JPS58111010A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPS58111010A
JPS58111010A JP21174481A JP21174481A JPS58111010A JP S58111010 A JPS58111010 A JP S58111010A JP 21174481 A JP21174481 A JP 21174481A JP 21174481 A JP21174481 A JP 21174481A JP S58111010 A JPS58111010 A JP S58111010A
Authority
JP
Japan
Prior art keywords
light
light emitting
optical fiber
emitting element
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21174481A
Other languages
Japanese (ja)
Inventor
Takashi Uchiyama
隆 内山
Katsushi Nishimoto
西本 克史
Makoto Araki
誠 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21174481A priority Critical patent/JPS58111010A/en
Publication of JPS58111010A publication Critical patent/JPS58111010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To set a device which moves in the directions of the axes (x), (y), and (z) while clamping an optical fiber arranged as opposed to a light emitting element at an optimum accurate position by making a scan in such a direction that an optical fiber output is maximum. CONSTITUTION:The light emitting chip 2 of the light emitting element 1 fitted to a fixed base 3 and a photodetecting element 8 are arranged on the same perpendicular previously. While an arm 64 positioned atop of the moving device 6 clamps the fiber element 4, a driving circuit 7 is driven by the indication of a controller 10 to turn on the element 1. Light from the chip 2 is sent to the input terminal of the optical fiber 5 and the light transmitted by the fiber 5 is photodetected by the photodetecting element 8. The quantity of light of the element 8 is supplied to a detecting circuit 9, whose detection result is supplied to the control circuit 10 to calculate an optimum scanning direction. The circuit 10 controls the device 6 to fix the elements 1 and 4 at an optimum coupling position with transparent resin.

Description

【発明の詳細な説明】 (1)  発明の技術分針 本発明は光通信に訃ける発光素子と光フアイバ相互を最
適位置に位置合せを行う位置会せ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technique of the Invention The present invention relates to an alignment device for aligning a light emitting element and an optical fiber at optimal positions for use in optical communication.

(2)技術の背景 光II!信用の光ファイバは発光源であるLll!:D
 (フィトエミッティングダイオード)を九は半導体レ
ーザ等の半導体発光素子と組合せて使用される。
(2) Background light on technology II! The reliable optical fiber is the light source Lll! :D
(Phyto-emitting diode) is used in combination with a semiconductor light emitting device such as a semiconductor laser.

この場合発光素子の光をできるだけ多く光ファイバに送
り込むことが望ましい。ところで前記発光素子と光ファ
イバの入力端の相対位置決めには非常に高い積項(士数
μm)が要求されるが、従来はこの相対位置決め作v!
!をマニュアルで行なっているための位置決め作業に多
くの工数を要するにも拘らず最適な位置決めを行うこと
が困鏝なため、自動制御による最適位置会せ装置の出現
が要望されている。
In this case, it is desirable to send as much light from the light emitting element as possible into the optical fiber. Incidentally, the relative positioning of the light emitting element and the input end of the optical fiber requires a very high product term (in μm), but conventionally this relative positioning operation v!
! Because this is done manually, it is difficult to achieve optimal positioning even though the positioning work requires a large number of man-hours, so there is a demand for an optimal positioning device that uses automatic control.

(8)従来技術と問題点 従来の位置合せ装置は、発光源としての発光素子と、該
発光素子の光を光ファイバの入力端に送り込み伝送され
て該光ファイバの出力端よりの出力光を受信素子で受信
せしめ、該受光素子の受光量をWMgLシながら手動の
移動台をlIk作して試行錯設的にIIka位置合わせ
を行う方法で行われてい友。
(8) Prior art and problems Conventional alignment devices use a light emitting element as a light source, and the light from the light emitting element is transmitted to the input end of an optical fiber, and the output light from the output end of the optical fiber is transmitted. This is done by making a manual moving table and adjusting the position by trial and error while adjusting the amount of light received by the light receiving element by WMgL.

ところがこのマニュアルの位置会せ作業は煩雑な九め長
時間を要し、しかも集中力を必要とするため疲労が大き
い割に結合度が悪iという欠点がありた。
However, this manual positioning work is complicated and takes a long time, and requires concentration, which has the disadvantage of being tiring and having a poor degree of connection.

