JPS58111444A - Optical receiver for digital communication - Google Patents

Optical receiver for digital communication

Info

Publication number
JPS58111444A
JPS58111444A JP56208183A JP20818381A JPS58111444A JP S58111444 A JPS58111444 A JP S58111444A JP 56208183 A JP56208183 A JP 56208183A JP 20818381 A JP20818381 A JP 20818381A JP S58111444 A JPS58111444 A JP S58111444A
Authority
JP
Japan
Prior art keywords
wavelength
light
circuit
output
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56208183A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamimura
博 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56208183A priority Critical patent/JPS58111444A/en
Publication of JPS58111444A publication Critical patent/JPS58111444A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Abstract

PURPOSE:To receive a multiplex wavelength digital signal with one set of optical receiver, by using a plurality of photodetectors having different sensitivity to light wavelength, and converting the detected signal into an electric signal corresponding one to one to the wavelength of an incident light at a light wavelength/electric signal converting circuit. CONSTITUTION:A digital signal of multiplex wavelength made incident from a digital communication optical cable is received at a photodetector 10 consisting of a one chip element having photo diodes PD1, PD2 having different sensitivity to the wavelength of light. An output of the photo detector 10 is converted into an electric signal corresponding one to one to a short-circuited current ratio of the photo detector 10 and having a prescribed relation with the wavelength at a light wavelength/electric signal conversion circuit 11 comprising logarithmic circuits 111A, 111B and a subtraction circuit 112. The on/off-state of the digital signal is discriminated from the presence/absence of optical signals, lambda1, lambda2 in wavelengths at a signal discrimination circuit 12 comprising comparators C1-C5, AND gates A1-A3, an OR gate N1, resistors R5-R8, and power supplies +V, -V from the converted output, and four states of the incident light are outputted from the gates A1 and A2.

Description

【発明の詳細な説明】 本発明はディジタル用光受信赫に係り、特に波長多重伝
送路に好適なディジタル通信用光受信器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to digital optical reception, and more particularly to an optical receiver for digital communication suitable for wavelength multiplexing transmission lines.

従来のディジタル用光受信器は、受光部にホトダイオー
ドを1個使用しているが、ホトダイオードは光波長に対
して感度が広いため、波長多重伝送路の基本構成は第1
図のようになる。光波長λl、λ3の信号8s 、Sm
をそれぞれ送信する光送信器T1.T2の出力を光ケー
ブル3で合波器1に導き、2つの波長の光を混合した後
、光ケーブル3で受信器まで導く。光信号は分波幡2で
2つの波長の光信号に分けられ各々光受信器R1゜R2
に入り、電気信号に変換され出力される。
Conventional digital optical receivers use one photodiode in the light receiving section, but since the photodiode has a wide sensitivity to light wavelengths, the basic configuration of the wavelength multiplexing transmission line is
It will look like the figure. Optical wavelengths λl, λ3 signals 8s, Sm
Optical transmitters T1. The output of T2 is guided to a multiplexer 1 via an optical cable 3, and after mixing the two wavelengths of light, the output is guided via an optical cable 3 to a receiver. The optical signal is divided into two wavelength optical signals by the demultiplexer 2, and each optical signal is sent to an optical receiver R1゜R2.
The signal enters the circuit, is converted into an electrical signal, and is output.

このような方法では、多重伝送用の波長数が増加するに
つれ光受信器の数も増加するため、コストの増加、信頼
性の減少などの欠点があった。
In this method, as the number of wavelengths for multiplexed transmission increases, the number of optical receivers also increases, resulting in disadvantages such as increased cost and decreased reliability.

本発明の目的は、複数の光波長のディジタル信号を含む
受信光信号から、電気的に各波長のディジタル信号を再
生し各ディジタル電気信号を出力することにより、低コ
ストでかつ^傷軸度な波長多重ディジタル伝送システム
を実現できるディジタル通信用光受信器を提供すること
におる。
An object of the present invention is to electrically regenerate a digital signal of each wavelength from a received optical signal containing digital signals of a plurality of optical wavelengths and output each digital electric signal, thereby achieving low cost and low flaw axis. An object of the present invention is to provide an optical receiver for digital communication that can realize a wavelength division multiplexing digital transmission system.

