of color separating channels. CONSTITUTION:Reflected light (or transmitted light) 202 from a minute picture element point 201 on a lighted original picture 200 passes an image forming lens system 203, and the image of the image element point is formed on a front surface 205 of the optical fiber bumdle 204. Said optical fiber bundle 204 is a light transmitting path wherein many optical fibers are bundled. The end surface is divided into 206-208 for colors R, G, and B. The emitted lights from the fibers are guided to photoelectric transducer elements 212-214 through color separating filters 209-211. The light transmitting path 204 itself has the functions of color resolving slits, resolving into three color components, and the transmission path. In this way, the compact, light, inexpensive color resolving head can be formed.

Description

【発明の詳細な説明】 本箔明け、カラーファクシミリ、製版用カラースキャナ
、色彩計、テキスタイル用色柄分解装置などに用いられ
る色分解ヘッドの改良に係り、簡便、小型、軽計かつ安
価な3色もしくは多色分解用の光検出ヘッドを提供する
ことと目的とする。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement of a color separation head used in color facsimiles, color scanners for plate making, color meters, color pattern separation devices for textiles, etc., which are simple, small, lightweight, and inexpensive. It is an object of the present invention to provide a photodetection head for color or multicolor separation.

従来のカラー写真電送装置や製版用スキャナに多用され
ている色分解ヘッドは、第1図(、)のような構造をも
ち、原稿100上の一絵素点101からの反射光(もし
くは透過光〕102を結像レンズ糸103および光学ス
リット104を経て取り出し、青色光反射ダイクロイッ
クミラー105および赤色光反射ダイクロイックミラー
106によりそれぞれ青色光107.緑色光1o8.赤
色光109の3包成分に分光して、対応する光電変換素
子110,111.112に入射せしめ電気信号に変換
していた。
The color separation head, which is often used in conventional color photo transmission devices and plate-making scanners, has a structure as shown in FIG. ] 102 is taken out through an imaging lens thread 103 and an optical slit 104, and is separated into three envelope components: blue light 107, green light 1o8, and red light 109 by a blue light reflecting dichroic mirror 105 and a red light reflecting dichroic mirror 106, respectively. , and were made incident on the corresponding photoelectric conversion elements 110, 111, and 112 and converted into electrical signals.

この場合、ダイクロイックミラーj06および106の
遮断特注の不完全さによる不要な側帯波成分の漏洩光を
除去するために、同図(b)のごとく前段に赤外線カッ
トフィルター113.光電変換素子の前に各色毎の帯域
通過持回をもつ整形用のトリミングフィルター114,
115,116などが付加される場合が多い。
In this case, in order to remove unnecessary leakage light of sideband components due to imperfections in the custom-made cut-off of the dichroic mirrors J06 and 106, an infrared cut filter 113 is installed at the front stage as shown in FIG. In front of the photoelectric conversion element, there is a trimming filter 114 for shaping, which has a band pass cycle for each color.
115, 116, etc. are often added.

また、製版用スキャナでは、同図(C)に例示するよう
に、画像の輪郭を強調するためのアンシャープマスクと
呼ばれる分光チャネルが追加される。
In addition, in a plate-making scanner, a spectral channel called an unsharp mask is added to emphasize the outline of an image, as illustrated in FIG.

すなわち、図示の104〜116は(b)と同一の3色
分解系であるが、・・−フミラー117により分岐され
た光@118は口径の大きなアンシャープ用スリット1
19およびアンシャープ用分光フィルター20を経て第
4の光電変換素子121により、いわゆるポケマスクイ
苦吟が叡り出される。通常、このアンシャープ用分光フ
ィルター20は、輝度信号を代表する緑色光チャネルと
同一の分光通過特注をもつよう設計され、緑チャネルの
光電変換素子112の出力をシャープ信号として、これ
と光電変換素子121のアンシャープ信号との差分信号
をつくり輪郭強調のための補正を行っている。この(C
)の例に示される構成は、製版用スキャナではごく一般
的なものであるが、多数の精巧な光学フィルタやスリッ
トおよびその調整機構などに高価な部品全使用し、構造
も複雑かつ形状。
That is, although 104 to 116 shown in the figure are the same three-color separation system as in (b), the light @118 branched by the mirror 117 is passed through the unsharp slit 1 with a large diameter.
19 and an unsharp spectral filter 20, the fourth photoelectric conversion element 121 outputs the so-called PokeMask Quigone. Normally, this unsharp spectral filter 20 is designed to have the same spectral transmission customization as the green light channel representing the luminance signal, and uses the output of the photoelectric conversion element 112 of the green channel as a sharp signal, and combines this with the photoelectric conversion element. A difference signal with the unsharp signal of No. 121 is created and correction is performed for edge enhancement. This (C
) The configuration shown in the example above is very common in plate-making scanners, but it uses all expensive components such as a large number of sophisticated optical filters, slits, and their adjustment mechanisms, and the structure is complex and shaped.