(4)発明の目的 本発明はと紀従来の欠点に鑑み、受光素子の受光量を検
出し、該検出した光出力により走査方向決定機能をそな
え九制御回路で移動台を操作する位置合せ装置の提供を
1的とするものである。
(4) Purpose of the Invention In view of the drawbacks of the prior art, the present invention is an alignment device that detects the amount of light received by a light receiving element, has a scanning direction determination function based on the detected light output, and operates a movable table using a control circuit. The main purpose is to provide the following.

(6)  発明の構成 前述の目的を達成するために本発明は、発光素子と光フ
ァイバを対向配置して相互を最適位置に位置決めする位
置会せ装置であって、1紀光ファイバを挾持してx、y
、z軸方向に移動可能な移動装置と、前記発光素子を点
灯する駆動回路と、1ItI紀光フアイバの光出力を受
光する受光素子と、前記光出力が最適となる走査方向決
定手段をそなえたことによって達成される。
(6) Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a positioning device for arranging a light emitting element and an optical fiber to face each other and positioning each other at optimal positions, the device comprising: x, y
, a moving device movable in the z-axis direction, a drive circuit for lighting the light emitting element, a light receiving element for receiving the optical output of the 1ItI optical fiber, and a scanning direction determining means for optimizing the optical output. achieved by.

(6)  発明の!l!施例 以下図面を参照しながら本発明に係る位置合せ装置の実
施例について詳細に説明する。
(6) Invention! l! Embodiments Hereinafter, embodiments of the alignment device according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を説明するための模式的m成
因で、lは発光チップ2を具備した発光心に光ファイバ
5を有するファイバ素子、6は回転台61と複数のアー
ム62〜64からなる移動装置、7は前記発光索子lを
点灯せしめる駆動回路%8は光ファイバ5からの光出力
を受光する受光素子、9は受光索子8の受光蓋を検出し
て制御回路10にその結果を人力する検出回路で、該制
御回路10は検出回路9の入力により前記移動装置を最
適方向へ走査制御するようになっている。
FIG. 1 is a schematic diagram of an embodiment of the present invention, in which l is a fiber element having an optical fiber 5 in a light-emitting core equipped with a light-emitting chip 2, and 6 is a rotating table 61 and a plurality of arms 62. - 64, a driving circuit 7 for lighting the light emitting cord 1; 8 a light receiving element for receiving the light output from the optical fiber 5; 9 a control circuit for detecting the light receiving lid of the light receiving cord 8; A detection circuit 10 inputs the results manually, and the control circuit 10 scan-controls the moving device in an optimal direction based on the input from the detection circuit 9.

固定台8に取付けられた発光索子1の発光チップ2と受
光素子8をあらかじめ同−垂線上に3瞳する。そして移
動装置6の先端に位置するアーム64にファイバ孝子4
を挾持させた伏線で、制御回路10の指示により駆動回
路7を駆動して発光素子lを点灯すると、該発光素子1
0発光チップ2からの光は光ファイバ6の入力端に送り
込まれる。該送り込まれた光は光ファイバ5によって伝
送された光が出力端より出光し、該出光した光を受光素
子8が受光する。そしてこの受光量を検出回′#lr9
に入力し、該検出結果を制御回路10に入力すると、該
制御回W&10−よって最適走査方向が算出され、該最
適走査方向にしたがって移動装置6を制御し、最適結合
位置におい・て発光素子lとファイバ素子通とを図示し
なtn、11明樹脂により固着するようになっている。
The light emitting chip 2 of the light emitting cable 1 attached to the fixed base 8 and the light receiving element 8 are arranged three pupils in advance on the same perpendicular line. Then, the fiber filtration device 4 is attached to the arm 64 located at the tip of the moving device 6.
When the drive circuit 7 is driven in accordance with an instruction from the control circuit 10 to light up the light emitting element 1, the light emitting element 1 is
The light from the zero light emitting chip 2 is sent to the input end of the optical fiber 6. The sent light is transmitted through the optical fiber 5 and exits from the output end, and the light receiving element 8 receives the emitted light. Then, detect this amount of light received '#lr9
When the detection result is input to the control circuit 10, the optimum scanning direction is calculated by the control circuit W&10-, and the moving device 6 is controlled according to the optimum scanning direction to move the light emitting element l at the optimum coupling position. and the fiber element passage are fixed with tn, 11 resin (not shown).