本発明の%黴は、光の波長に対し感度の異なる複数の受
光体を受光部に用い、波長・電気変換回路で、前記受光
部からの入力を、入射光の波長に一対一に対応した電気
出力に変換し、その電気出力を用いて、信号判別回路に
より、波長多重伝送の各波長信号に対応してそれぞれ電
気信号を出力することにより、1台の光受信器で波長多
重化され九複数のディジタル信号の受信を可能としたこ
とである。
The % mold of the present invention uses a plurality of photoreceptors with different sensitivities to the wavelength of light as the light-receiving section, and uses a wavelength/electrical conversion circuit to convert the input from the light-receiving section into a one-to-one correspondence with the wavelength of the incident light. By converting it into an electrical output, and using the electrical output, a signal discrimination circuit outputs an electrical signal corresponding to each wavelength signal of the wavelength multiplexed transmission. This makes it possible to receive multiple digital signals.

第2図は本発明の実施例図である。受光部lOは、2つ
のホトダイオードPDI、PD2が1チツプ化されて形
成されており、且つPDIとP層2とは互いに陰極が共
通に接続され、アース端子6に接続されている。PDI
、P層2の陽極端子5と7とは出力端子になっている。
FIG. 2 is a diagram showing an embodiment of the present invention. The light receiving section IO is formed by integrating two photodiodes PDI and PD2 into one chip, and the cathodes of PDI and P layer 2 are connected to each other in common, and are connected to a ground terminal 6. P.D.I.
, anode terminals 5 and 7 of the P layer 2 are output terminals.

波長・電気変換回路11は、対数回路111A、111
B、減算回路112よす成る。対数回路111人はオペ
アンプOPIとダイオードD1より成る。対数回路11
1BはオペアンプOP2とダイオードD2より成る。減
算回路112は、オペアンプOP3、抵抗R1−R4よ
り成る。信号判別回路12は、比較器(コンパレータ)
CI、C2,C3,C4゜C5、アンドケートAl、A
2.A3、オアゲートNl、可変抵抗R5,l’L6.
)L7.R8より成る。
The wavelength/electrical conversion circuit 11 includes logarithmic circuits 111A, 111
B. Consists of the subtraction circuit 112. The logarithmic circuit 111 consists of an operational amplifier OPI and a diode D1. Logarithmic circuit 11
1B consists of an operational amplifier OP2 and a diode D2. The subtraction circuit 112 includes an operational amplifier OP3 and resistors R1-R4. The signal discrimination circuit 12 is a comparator
CI, C2, C3, C4゜C5, and Kate Al, A
2. A3, OR gate Nl, variable resistor R5, l'L6.
)L7. Consists of R8.

