JPS58111452A - Code conversion circuit - Google Patents

Code conversion circuit

Info

Publication number
JPS58111452A
JPS58111452A JP56209103A JP20910381A JPS58111452A JP S58111452 A JPS58111452 A JP S58111452A JP 56209103 A JP56209103 A JP 56209103A JP 20910381 A JP20910381 A JP 20910381A JP S58111452 A JPS58111452 A JP S58111452A
Authority
JP
Japan
Prior art keywords
pulse
complementary code
code
section
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56209103A
Other languages
Japanese (ja)
Other versions
JPS6338899B2 (en
Inventor
Noriaki Kikkai
範章 吉開
Masami Kato
加藤 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56209103A priority Critical patent/JPS58111452A/en
Priority to CA000401079A priority patent/CA1186763A/en
Priority to GB8211095A priority patent/GB2098432B/en
Priority to DE3214150A priority patent/DE3214150C2/en
Priority to NLAANVRAGE8201608,A priority patent/NL185969C/en
Priority to FR8206678A priority patent/FR2504327A1/en
Priority to US06/369,838 priority patent/US4502143A/en
Priority to IT8267523A priority patent/IT1212659B/en
Publication of JPS58111452A publication Critical patent/JPS58111452A/en
Publication of JPS6338899B2 publication Critical patent/JPS6338899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To reduce interference between codes and to extract surely timing, by inserting a complementary code just before or seveal bits before a pulse to an m-th bit of a binary signal series and suppressing the consecution of the same codes. CONSTITUTION:Data from a terminal 1 and a clock signal CLK from a terminal 2 are inputted to a shift register 4 having FFs of (K+1) sets of cascade connection. The CLK of the pulse interval T0 is frequency-divided at a 1/m frequency division circuit 5, and a pulse C2 of the pulse width T0 is generated at each mT0. The Q' output of the FFs at the final stage and the prestage of the register 4 is inputted to an exclusive logical sum section 8 via a complementary code pulse position indicating section 6 and a complementary code control pulse generating section 7, and an exclusive logical sum signal A is outputted to a complementary code inserting section 9 at each mT0 according to the signal C2. The Q, Q' outputs of the register 4 are delayed for a prescribed time at a delay circut 10, inputted to the inserting section 9, where a complementary code to be inserted to K bits before the pulse is outputted to the m-th bit of an input data together with signals A, C2 according to the logic of (Q-A-C2)+(QAC2)+ (-Q-AC2).

Description

【発明の詳細な説明】 (技術分野) 本発明は、高速2値ディジタル伝送方式に用(・る符号
変換回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a code conversion circuit used in a high-speed binary digital transmission system.

(背景技術) 従来、高速2値ディジタル伝送方式においては第1図(
A)に示すように、スクランブラのみからなる符号変換
装置が用いられることが多い。この装置を用いた場合、
ディジタル信号系列のマーク率を一ルに゛収束さ也 ラ
ンダム化する1゛とF l’す5f常的な伝送特性の確
保、ジッタ抑圧等が確率的に行われる。しかし信号パタ
ーンによっては、長(・同符号連続が生じる可能性があ
り、符号量干渉の増加、タイミング抽出不能等、伝送品
質の劣化を生み出す欠点を持っている。
(Background technology) Conventionally, in high-speed binary digital transmission systems, the method shown in Fig. 1 (
As shown in A), a code conversion device consisting only of a scrambler is often used. When using this device,
By converging the mark rate of the digital signal sequence to a uniform value and randomizing it, securing constant transmission characteristics, suppressing jitter, etc. are performed stochastically. However, depending on the signal pattern, long sequences of the same code may occur, which has disadvantages such as increased code amount interference and inability to extract timing, resulting in deterioration in transmission quality.