なお移動装置6の回転台61およびアーム62.68お
よび64のそれぞれ結合部には図示しない駆動源たとえ
ばモータ等を付設し、該駆動源を制御回路10によシ制
御する。
Note that a drive source (not shown), such as a motor, is attached to the connecting portions of the rotary table 61 and the arms 62, 68, and 64 of the moving device 6, respectively, and the drive source is controlled by the control circuit 10.

第2図は発光チップ2からの発光パターンを示したもの
であり、Z軸の任意の点21をとおる(Xl−Yl )
平面における光の強度Pの2次元分布を第8図および第
41!llに示す。第8図において初期位置(XI、 
yl、Zl )Kおける光出力をPIとして、光の増加
する移動方向を探すために第4図に示すとと(xiの前
後数ステップ(図では前方2ステツプ、後方2ステツプ
)の光出力を求める。
Figure 2 shows the light emission pattern from the light emitting chip 2, which passes through an arbitrary point 21 on the Z axis (Xl-Yl).
The two-dimensional distribution of light intensity P on a plane is shown in Figures 8 and 41! It is shown in ll. In Fig. 8, the initial position (XI,
As shown in Fig. 4, in order to find the direction of increasing light movement, the optical output at K (yl, Zl) is taken as PI. demand.

第4図ではxlsの負方向が増加方向となるので、増加
する方向K11l動してXIに対応する出力P1と同出
力となるPg点に対応するX1点を求めれば、初期位置
(XI、 、71. Zl )のピーク位置は、Xl−
1−3μを1算すればよく、そのピーク位置は(」よロ
ー、 y t、 z l)ニ移動して、Xi軸方向の極
[P8の位置づけかり能となる。同様にYl軸方向、Z
l軸方向に同様の探策を行えば、三次元的なピーク値の
探策が可能となり、zl軸の場合を第す図に示す。
In FIG. 4, the negative direction of xls is the increasing direction, so if we move in the increasing direction K11l and find the X1 point corresponding to the Pg point that has the same output as the output P1 corresponding to 71. The peak position of Zl) is
It is sufficient to calculate 1-3μ by 1, and the peak position moves by (Y, yt, zl) to determine the position of the pole [P8] in the Xi axis direction. Similarly, Yl axis direction, Z
If a similar search is performed in the l-axis direction, it becomes possible to search for a three-dimensional peak value, and the case of the zl-axis is shown in FIG.

(7)@明の効果 以上の説明から明らかなように本発明に係る位置合せ装
置によれば、従来のマニュア〃作業にくらべて位置合せ
作業工数が大巾に減少するとともに正確な最適位置での
組立かり能となるので、結合効率の向上が期待でき光通
信8m器に過用して極めて有利である。
(7) Effect of @Akira As is clear from the above explanation, according to the alignment device of the present invention, the number of man-hours for alignment work is greatly reduced compared to the conventional manual work, and at the same time, it is possible to achieve accurate optimal positioning. Since it can be assembled easily, an improvement in coupling efficiency can be expected, and it is extremely advantageous to use it in an 8m optical communication device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る位置合せ装置の一実施例を説明す
るだめの模式的構成図、第2図〜第6図は光の強度分布
を説明するための図である。 図において、1は発光素子、2は発光チップ。 8は固定台、4はファイバ素子、5は光ファイバ。 6は移動装置、7は駆動回路、8は受光素子、9は検出
回路、10は制御回路、61は回転台、62はアームA
、68はアームB、64はアームC1を示す。 第1図 第2図 第3yJ       第4121 第5図
FIG. 1 is a schematic configuration diagram for explaining one embodiment of the alignment device according to the present invention, and FIGS. 2 to 6 are diagrams for explaining the intensity distribution of light. In the figure, 1 is a light emitting element and 2 is a light emitting chip. 8 is a fixed base, 4 is a fiber element, and 5 is an optical fiber. 6 is a moving device, 7 is a drive circuit, 8 is a light receiving element, 9 is a detection circuit, 10 is a control circuit, 61 is a rotary table, 62 is an arm A
, 68 indicates arm B, and 64 indicates arm C1. Figure 1 Figure 2 Figure 3yJ 4121 Figure 5