第3図に光受光部10の層構成を示す。光受光部10は
PNP層より成り、2つのP層に端子5及び端子7、N
層に端子6が形成されている。かかる光受光部10のチ
ップの上部に光を入射すると、この光の色(波長)によ
って、各層への到達具合を異にする。図で、7Aは青色
光であり、最上層のP層のみに到達する。7Bは赤色光
であり、N層に到達する。7Cは赤外光であり、最下層
のP層に到達する。即ち、PNPの各層の厚さが光学フ
ィルタとなり、短技長の光はシリコンの表(3)近くで
吸収され、長波長の光は深い部分まで到達し吸収される
。このため、入力波長と相対感度との関係は第3図に示
す特性となる。各ホトダイオードPDI、PD2は光が
入射すると、その□波艇とパワーに応じた電流(端子5
と6、または端子6と7とを短絡した場合は短絡電流と
いう)が流れるが、本図の関係は入射光のノくワーによ
らず一定である。このため、P層2とPDIの短絡電流
の比(I scs / I act )と波長λの関係
は第5図のようになり、光入射パワーに無関係に一定と
なる。
FIG. 3 shows the layer structure of the light receiving section 10. As shown in FIG. The light receiving section 10 is composed of a PNP layer, and terminals 5, 7, and N are provided on the two P layers.
Terminals 6 are formed in the layer. When light is incident on the top of the chip of the light receiving section 10, the degree to which the light reaches each layer varies depending on the color (wavelength) of the light. In the figure, 7A is blue light, which reaches only the uppermost P layer. 7B is red light and reaches the N layer. 7C is infrared light and reaches the bottom P layer. That is, the thickness of each layer of PNP acts as an optical filter, and light with a short wavelength is absorbed near the silicon surface (3), and light with a long wavelength reaches a deep part and is absorbed. Therefore, the relationship between input wavelength and relative sensitivity has the characteristics shown in FIG. 3. When light enters each photodiode PDI, PD2, a current (terminal 5
and 6, or when terminals 6 and 7 are short-circuited, a short-circuit current flows, but the relationship shown in this figure is constant regardless of the depth of the incident light. Therefore, the relationship between the short-circuit current ratio (I scs / I act ) of the P layer 2 and PDI and the wavelength λ is as shown in FIG. 5, and is constant regardless of the incident light power.

それ故に、対数回路111A、IIIBを設けて、対数
変換させている。この対数回路111A。
Therefore, logarithmic circuits 111A and IIIB are provided to perform logarithmic conversion. This logarithmic circuit 111A.

111Bの出力を減算回路112で減算すると、その出
力電圧V・と波長λの関係は第6図の如くなる。この出
力を判別回路12でレベル判別する。
When the output of 111B is subtracted by the subtraction circuit 112, the relationship between the output voltage V and the wavelength λ becomes as shown in FIG. A discrimination circuit 12 discriminates the level of this output.

信号判別回路12を説明する。The signal discrimination circuit 12 will be explained.

減算回路112の出力V(1は、 となる、即ち、出力V・は、短絡電流比(Iscs/l
5c1)と一対一に対応しており、入射光のノくワーに
依存せず、波長と一定の関係(第6m参照)にある。− さて、波長多重伝送では、異なる波長λ1とλ、が信号
伝送光として使用される。ディジタル伝送では光のオン
/オフで信号を伝送するため、受光部に入射する光の状
態は第1表に示す4つの場合がある。
The output V(1) of the subtraction circuit 112 is as follows, that is, the output V is the short circuit current ratio (Iscs/l
5c1), and does not depend on the wavelength of the incident light, but has a constant relationship with the wavelength (see No. 6m). - Now, in wavelength multiplex transmission, different wavelengths λ1 and λ are used as signal transmission light. In digital transmission, signals are transmitted by turning on/off light, so there are four states of light incident on the light receiving section as shown in Table 1.

第1表 入射光の状態 このうち、状態2と3では入射光の波長成分は1種であ
や、回路11の出力は第6図の関係がそのまま適用で龜
る。
Table 1 Conditions of incident light Among these, in states 2 and 3, the wavelength component of the incident light is one type and the output of the circuit 11 remains unchanged as the relationship shown in FIG. 6 is applied.

状態4、すなわちA1とA3の光が混合し九光が受光部
に入射し九場合のV・は次の計算で求められる。通常光
通信ではファイバでの損失の少ない85Qnm付近の波
長の光が使用される。このため、2つの波長をA1 =
750nm、  λ鵞=900nmに選んで説明する。
In state 4, that is, when the lights of A1 and A3 are mixed and nine lights are incident on the light receiving section, V· can be obtained by the following calculation. Normally, in optical communications, light with a wavelength around 85 Qnm is used, which causes less loss in fibers. Therefore, the two wavelengths are A1 =
The explanation will be made by selecting 750 nm and λ = 900 nm.