また第1図(B)に示すように、スクランブラと共に2
値mビットをn(一般にn二m+1)ピットに符号変換
する装置を用いることもある。この場合、最悪同符号連
続数を決定できるが、一般に伝送路上昇率(伝送速度の
上昇率)が大きすぎ、さらに符号変換回路の構成が非常
に複雑なものになり、高速ディジタル伝送方式には不適
である。第1図(C)に、m = 3とした場合の符号
変換回路のブロック図を示す。この回路では、ゲート数
120個、フリップフロップm個程度が必要となる。
In addition, as shown in Fig. 1 (B), 2
A device may be used to transcode m bits of a value into n (generally n2m+1) pits. In this case, it is possible to determine the number of consecutive identical codes in the worst case, but the rate of increase in the transmission path (rate of increase in transmission speed) is generally too large, and the configuration of the code conversion circuit becomes extremely complex, making it unsuitable for high-speed digital transmission systems. Not suitable. FIG. 1(C) shows a block diagram of the code conversion circuit when m=3. This circuit requires approximately 120 gates and m flip-flops.

(発明の課題) 本発明は従来の技術の上記欠点を改善して、符号量干渉
の鷹派及び確実なタイミング抽出を図ることによりディ
ジタル伝送方式の信頼性を高めることを目的とし、2値
信号系列のmビット目(mは自然数)にそのパルスの直
前あるいは数ビツト前の補符号を挿入して同符号連続を
抑圧するもので、その特徴は、入力データをうけ入れる
入力端子と、該入力端子に接続されに+1個(kは自然
数)の縦続接続のフリップフロップを有するシフトレジ
スタト、パルス間隔T。のクロックパルスを面に分周し
てmTo毎のパルス幅T。のパルス(4tj発生する分
周器と(mは2以上の自然数)、前記シフトレジスタの
最終段出力とそのk(1≦に6m−1段前の出力との排
他的論理和Aを前記分周器の出力C2に従ってmTo毎
に提供する排他的論理和手段と、排他的論理和過程に必
要な演算時間分だけ前記シフトレジスタの最終段出力を
遅延させて出力Qを与える遅延回路と、QAC2+QA
C2+QAC2の論理により入力データのmビット目に
そのパルスのにピット前の補符号を挿入する補符号挿入
部と、その出力に接続される出力端子とを有するごとき
符号変換回路にある。
(Problem to be solved by the invention) The present invention aims to improve the reliability of a digital transmission system by improving the above-mentioned drawbacks of the conventional technology and by eliminating code amount interference and reliably extracting timing. The complementary code immediately before or several bits before the pulse is inserted into the m-th bit (m is a natural number) of the pulse to suppress the same code consecutively.Its features include an input terminal that accepts input data, and a complementary code that is several bits before the pulse. A shift register having +1 (k is a natural number) cascaded flip-flops connected to the pulse interval T. The clock pulse of is divided into planes to obtain the pulse width T for each mTo. A frequency divider that generates 4tj pulses (m is a natural number of 2 or more), and the exclusive OR A of the final stage output of the shift register and its k (6m - 1 stage previous output for 1≦) is divided into Exclusive OR means for each mTo according to the output C2 of the frequency converter, a delay circuit that delays the final stage output of the shift register by the calculation time necessary for the exclusive OR process and provides the output Q, and QAC2+QA.
The code conversion circuit includes a complementary code inserting section which inserts a complementary code before the pit into the mth bit of input data according to the logic of C2+QAC2, and an output terminal connected to the output of the complementary code inserting section.

(発明の構成及び作用) 第2図は本発明回路の実施例であり、1は信号入力端子
、2はクロック入力端子、3は符号変換された信号の出
力端子である。また4は2ピツトシフトレジスタ、5は
l/m分周回路、6は補符号パルス位置指示部、7は補
符号制御パルス発生部、8は排他的論理和部、9は補符
号挿入部、10は遅延回路を示している。この回路の動
作を第3図に示すタイムチャートを使い説明する。なお
、使用するフリップフロップはD−TYPEMASTE
)(、−8LAVE形とする。
(Structure and operation of the invention) FIG. 2 shows an embodiment of the circuit of the present invention, in which 1 is a signal input terminal, 2 is a clock input terminal, and 3 is an output terminal for a code-converted signal. Further, 4 is a 2-pit shift register, 5 is an l/m frequency dividing circuit, 6 is a complementary code pulse position indicating section, 7 is a complementary code control pulse generating section, 8 is an exclusive OR section, and 9 is a complementary code inserting section. , 10 indicates a delay circuit. The operation of this circuit will be explained using the time chart shown in FIG. The flip-flop used is D-TYPE MASTE.
)(, -8LAVE type.