重置も大となるため、装置の小型1ヒおよび低価格fL
k妨げる一要因となっている。
Since the stacking is also large, the device is small and low-priced.
This is one of the factors that hinders this.

本発明はこれに対し、精巧な光学部品や調整機構を要せ
ず、構造が開学で小型、@酸、安価な邑□)・1 分解ヘッドを提供するものである。
In contrast, the present invention provides a decomposition head that does not require sophisticated optical parts or adjustment mechanisms, has a simple structure, is compact, inexpensive, and has a simple structure.

以下に図面を用いて本発明の詳細を説明する。The details of the present invention will be explained below using the drawings.

第2図は本発明の一実施例の基本的な構成を示すもので
あり、(a)は全体の光検出系、0))け本発明の中心
要素である光学ファイバー束の構成例を示している。
Figure 2 shows the basic configuration of an embodiment of the present invention, in which (a) shows the entire photodetection system, and (a) shows an example of the configuration of the optical fiber bundle, which is the central element of the present invention. ing.

第2図において、照明された原画200の微小な絵素点
201からの反射光(もしくは透過光)202は、結像
レンズ系203を経て、光学ファイバー東204の前端
面205に絵素点の像を結ぶ。204は多数の光学ファ
イバーを束ねた光伝達路であシ、3色分解を行う本例で
は、図示のごとぐ後端面が各色毎に206.207およ
び208の3つに分割され、それぞれからの射出光が対
応する色分解フィルタ209.210および211全通
して光電変換素子212,213および214に導かれ
る。
In FIG. 2, reflected light (or transmitted light) 202 from minute pixel dots 201 of an illuminated original image 200 passes through an imaging lens system 203 and is applied to the front end surface 205 of optical fiber east 204 at the pixel dots. Tie the statue. Reference numeral 204 denotes a light transmission path that bundles a large number of optical fibers. In this example, which performs three-color separation, the rear end face is divided into three parts 206, 207, and 208 for each color, and each color is separated into three parts. The emitted light passes through the corresponding color separation filters 209, 210 and 211 and is guided to photoelectric conversion elements 212, 213 and 214.

第2図(b) 、 (c) 、 (d) 、 (e)は
それぞれ光学ファイバー束204の前端面205の配列
例を示したもので、R,GおよびBll″l:それぞれ
赤色光、緑色光および青色光の3色分層成分を暇出すた
めの光学ファイバー線をあられしている。すなわち、R
線は後端面206に集められて赤色光検出に、Gおよび
B線はそれぞれ後端面207および208に集められて
緑色光および青色光検出に用いられる。例示のように、
ファイバー東端面の形状および配列は種々の構成をとる
ことができる。前端面205の形状および寸法は、従来
の色分解系におけるスリットの形状および口径に相当す
るので、端面205の構成法により絵素情報の分解特性
を目的に合わせて選択することが容易である。たとえば
、絵素空間の標本fヒ用アパーチャとしてのスリットの
形状は、従来多用されている円形開口よシも第2図(d
)あるいは(e)に示すようなダイヤモンド1杉あるい
は六角形などの方が分解特性に優れていることが知られ
ており、本発明では比較的容易にこれらの。
FIGS. 2(b), (c), (d), and (e) respectively show examples of the arrangement of the front end surface 205 of the optical fiber bundle 204. R, G and Bll''l: red light and green light, respectively. An optical fiber line is used to extract the three color components of light and blue light.
The lines are collected at back end face 206 for red light detection, and the G and B lines are collected at back end faces 207 and 208 for green and blue light detection, respectively. As an example,
The shape and arrangement of the fiber east end face can take various configurations. Since the shape and dimensions of the front end surface 205 correspond to the shape and diameter of a slit in a conventional color separation system, it is easy to select the separation characteristics of pixel information according to the purpose by configuring the end surface 205. For example, the shape of the slit as an aperture for sample f in pixel space may be different from the conventional circular aperture as shown in Fig. 2(d).
It is known that diamond shapes such as 1 cedar or hexagonal shapes as shown in ) or (e) have better decomposition characteristics, and these shapes can be relatively easily used in the present invention.