λ1.λ、の光の入射強度をそれぞれpt 、P、mW
とすると、PDI、P層2の短絡電流Iacl 、 I
mcsはそnぞれ、第3図より次のようになる。
λ1. Let the incident intensity of light of λ be pt, P, mW, respectively.
Then, PDI, short circuit current Iacl of P layer 2, I
From FIG. 3, each mcs is as follows.

lIC1=(PIXo、53十P2X0.21)C−(
2)Iscz−(PtX0.66+PsX0.95)C
・・・(3)ただし、Cは定数でおる。
lIC1=(PIXo, 530P2X0.21)C-(
2) Iscz-(PtX0.66+PsX0.95)C
...(3) However, C is a constant.

Plとpmの比は各波長の光送信器の出力、及び光ケー
ブルの損失波長特性から簡単に求められる。ここでは光
送信器の出力とケーブルでの損失の(#jれも吟じいと
して計算すると、短絡電流比は、l5cs / l5c
t = Z 1 8          − (4)と
なる。
The ratio between Pl and pm can be easily determined from the output of the optical transmitter for each wavelength and the loss wavelength characteristics of the optical cable. Here, if we calculate the output of the optical transmitter and the loss in the cable (#j), the short-circuit current ratio is l5cs / l5c
t = Z 1 8 - (4).

故に、第5図から1重とλ冨が混合した時の受光部の線
繊波長λ、は820nmと求まるから、第6図より、こ
の場合のVoは0.65 Vと求まる。
Therefore, from FIG. 5, the line fiber wavelength λ of the light-receiving section when a single layer and a λ-rich mixture are found to be 820 nm, and from FIG. 6, Vo in this case is found to be 0.65 V.

次に状態1、すなわち無信号入力の場合には、PDl、
PD2の出力電流は0となるため対数回路111Aと1
11Bの出力は塩論上負の無限大となる。本実施例の回
路では一15Vの電源電圧近くの出力電圧となる。この
時の出力電圧は回路素子により変動がおるため、減算回
路112の出力を信号判定に利用しても意味がない。こ
のため、本実施例では、状111の判定にはIIIA、
IIIBの出力をI!L接使用している。
Next, in state 1, that is, no signal input, PDl,
Since the output current of PD2 is 0, the logarithmic circuit 111A and 1
The output of 11B becomes negative infinity in terms of salt theory. In the circuit of this embodiment, the output voltage is close to the power supply voltage of -15V. Since the output voltage at this time varies depending on the circuit elements, there is no point in using the output of the subtraction circuit 112 for signal determination. Therefore, in this embodiment, IIIA,
The output of IIIB is I! L connection is used.

以下、上記の信号判定原理に基づいた信号判定回路12
の各部動作について第2表にまとめた。
Hereinafter, the signal judgment circuit 12 based on the above signal judgment principle will be explained.
The operation of each part is summarized in Table 2.

第2表 信号判定回路の各部分の信号 (注)1.  λlくλ2 とする。Table 2 Signals of each part of the signal judgment circuit (Note) 1. Let λ1 be λ2.

2、HはTTLレベルのHIGH,LはT T Lレベ
ルのl、 OW′f:ボす。
2. H is TTL level HIGH, L is TTL level l, OW'f: Blow.

3、  XはH,Lのどちらでも良いことを示す。3. Indicates that X can be either H or L.

木表から、2つの光波長λ1.λ、の信号が、それぞれ
ディジタル電気出力S 1+ 8 雪に正しく再生され
ることがわかる。
From the wooden surface, two light wavelengths λ1. It can be seen that the signals of λ, respectively, are correctly reproduced on the digital electrical outputs S 1+ 8 .

図中の+V、−Vは基準電圧+15V、−15V−でア
に、多重伝送の光波長λ1.λ3をそれぞれ750nm
、900nmにとった場合は、V1+Vs 、Vmはそ
れぞれ既に述べた原理により、0.2V、(16sV、
tlVfある。
+V and -V in the figure are the reference voltages +15V and -15V-, respectively, and the optical wavelength λ1 for multiplex transmission. λ3 is 750nm each
, 900nm, V1+Vs and Vm are respectively 0.2V, (16sV,
There is tlVf.