今、第3図(alに示す2値信号が端子1に入力された
とする。この信号系列はシフトレジスタ4にヨリQ+、
Qz端子にシフトして出力される( (c) 、 (e
) )。
Now, suppose that the binary signal shown in FIG. 3 (al) is input to terminal 1.
It is shifted to the Qz terminal and output ((c), (e
) ).

この出力の補符号Ql (d) 、 Qt(f)を、5
により作られりi 7m (m=11 )クロックパル
スC1(g)により6において同期をとる。これらの出
力とC1との論理積を7でとり、Q((h)、Q;(i
)のように1ノ(ルス分に制限する。この2出力の排他
的論理和を8でとる。
The complementary codes Ql (d) and Qt(f) of this output are expressed as 5
i 7m (m=11) is synchronized at 6 by clock pulse C1(g). The AND of these outputs and C1 is taken by 7, and Q((h),Q;(i
), the output is limited to one pulse.The exclusive OR of these two outputs is calculated by 8.

m −lビット目とmビット目にある信号が同符号の場
合、すなわち1,1″又は60,0”の場合、8の出力
Qgxl(j)はO”となる。異符号の場合、すなわち
1 、 O”又は′0.1”の場合、Qi:xt(j 
)は”1”である。このQgxlにより、4の出力Q2
とC2を切り換え、mビット目に入る符号の制御を行う
。すなわち、C1がl”のときにQgxtが0”のとき
は、′Q2を〔QD8〕、又”1”のときはQ−(QD
2 )をとる。
When the signals at the m-l-th bit and the m-th bit have the same sign, that is, 1,1'' or 60,0'', the output Qgxl(j) of 8 becomes O''.If they have different signs, i.e. 1, O" or '0.1", Qi:xt(j
) is “1”. With this Qgxl, the output Q2 of 4
and C2 to control the code that enters the m-th bit. That is, when C1 is l'' and Qgxt is 0'', 'Q2 is set to [QD8], and when C1 is 1', Q-(QD
Take 2).

またC1がO”のとき、つまり補符号を挿入する時間外
の場合には、Qzxlの出力は0”であり、常にQをと
る〔QDl〕。これら3出力の論理和なとり、フリップ
フロップで整形して出力する。
Further, when C1 is O'', that is, outside the time for inserting a complementary code, the output of Qzxl is 0'' and always takes Q [QDl]. These three outputs are logically summed, shaped using flip-flops, and output.

このような動作をするため、最悪同符号連続長をmピッ
トに抑圧することができる。
Because of this operation, the worst case continuous length of the same code can be suppressed to m pits.

直前ピットの補符号をとる回路を実施例として示したが
、4に示すシフトレジスタをに段(k−2,3・・・・
・・、m)に縦続接続する場合、k−1ビツト前までの
任意のパルス位置の補符号をmビット目に挿入すること
ができる。
Although a circuit that takes the complementary sign of the immediately preceding pit has been shown as an example, the shift register shown in 4 is divided into stages (k-2, 3...
.

次に、l/m分周回路の構成例をm−11の場合につい
て第4図(A)に示す。この回路は従来の回路技術で、
任意のmに対して構成できる。又第4図(A)の動作を
第4図(B)に示す。
Next, an example of the configuration of the l/m frequency divider circuit is shown in FIG. 4(A) for the case of m-11. This circuit uses conventional circuit technology.
It can be configured for any m. Further, the operation of FIG. 4(A) is shown in FIG. 4(B).