形状を実現することができる。この場合、これら端面外
に到達する光は完全に遮断されるので、前端面205自
体が従来のスリットの役目を果たすこへになり、光伝達
路204はそれ白木で分解用ス+) 、y ト、 3包
成分への分光および光伝達路としての機能を担っている
。このため第2図(a)の実施列は第1図(b)と同等
の機能をよりl1IIi素かつ安価に実現しつるものと
云える。
shape can be realized. In this case, since the light reaching the outside of these end faces is completely blocked, the front end face 205 itself plays the role of a conventional slit, and the light transmission path 204 is made of plain wood. It functions as a spectral and optical transmission path to the three components. Therefore, it can be said that the implementation array of FIG. 2(a) can realize the same function as that of FIG. 1(b) more easily and at a lower cost.

第3図は、アンシャープ用の分光チャネルを付加した他
の実施例を示す。
FIG. 3 shows another embodiment in which a spectral channel for unsharpness is added.

第3図において、原画300上の絵素点からの光は、3
01− aで指示する絵素領域が光学ファイバー束30
4の前端面の内側領域305− aに、一方、301−
bで指示する絵素の周辺領域が前端面の外側領域305
−bにそれぞれ結像される。
In FIG. 3, the light from the pixel points on the original picture 300 is 3
01- The picture element area indicated by a is the optical fiber bundle 30
4, on the other hand, 301-
The peripheral area of the picture element indicated by b is the outer area 305 of the front end surface.
-b, respectively.

304は後端面が306.307.308および315
で示す4つのファイバー束に分割されており、このうち
306.307,308は前端面の305− aに含ま
れる光学ファイバー線を前記第2図の206,207,
208と同様に分割集結したものである。したが、って
、306,307および308の射出光は、前記第2図
と対応する赤。
304 has rear end faces 306, 307, 308 and 315
The fiber bundles 306, 307, and 308 are divided into four fiber bundles shown in FIG.
Similar to 208, it is divided and assembled. Therefore, the emitted lights 306, 307, and 308 are red, corresponding to those in FIG. 2 above.

緑および青の色分解フィルタ309.310および31
1を経て各光電変換素子312 、313および314
に導かれ3色分解信号となる。一方、前端面305−b
に結像され後端面315より射出される光は、原画面で
所定の分解1目をもつ絵素へ3O1−aに対してその周
辺領域301−bの情報を伝達するものであり、前述の
アンシャープ信号を形成する。分光フィルタ316およ
び光電変換素子317は前出の第1図(C)におけるア
ンシャープチャネル用の分光フィルタ120および光電
変換素子121と対応し、前端面305−bは大口径の
スリット119と等価な作用をなしていることは明らか
であるう 第4図は第3図の光学ファイバー束304の前端面30
5−a、bの構成例であり、赤、緑、青の3色分光用フ
ァイバー線fR,G、Bで、アンシャープ信号用のファ
イバー線をUで表示している。同図(a)は第3図の実
施例[対応して、UばRlG、Bの外側をとり巻くよう
に配列されているが、(b)のように内側領域にもσを
分散せしめることもできる。すなわち(a)ではUに関
する原画の情報はドーナツ状のリレグ領域と対応し中央
部が欠落してVるが、(b)ではこれを補うことができ
る。しかしながら、前述のように内側のシャープ信号と
外側のアンシャープ信号の分光は、通散向−特注の緑色
通過帯フィルタで行われるので、(a)の配列を用いて
も、内側のシャープ信号となる緑チャネルの出力がアン
シャープ信号の端面中央部の信号と等価なることを利用
すれば、電気信号の加減算処理により前記第1図(C)
に相等する輪郭信号を形成することができる。以上の第
3図の構成を前記の従来例第1図(C)と対比すると、
本全明の構成がさらに簡便かつ安価に実現しうろことが
明らかである。第3図の実施例は、構造を明確にするた
めに光学ファイバー束304が拡大図示されているが、
現実に防用される光学ファイバー線の線径はたとえば3
0〜200μm程度であシ、数十本あるいは数百本を束
ねても高々1〜数咽の外径となるから、結像レンズ30
3と一体[ヒして極めて小型。
Green and blue color separation filters 309, 310 and 31
1 to each photoelectric conversion element 312, 313, and 314
The signals are guided to three color separation signals. On the other hand, the front end surface 305-b
The light that is imaged and emitted from the rear end surface 315 transmits the information of the surrounding area 301-b to 3O1-a to the picture element having a predetermined resolution 1 on the original screen, and Form an unsharp signal. The spectral filter 316 and the photoelectric conversion element 317 correspond to the spectral filter 120 and the photoelectric conversion element 121 for the unsharp channel shown in FIG. FIG. 4 shows the front end surface 30 of the optical fiber bundle 304 in FIG. 3.
5-a and 5-b, the fiber lines fR, G, and B are for three-color separation of red, green, and blue, and the fiber line for unsharp signals is indicated by U. FIG. 3(a) shows the embodiment of FIG. 3 [correspondingly, U, RlG, and B are arranged so as to surround the outside, but as shown in FIG. You can also do it. That is, in (a), the original image information regarding U corresponds to the donut-shaped rereg area and the central part is missing, but in (b) this can be supplemented. However, as mentioned above, the spectroscopy of the inner sharp signal and the outer unsharp signal is performed using a custom-made green passband filter, so even if the arrangement in (a) is used, the inner sharp signal and the outer unsharp signal are separated. By utilizing the fact that the output of the green channel is equivalent to the signal at the center of the end face of the unsharp signal, the above-mentioned figure 1 (C) can be obtained by adding and subtracting the electrical signals.
A contour signal equivalent to can be generated. Comparing the above configuration of FIG. 3 with the conventional example shown in FIG. 1(C),
It is clear that the configuration of the present invention can be realized more simply and at a lower cost. In the embodiment of FIG. 3, the optical fiber bundle 304 is shown enlarged to clarify the structure.
For example, the diameter of optical fiber wires actually used for defense is 3
The diameter of the imaging lens 30 is approximately 0 to 200 μm, and even if several tens or hundreds of lenses are bundled, the outer diameter will be at most 1 to 200 μm.
3 and one [hi and extremely small.