コンパレータC1〜C3の比較電圧は、回路素子のバラ
ツキによる誤差やノイズの影響を避けるため、■1〜V
sエク4..AVだけ小さな電圧に設定する。本実施例
ではΔVは0.2vに設定している。
The comparison voltages of the comparators C1 to C3 are set to ■1 to V
s Ex 4. .. Set only AV to a small voltage. In this embodiment, ΔV is set to 0.2v.

コンパレータC4,CSの比較電圧■4は単に状11I
lの判別のみに役立っているのではない。本実施例では
、既に述べたように受光)くワーレベル・の変動は信号
再生に影響を及はさ表いが、あまりに微少な光信号を受
信すると、対数回路のダイオードのv4−やノイズの影
響から正しく信号再生を行えず誤信号を出力する可能性
がある。このためv4は受信器の誤動作を防ぐ信号リミ
ッタの働きを兼ねており、受信器の信頼性を^めるのに
役立っている。
Comparison voltage of comparator C4, CS ■4 is simply like 11I
It is not only useful for determining l. In this embodiment, as mentioned above, fluctuations in the optical power level (light received) do not affect signal reproduction, but if an extremely small optical signal is received, the influence of the v4- of the diode of the logarithmic circuit and noise may occur. Therefore, the signal may not be reproduced correctly and an erroneous signal may be output. For this reason, v4 also functions as a signal limiter to prevent receiver malfunction, and is useful for increasing receiver reliability.

以上述べたように、本実施例によれば以下の効果がある
As described above, this embodiment has the following effects.

(1)2つの異なる光波長で伝送されるディジタル信号
を受信して分離し、電気出力として再生で龜る。
(1) Receive and separate digital signals transmitted at two different optical wavelengths, and reproduce and reproduce them as electrical output.

(2)受信光強度によらず安定して動作し、信号り生不
能な黴満信号受信時は誤動作を紡ぐため、信号出力しな
い。
(2) It operates stably regardless of the received light intensity, and does not output a signal to prevent malfunction when receiving a full signal that cannot be regenerated.

(3)簡単な回路で複数の波長多重信号を受信でき、従
来の光分波器と光受信器を使う装置に比ベコスト低減が
できる。
(3) Multiple wavelength multiplexed signals can be received with a simple circuit, and costs can be reduced compared to devices that use conventional optical demultiplexers and optical receivers.

本実施例では、微弱信号受信時は信号出力をしないだけ
であるが、微弱信号受信の信号出力やLED表示などを
付加することもできる。
In this embodiment, no signal is output when a weak signal is received, but it is also possible to add a signal output or an LED display when a weak signal is received.

本実施例では、2波長多重時の構成をボしたか、3波長
以上の波長多重信号でも信号判定回路の比較論理を変災
するたけで良く、受光部10及び阪擾・電気変換回路は
そのままで良い。
In this embodiment, it is sufficient to omit the configuration for two-wavelength multiplexing or to change the comparison logic of the signal judgment circuit for wavelength-multiplexed signals of three or more wavelengths, and the light receiving section 10 and the Sakahan electric conversion circuit are left as they are. That's fine.

tた、受光部は本実施例では2つのホトダイオードを一
体化した素子を用いたが、波長に対して感度の異なるホ
トダイオード(光学フィルターで感度を調節しても、艮
い。)を複数個使用しても良い。ただし、この場合は光
ファイバからの受光効率が低下し易く、また3個以上使
用することは波長・電気変換回路が*雑化するため、本
実施例が蝋も容易に実現できる。
In addition, in this embodiment, the light receiving section uses an element that integrates two photodiodes, but multiple photodiodes with different sensitivities to wavelengths (even if the sensitivity is adjusted with an optical filter, there is no difference) are used. You may do so. However, in this case, the efficiency of receiving light from the optical fiber tends to decrease, and if three or more are used, the wavelength/electrical conversion circuit becomes complicated, so this embodiment can easily be implemented using wax.