第5図に本発明回路を用いた伝送方式の構成を示す。1
1は速度変換部、12はフレーム構成部、13はスクラ
ンブラ、14は補符号挿入部、15は伝送路、16はフ
レーム同期検出部、17はデスクランブラ、18は速度
変換部である。
FIG. 5 shows the configuration of a transmission system using the circuit of the present invention. 1
Reference numeral 1 designates a speed conversion section, 12 a frame configuration section, 13 a scrambler, 14 a complementary code insertion section, 15 a transmission path, 16 a frame synchronization detection section, 17 a descrambler, and 18 a speed conversion section.

入力された2値信号系列は、まず11において速度変換
され、補符号、フレーム同期パルス、対局監視制御情報
等を挿入するサービスパルスが確保される。この信号系
列は、12によりフレーム構成された後、13において
スクランブラによりう/ダム化される。その際、サービ
スパルスにはスクランブルはかからないようにする。次
に、本発明回路14により補符号を周期的に挿入しに播
抑号イ芋、伝送路15へ 送出する。受信側では、まずフレーム同期が16でとら
れた後、17でデスクランブルを行う。最後に18で速
度変換して、全てのサービスパルスを除去し、2電信号
系列のみを出力する。補符号挿入パルスに対してスクラ
ンブルをかけないため、受信側におけるデスクランブル
は、同期のみとれていれば補符号挿入パルスには無関係
に実行でき、18における速度変換により補符号挿入パ
ルスは除去される。
The input binary signal sequence is first speed-converted in step 11, and service pulses for inserting complementary codes, frame synchronization pulses, game monitoring control information, etc. are secured. This signal sequence is constructed into a frame at step 12 and then decoded/dumbed at step 13 by a scrambler. At this time, the service pulse should not be scrambled. Next, the circuit 14 of the present invention periodically inserts a complementary code and sends the suppressed code to the transmission line 15. On the receiving side, frame synchronization is first established at step 16, and then descrambling is performed at step 17. Finally, speed conversion is performed at 18 to remove all service pulses and output only two electric signal sequences. Since the complementary code insertion pulse is not scrambled, descrambling on the receiving side can be performed independently of the complementary code insertion pulse as long as synchronization is achieved, and the complementary code insertion pulse is removed by the speed conversion in 18. .

本符号変換回路より構成される伝送路符号の電力スペク
トラムは第6図のようになり、この符号を用いた効果を
第7図に示す。最悪同符号連続を)□ 抑圧することにより、符号量干渉量増加の抑圧、タイミ
ング特性の改善等が図れる。第7図は、400MHzで
動作する光中継器の符号量干渉量耐力特性測定結果であ
る。スクランブラのみの伝送符号では、24ピツト連続
は頻繁に起り得る。この伝送路符号が10ビツトまでに
制限されると、許容符号量干渉量は約4%まで増加する
。光中継器の設計において、ジッタ及び識別レベル変動
等、同符号連続耐力特性に影響を与える劣化要因に対し
、許容干渉量は2.5%とされている。ゆえに同符号連
続を制限することにより、安定な中継器動作が得られる
ことが解る。
The power spectrum of the transmission line code constructed by this code conversion circuit is as shown in FIG. 6, and the effect of using this code is shown in FIG. By suppressing the worst-case sequence of the same code ( ), it is possible to suppress an increase in the amount of code amount interference and improve timing characteristics. FIG. 7 shows the results of measuring the code amount and interference tolerance characteristics of an optical repeater operating at 400 MHz. In a scrambler-only transmission code, 24 pits in a row can occur frequently. If this transmission line code is limited to 10 bits, the allowable amount of code interference increases to about 4%. In the design of optical repeaters, the allowable amount of interference is set at 2.5% for deterioration factors such as jitter and discrimination level fluctuations that affect the same code continuity tolerance characteristic. Therefore, it can be seen that stable repeater operation can be obtained by restricting the same code sequence.