縦置の分解ヘッド部を構成できる。A vertical disassembly head can be configured.

第5図、第6図は一例としてペンシル型の色分解ヘッド
の構成例を示し、第6図はファイバー束の柔軟性を利用
して先端のみを移動走査する利用列、第6図は光電変換
素子までを一体fししてXYの平面走査機構にマウント
した例である。図中第1゜ 3図と同一部分には同一符号を例して説明を省略する。
Figures 5 and 6 show an example of the configuration of a pencil-type color separation head, and Figure 6 shows a column in which only the tip moves and scans using the flexibility of the fiber bundle, and Figure 6 shows a photoelectric conversion head. This is an example in which the elements are integrated and mounted on an XY plane scanning mechanism. In the drawings, the same parts as in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted.

第5図において320はヘッド先端部で、原画に対して
走査niT能なように、光学ファイバー束304により
自由に移動し得る。321は色信号検出部で固定される
In FIG. 5, reference numeral 320 denotes the tip of the head, which can be freely moved by the optical fiber bundle 304 so as to be able to scan an original image. 321 is fixed at a color signal detection section.

第6図はヘッド先端部と色信号検出部とを一体にして色
分解ヘッドHを構成し、XY移動ステージ322により
XY方向に走査させるよう構成したものである。
In FIG. 6, a color separation head H is constructed by integrating a head tip and a color signal detection section, and is configured to be scanned in the XY directions by an XY moving stage 322.

このように本免明によれば従来の光学系に比べて著るし
ぐ小型、軽叶比を図ることができるので、とくに平面式
のカラー図面読取装置などに好適である。
As described above, according to the present invention, it is possible to achieve a significantly smaller size and light weight compared to conventional optical systems, and therefore it is particularly suitable for flat-type color drawing reading devices.

なお上記の列では3色分解の場合を示したが、m色の白
黒分解用として利用できるのはもちろんのこと、さらに
分割チャネル数を増して4色以上の多色分解にも容易に
拡張できることは言うまでもない。たとえば、分光フィ
ルタおよび光検出素子を選択吋別して赤外信号を得るこ
とも可能である。
Although the above column shows the case of three-color separation, it can of course be used for black-and-white separation of m colors, and can also be easily extended to multicolor separation of four or more colors by increasing the number of dividing channels. Needless to say. For example, it is also possible to obtain an infrared signal by selectively selecting a spectral filter and a photodetecting element.