また、本実施例では、ホトダイオードの温度特性補償回
路は特に設けなかったが、出力変動分はΔ■で吸収して
お抄間慝はない。しかしホトダイオードの温度特性補償
回路を付加しても良く、対数回路のダイオードの温度特
性補償回路を付加すればなお曳い。
Further, in this embodiment, a temperature characteristic compensation circuit for the photodiode was not particularly provided, but the output fluctuation is absorbed by Δ■, so there is no need to worry. However, a photodiode temperature characteristic compensation circuit may be added, and it is even better to add a diode temperature characteristic compensation circuit of a logarithmic circuit.

以上述べたように、本発明によれば、1台の受信器で複
数の光波長で@べされるディジタル信号を受信できるの
で、波長多重ディジタル伝送用光受信装置が、従来と比
較して、受信器数が1/使用波長数となり、低コストで
かつ高信頼度な波長多重ディジタル伝送システムを構成
できる効果がある。
As described above, according to the present invention, a single receiver can receive digital signals at multiple optical wavelengths, so that an optical receiver for wavelength multiplexed digital transmission can achieve The number of receivers is 1/the number of wavelengths used, which has the effect of configuring a wavelength division multiplexing digital transmission system at low cost and with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光受信器を用いた波長多重伝送W&蝋の
一例、第2図は本発明の実施例の回路構成、第3因は受
光部の構造、第4図は受光素子の感度と波長の関係を示
した図、第5図は受光素子の短絡電流比と波長の関係を
示した図、第6図は波長・電気変換回路の出力電圧と波
長との関係を示した図である。 10・・・受光部、PDI、PD2・・・ホトダイオー
ド、11・・・波長・電気変換回路、IIIJI、1l
lb・・・対数回路、112・・・減算回路、12・・
・信号判別回路。 代理人 弁理士 秋本正実 η ・−一一−−−−−1− −−−]r−L−−−−−−
−−m−−1 :l//i                    
  弓       C2、’i−t。 ド  −−−″    l、   h−1”V    
  111:  〆   l。 1  ′:「”−、、J:       111   
                         
           11 /671     、’RI   11>   11 
    、+    11 61L       、 
 1 : 1・−−−−−−1・  ・1 ′″−″+  1
1           ’IL  J  +    
  ’l   41  l’       s31 、
     、l    c。 51; 111 ++     1     1. 、、−ΔV//lB
2’J−−−″   1 .1−r −一一と− 1               Δ11 +                        
     N笑4m
Figure 1 is an example of wavelength multiplexing transmission W & wax using a conventional optical receiver, Figure 2 is the circuit configuration of an embodiment of the present invention, the third factor is the structure of the light receiving section, and Figure 4 is the sensitivity of the light receiving element. Figure 5 is a diagram showing the relationship between the short-circuit current ratio of the light receiving element and wavelength, and Figure 6 is a diagram showing the relationship between the output voltage of the wavelength/electric conversion circuit and wavelength. be. 10... Light receiving section, PDI, PD2... Photodiode, 11... Wavelength/electric conversion circuit, IIIJI, 1l
lb...logarithm circuit, 112...subtraction circuit, 12...
・Signal discrimination circuit. Agent Patent attorney Masami Akimoto η ・−11−−−−−1− −−−]r−L−−−−−−
--m--1 :l//i
Bow C2, 'i-t. Do ---"l, h-1"V
111: 〆l. 1': ""-,, J: 111

11 /671, 'RI 11> 11
, + 11 61L ,
1: 1・−−−−−−1・・1 ′″−″+ 1
1 'IL J +
'l 41 l' s31,
, l c. 51; 111 ++ 1 1. ,, -ΔV//lB
2'J---'' 1 .1-r -11 and- 1 Δ11 +
N lol 4m

Claims (1)