(発明の効果) 以上説明したように本発明によれば、一定の複数ビット
毎に挿入するビットをその前に現われる特定ビットの補
符号とするので、最悪同符号連続を抑圧することができ
る。このため、符号量干渉量増加の抑圧、タイミング特
性の改善等が図れ、中継器の動作が安定化し、通信品質
の良好な高速ディジタル伝送方式を実現できる。
(Effects of the Invention) As described above, according to the present invention, since the bit inserted every certain number of bits is the complementary code of the specific bit appearing before it, it is possible to suppress the same code from occurring in the worst case. Therefore, it is possible to suppress an increase in the amount of code amount interference, improve timing characteristics, etc., stabilize the operation of the repeater, and realize a high-speed digital transmission system with good communication quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)と第1図(B)は従来のディジタル伝送方
式の構成図、第1図(C)は第1図(B)における符号
変換回路のブロック図、第2図は本発明による符号変換
回路のブロック図、第3図は第2図の回路の動作タイム
チャート、第4図(A)は11分周回路の例、第4図(
B)は第4図(A)の回路の動作を示す図、第5図は本
発明を用いるディジタル伝送方式の構成図、第6図は本
発明を用いた場合の電力スペクトラムを示す図、第7図
は光中継器の符号量干渉耐力特性を示す図である。 1・・・・・・・・・信号入力端子 2・・・・・・・・・クロック入力端子3・・・・・・
・・・信号出力端子 4・・・・・・・・・シフトレジスタ 5・・・・・・・・・l/m分周回路 6・・・・・・・・・補符号パルス位置指示部7・・・
・・・・・・補符号制御パルス発生部8・・・・・・・
・・排他的論理和部 9・・・・・・・・・補符号挿入部 10・・・・・・・・・遅延回路 11・・・・・・・・・速度変換部 12・・・・・・・・・フレーム構成部13・・・・・
・・・・スクランブラ 14・・・・・・・・・補符号挿入部 15・・・・・・・・・伝送路 16・・・・・・・・・フレーム同期検出部17・・・
・・・・・・デスクランブラ18・・・・・・・・・速
度変換部 特許出願人 日本電信電話公社 特許出願代理人 弁理士   山  本  恵  −
Figures 1(A) and 1(B) are block diagrams of a conventional digital transmission system, Figure 1(C) is a block diagram of a code conversion circuit in Figure 1(B), and Figure 2 is a block diagram of the present invention. 3 is an operation time chart of the circuit in FIG. 2, and FIG. 4(A) is an example of an 11 frequency divider circuit.
B) is a diagram showing the operation of the circuit in FIG. 4(A), FIG. 5 is a block diagram of a digital transmission system using the present invention, FIG. FIG. 7 is a diagram showing the code amount interference tolerance characteristics of the optical repeater. 1...Signal input terminal 2...Clock input terminal 3...
...Signal output terminal 4...Shift register 5...L/m frequency divider circuit 6...Complementary code pulse position instruction section 7...
...Complementary code control pulse generator 8...
...Exclusive OR section 9...Complementary code insertion section 10...Delay circuit 11...Speed conversion section 12... ...Frame configuration part 13...
. . . Scrambler 14 . . . Complementary code insertion section 15 . . . Transmission line 16 .
・・・・・・Descrambler 18・・・・・・・Speed conversion unit Patent applicant Nippon Telegraph and Telephone Corporation Patent application representative Patent attorney Megumi Yamamoto −

Claims (1)