以上述べたごとぐ、本宅明は光学ファイバー東を利用し
て、絵素の分解並びに複数の色分解チャネルへの分光作
用を行わせるもので、構成が簡素で小型、軽軟かつ安価
な色分解ヘッドを提供でき、従来高価かつ複雑であった
カラー画像の色分解装置やカラーファクシミリの小型「
ヒ、経済(ヒに効用大である。とぐに、利用が拡大しつ
つある図形入力装置の平面走査用簡易色分解ヘッドや多
色図形の認識装置などに好適であり、カラー検出用のラ
イトペンとしても利用効果は大である。
As mentioned above, Akira Motoya utilizes optical fibers to perform pixel separation and spectral action on multiple color separation channels, and is a simple, compact, light, flexible, and inexpensive color separation system. It is possible to provide color separation devices for color images and compact "color facsimiles" that were previously expensive and complicated.
It is highly effective in terms of economy and economy.It is suitable for simple color separation heads for flat scanning of graphic input devices whose use is rapidly expanding, and recognition devices for multicolored figures, and is suitable for light pens for color detection. However, the effect of its use is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (c)は従来の色分解
ヘッドを示す概略構成図、第2図は本免明による色分解
ヘッドの基本構成を示す図で、(a)は3色分解ヘッド
の構成図、(b)〜(e)は3色分解のための光学ファ
イバーの端面の配列構造を示す正面図、第3図は輪郭強
調のためのアンシャープマスク分光チャネル金付1 □
・ 卯した本光明の他の実施例である4色分解系の色分解ヘ
ッドの構改例を示す斜視図、汀4図(a) 、 (b)
は第3図の色分解ヘッドに用いる4色分解のための光学
ファイバーの端面配列例を示す正面図、第6図ra) 
、 (b)は本ネ明の色分解ヘット;の便用列を示す@
面図および斜視図、第6図(a)は他の実施例の色分解
ヘッドの断面図、同(b)はその使用例を示す斜視図で
ある。 200.300・・・・・・原画、201軸・・・・絵
素点、203,303−・・・・結像レンズ糸、2o4
゜304・・・・−・光学ファイバー束、205,30
5−a 、305−b・・・・・・光学ファイバー束前
端面、206〜208.306〜308.315−−−
−−−光学フアイバー束後端面、209〜211,30
9〜3111I・拳e・・色分解フィルタ、212〜2
14゜312〜314 、317 @・・・・・光電変
換素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4rI!J (αl                      
         (b〕第5図 X徊
FIGS. 1(a), (b), and (c) are schematic configuration diagrams showing a conventional color separation head, and FIG. 2 is a diagram showing the basic configuration of a color separation head according to the present invention. A configuration diagram of the color separation head, (b) to (e) are front views showing the arrangement structure of the end faces of optical fibers for three-color separation, and Fig. 3 is an unsharp mask spectral channel fitting 1 for contour enhancement. □
・A perspective view showing an example of the structure of a color separation head of a four-color separation system, which is another embodiment of Ushitamoto Komei, Figures 4 (a) and (b)
is a front view showing an example of the end face arrangement of optical fibers for four-color separation used in the color separation head shown in Fig. 3, and Fig. 6 (ra)
, (b) shows the convenient column of the color separation head;
FIG. 6(a) is a sectional view of a color separation head of another embodiment, and FIG. 6(b) is a perspective view showing an example of its use. 200.300...Original picture, 201 axis...Pixel point, 203,303-...Imaging lens thread, 2o4
゜304・・・・Optical fiber bundle, 205,30
5-a, 305-b... Optical fiber bundle front end surface, 206-208.306-308.315---
--- Optical fiber bundle rear end surface, 209 to 211, 30
9~3111I・Fist e・・Color separation filter, 212~2
14°312-314, 317 @...Photoelectric conversion element. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3 Figure 4rI! J (αl
(b) Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)被写体からの反射光もしぐは透過光を、多数の光
学ファイバー線を束ねてなる光学ファイバー束の第1の
端面に結像せしめ、前記光学ファイバー束の他端には複
数の小ファイバー束群に分割結束させてなる第2の端面
群を構成し、前記第1の端面への入射光を前記複数の第
2の端面群よシ分割射出せしめ、この射出光を前記第2
の端面群に対向して設けられた複数の色分解フ′イルタ
群および光電変換素子群に導いて色分解信号を得ること
を特徴とする色分解ヘッド。
(1) The reflected light or transmitted light from the subject is focused on the first end surface of an optical fiber bundle formed by bundling a large number of optical fiber lines, and the other end of the optical fiber bundle is formed with a plurality of small fibers. A second end face group is formed by dividing and bundling into a bundle group, and the incident light on the first end face is dividedly emitted from the plurality of second end face groups, and this emitted light is transmitted to the second end face group.
1. A color separation head characterized in that color separation signals are obtained by guiding the color separation signals to a plurality of color separation filter groups and a plurality of photoelectric conversion element groups provided opposite to an end face group of the color separation head.
(2)第1の端面の各光学ファイバー線は空間的に規則
的に配列され、第1の端面から第2の端面群への各ファ
イバー線の分割配分も空間的に均等かつ規則的に行うこ
とを特徴とする特許請求の範囲第1項記載の色分解ヘッ
ド。
(2) Each optical fiber line on the first end face is spatially regularly arranged, and the division and distribution of each fiber line from the first end face to the second end face group is also performed spatially evenly and regularly. A color separation head according to claim 1, characterized in that:
(3)第1の端面より第2の端面群への各ファイバー線
の分割配分をランダムに行うことを特徴とする特許請求
の範囲第1項記載の色分解ヘッド。
(3) The color separation head according to claim 1, wherein the fiber lines are divided and distributed randomly from the first end face to the second end face group.
(4)第1の端面には被写体の注目する中心絵素点とそ
の周辺絵素を含む複数の絵素領域を結像せしめ、第2の
端面群の少くとも一つは前記内辺絵素点を含む情報を抽
出し、他の第2の端面群は中心絵素徹の情報を抽出する
ように、第1の端面の光学ファイバー線を第2の端面群
に分割配分せしめたことを特徴とする特許請求の範囲第
1項記載の色分解ヘッド。
(4) A plurality of picture element areas including the central picture element point of interest of the subject and surrounding picture elements are formed on the first end face, and at least one of the second end faces is formed on the inner picture element point. The optical fiber line of the first end face is divided and distributed to the second end face group so that information including points is extracted, and the other second end face group extracts information on the central picture element Toru. A color separation head according to claim 1.
JP56213472A 1981-12-25 1981-12-25 Color resolving head Pending JPS58111729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56213472A JPS58111729A (en) 1981-12-25 1981-12-25 Color resolving head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56213472A JPS58111729A (en) 1981-12-25 1981-12-25 Color resolving head