【特許請求の範囲】 1、ディジタル通信用光ケーブルから入射する波長多1
化された光ディジタル信号を受光し光の波長に対し異な
る出力を発生する光受光部と、咳受光部の出力を用いて
該受光部の認識した受光波長に一対一に対応した電気出
力を発生する第1の手段と、誼第1の手段からの出力を
用いて波長多重化され光受信光信号を分離し各波長に対
応したディジタル電気信号を出力する第2の手段とより
成るディジタル通信用光受信器。 2、上記光受光部は、光の波長に対し感度の異なる2つ
のホトダイオードを1チツプ構成とした素子より成る特
許請求の範囲!s1項記載のディジタル通信用光受信器
[Claims] 1. Wavelength multiplier incident from optical cable for digital communication 1
A light receiving section that receives converted optical digital signals and generates different outputs depending on the wavelength of the light, and an electrical output that corresponds one-to-one to the received light wavelength recognized by the light receiving section using the output of the cough light receiving section. and a second means for separating wavelength-multiplexed received optical signals using the output from the first means and outputting digital electrical signals corresponding to each wavelength. optical receiver. 2. The scope of the claim that the light receiving section is comprised of a single-chip device consisting of two photodiodes with different sensitivities to the wavelength of light! An optical receiver for digital communication according to item s1.
JP56208183A 1981-12-24 1981-12-24 Optical receiver for digital communication Pending JPS58111444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56208183A JPS58111444A (en) 1981-12-24 1981-12-24 Optical receiver for digital communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56208183A JPS58111444A (en) 1981-12-24 1981-12-24 Optical receiver for digital communication

Publications (1)

Publication Number Publication Date
JPS58111444A true JPS58111444A (en) 1983-07-02

Family

ID=16552032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56208183A Pending JPS58111444A (en) 1981-12-24 1981-12-24 Optical receiver for digital communication

Country Status (1)

Country Link
JP (1) JPS58111444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381869A (en) * 1986-09-25 1988-04-12 Hitachi Ltd Optical interconnection type semiconductor integrated circuit
JPS6410740A (en) * 1987-07-01 1989-01-13 Nec Corp Wavelength disciminating reception circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669941A (en) * 1979-11-13 1981-06-11 Toshiba Corp Light transmitter
JPS57154954A (en) * 1981-03-19 1982-09-24 Nec Corp Transmitting system of optical data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669941A (en) * 1979-11-13 1981-06-11 Toshiba Corp Light transmitter
JPS57154954A (en) * 1981-03-19 1982-09-24 Nec Corp Transmitting system of optical data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381869A (en) * 1986-09-25 1988-04-12 Hitachi Ltd Optical interconnection type semiconductor integrated circuit
JPS6410740A (en) * 1987-07-01 1989-01-13 Nec Corp Wavelength disciminating reception circuit

Similar Documents

Publication Publication Date Title
US6574022B2 (en) Integral differential optical signal receiver
US8855499B2 (en) Power recapture in an optical communications system
US5105293A (en) Differential optical signal transmission using a single optical fiber
WO2010010278A1 (en) Multichannel transmission on unifilar bus
GB2140643A (en) Optical fibre system
US9313562B2 (en) Wavelength auto-negotiation
JP2013219599A (en) Multirate optical signal receiving device and method
US5296715A (en) Optically isolated signal coupler with linear response
JPS58111444A (en) Optical receiver for digital communication
JP2824982B2 (en) Optical communication network connection method
CN108333689A (en) A kind of multi-channel optical receiving unit of integrated adjustable narrow band filter
EP0646973B1 (en) Linear bidirectional optocoupler
CN108880693B (en) Method for realizing coherent detection by using single photodiode
US4749275A (en) Optical power meter with automatic switching of photodetectors having different wavelength sensitivity characteristics
JPS58114637A (en) Optical pulse receiver
KR102039837B1 (en) Partial discharge sensor including optical converter and partial discharge detection system including the same
AU4216985A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
US9191104B2 (en) Direct reference subtraction system for control of optical transmitters
JPS614346A (en) Optical transmission device
US5751458A (en) Optical double transmission system
JP4221716B2 (en) Optical logic element
US6906306B2 (en) Photodiode optical power monitor
Garrett et al. Performance of 8-channel OEIC receiver array in 8 x 2.5 Gb/s WDM transmission experiment
JP2959634B2 (en) Power control method
Aida et al. Design and performance of an optoelectronic matrix switch using Si-pin photodiodes