【特許請求の範囲】[Claims] 入力データをうけ入れる入力端子と、該入力端子に接続
・されに+1個(kは自然数)の縦続接続のフリップフ
ロップを有するシフトレジスタと、パルス間隔T。のク
ロックパルスを1に分周してmTo毎のパルス幅T。の
パルスC2を発生する分周器と(mは2以上の自然数)
、前記シフトレジスタの最終段出力とそのk(l≦に≦
m−t)段前の出力との排他的論理和Aを前記分周器の
出力C2に従ってmT。毎に提供する排他的論理和手段
と、排他的論理和過程に必要な演算時間分だけ前記シフ
トレジスタの最終段出力を遅延させて出力Qを与える遅
延回路と、QAC2+QAC! + QAC2の論理に
より入力データのmビット目にそのパルスのにピット前
の補符号を挿入する補符号挿入部と、その出力に接続さ
れる出力端子とを有することを特徴とする符号変換回路
A shift register having an input terminal for receiving input data, +1 (k is a natural number) cascaded flip-flops connected to the input terminal, and a pulse interval T. Divide the clock pulse by 1 to obtain the pulse width T for each mTo. a frequency divider that generates a pulse C2 of (m is a natural number of 2 or more)
, the final stage output of the shift register and its k(l≦to≦
mT) Exclusive OR A with the output of the previous stage according to the output C2 of the frequency divider. QAC2+QAC! + A code conversion circuit characterized by having a complementary code insertion unit that inserts a complementary code before a pit into the m-th bit of input data according to QAC2 logic, and an output terminal connected to the output thereof.
JP56209103A 1981-04-20 1981-12-25 Code conversion circuit Granted JPS58111452A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP56209103A JPS58111452A (en) 1981-12-25 1981-12-25 Code conversion circuit
CA000401079A CA1186763A (en) 1981-04-20 1982-04-15 Consecutive identical digit suppression system in a digital communication system
GB8211095A GB2098432B (en) 1981-04-20 1982-04-16 Consecutive identical digit suppression system
DE3214150A DE3214150C2 (en) 1981-04-20 1982-04-17 Circuit arrangement for limiting the number of identical successive bits in a sequence of bits in a digital transmission device
NLAANVRAGE8201608,A NL185969C (en) 1981-04-20 1982-04-19 BIT INSERT SYSTEM FOR AVOIDING TOO MANY OF CONSEQUENTLY IDENTICAL BITS.
FR8206678A FR2504327A1 (en) 1981-04-20 1982-04-19 SYSTEM FOR REMOVING IDENTICAL NUMBERS CONSECUTIVE OF A DIGITAL TRANSMISSION SYSTEM
US06/369,838 US4502143A (en) 1981-04-20 1982-04-19 Consecutive identical digit suppression system in a digital communication system
IT8267523A IT1212659B (en) 1981-04-20 1982-04-20 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209103A JPS58111452A (en) 1981-12-25 1981-12-25 Code conversion circuit

Publications (2)

Publication Number Publication Date
JPS58111452A true JPS58111452A (en) 1983-07-02
JPS6338899B2 JPS6338899B2 (en) 1988-08-02

Family

ID=16567332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209103A Granted JPS58111452A (en) 1981-04-20 1981-12-25 Code conversion circuit

Country Status (1)

Country Link
JP (1) JPS58111452A (en)

Also Published As

Publication number Publication date
JPS6338899B2 (en) 1988-08-02

Similar Documents

Publication Publication Date Title
CA1289249C (en) Parallel transmission system
US3754237A (en) Communication system using binary to multi-level and multi-level to binary coded pulse conversion
US5163092A (en) Parallel scrambler used in sonet data transmission
EP2140589B1 (en) Method of synchronising data
GB1511546A (en) Reducing the length of digital words
US5185799A (en) Parallel scrambler used in SONET data transmission
US6977973B1 (en) System and method for decoding manchester data
CA1228928A (en) Data rate conversion and supervisory bit insertion in a data system
US4771400A (en) Bit density controller
EP0200269A2 (en) Method and apparatus for deriving frame interval signals
JPS58111452A (en) Code conversion circuit
US4967389A (en) Bit density controller
US5636248A (en) Method and system for regenerating amplitude and timing characteristics of an analog signal
US5265105A (en) Decoding circuit for inhibiting error propagation
US5430733A (en) Digital transmission system for multiplexing and demultiplexing signals
US4498167A (en) TDM Communication system
WO1984002432A1 (en) Ternary encoding and decoding of digital data
US4855735A (en) Recovery of data clock signals
US6028934A (en) TD multiplexing digital video signals with scramble of scrambling stages more than one greater in number than the video signals
JPS58114542A (en) Code converting circuit
JPS6338901B2 (en)
CN85100049B (en) Model method justification apparatus and method
US4771421A (en) Apparatus for receiving high-speed data in packet form
US5784013A (en) Circuit for removing energy dispersal in a data transmission
US6271698B1 (en) Method and apparatus for correcting imperfectly equalized bipolar signals