Publications (1)

Publication Number Publication Date
JPS58111729A true JPS58111729A (en) 1983-07-02

Family

ID=16639762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56213472A Pending JPS58111729A (en) 1981-12-25 1981-12-25 Color resolving head

Country Status (1)

Country Link
JP (1) JPS58111729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228624A (en) * 1985-07-31 1987-02-06 ガ−バ−・サイエンテイフイツク・インコ−ポレ−テツド Color decision device and method used for design of fashion product
JPS63128232A (en) * 1986-11-19 1988-05-31 Minolta Camera Co Ltd Optical splitter
JP2015215196A (en) * 2014-05-09 2015-12-03 株式会社島津製作所 Spectroscopic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228624A (en) * 1985-07-31 1987-02-06 ガ−バ−・サイエンテイフイツク・インコ−ポレ−テツド Color decision device and method used for design of fashion product
JPS63128232A (en) * 1986-11-19 1988-05-31 Minolta Camera Co Ltd Optical splitter
JP2015215196A (en) * 2014-05-09 2015-12-03 株式会社島津製作所 Spectroscopic sensor

Similar Documents

Publication Publication Date Title
US4264921A (en) Apparatus for color or panchromatic imaging
JPS62263761A (en) Photoelectric device which scans colored original linearly
CA2102798A1 (en) Image registering in color at low light intensity
US4656517A (en) Method for increasing resolution of array sensor and system therefor
JPS58111729A (en) Color resolving head
GB888838A (en) Improvements in or relating to colour television
EP0384701A2 (en) Solid state image pick-up apparatus
JP2004080605A (en) Imaging unit
JPS6249765A (en) Color reader
JPH0628852Y2 (en) Color image reader
JPS6328551B2 (en)
JPS5955674A (en) Reader for color original
JPS5866465A (en) Color picture input device
JPS5581318A (en) Image pickup device for endscope
JPH0843759A (en) Optical device and color image pickup device
JPS6163149A (en) Original reader
JPS5871763A (en) Solid-state color picture input device
GB765010A (en) Improvements in or relating to devices for producing colour television signals
JPS60103865A (en) One dimensional color image sensor
JPS6090461A (en) Color picture reader
JPS58100720A (en) Spectroscopic system of multiband radiometer
JPS61293060A (en) Color original reader
JPH06225316A (en) Color photoelectric conversion device
JPS63276992A (en) Color solid-state image pickup device
JPH0411553U (en)