Claims (1)

【特許請求の範囲】 発光素子と、光ファイバを対向配置して相互を最適位置
に位置決めする位置合せ装置であって。 前記光ファイバを挾持して” e V e Z軸方向に
移動可能な移動装置と、w13発光素子を点灯する駆動
回路と、前記光ファイバの光出力を受光する受光素子と
、前記光出力が最高となる走査方向決定手段をそなえで
なることを特徴とする位置会せ装置。
[Scope of Claim] A positioning device for arranging a light emitting element and an optical fiber to face each other and positioning them at optimal positions. a moving device that can hold the optical fiber and move it in the Z-axis direction; a drive circuit that lights up the W13 light emitting element; a light receiving element that receives the optical output of the optical fiber; A positioning device characterized by comprising a scanning direction determining means.
JP21174481A 1981-12-23 1981-12-23 Positioning device Pending JPS58111010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21174481A JPS58111010A (en) 1981-12-23 1981-12-23 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21174481A JPS58111010A (en) 1981-12-23 1981-12-23 Positioning device

Publications (1)

Publication Number Publication Date
JPS58111010A true JPS58111010A (en) 1983-07-01

Family

ID=16610861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21174481A Pending JPS58111010A (en) 1981-12-23 1981-12-23 Positioning device

Country Status (1)

Country Link
JP (1) JPS58111010A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180809U (en) * 1987-05-14 1988-11-22
JPH03197907A (en) * 1989-12-27 1991-08-29 Fujitsu Ltd Method for aligning optical axis position of optical parts
JPH0894890A (en) * 1994-09-28 1996-04-12 Nec Corp Optical axis alignment method for optical fiber
JPH08262280A (en) * 1995-03-22 1996-10-11 Nec Corp Method for adjusting optical axis of optical fiber
JP2021089404A (en) * 2019-12-06 2021-06-10 東日本電信電話株式会社 Cable movement tool for replacing closure exterior for connecting optical cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180809U (en) * 1987-05-14 1988-11-22
JPH03197907A (en) * 1989-12-27 1991-08-29 Fujitsu Ltd Method for aligning optical axis position of optical parts
JPH0894890A (en) * 1994-09-28 1996-04-12 Nec Corp Optical axis alignment method for optical fiber
JPH08262280A (en) * 1995-03-22 1996-10-11 Nec Corp Method for adjusting optical axis of optical fiber
JP2021089404A (en) * 2019-12-06 2021-06-10 東日本電信電話株式会社 Cable movement tool for replacing closure exterior for connecting optical cable

Similar Documents

Publication Publication Date Title
CN104199148B (en) Optical fiber automatic alignment algorithm of optical fiber alignment mechanism of optical fiber fusion splicer
CN103836513A (en) LED illuminating method and apparatus for image measuring device
WO2019076159A1 (en) Optical module assembly device and method
CN105606153A (en) Detection triggering mechanism suitable for automatic detection machine and automatic detection machine equipped with detection triggering mechanism
JPS58111010A (en) Positioning device
CN109056200A (en) The cloth Boundary Recognition method and sensor and its identification device of a kind of sewing machine
JPS606482B2 (en) Automatic adjustment device for light incidence into optical fiber
CN212723495U (en) Coupling device of lens and PCB module
CN211234321U (en) Coaxial alignment detection optical system
CN208965209U (en) A kind of the cloth Boundary Recognition sensor and identification device of sewing machine
JPS6232426A (en) Camera
CN209319001U (en) The automatic coupling and three beam laser spot welding systems of butterfly-type encapsulation photoelectric device
CN204740459U (en) Multiple -wavelength laser wavelength switches automatic control system
JP2504747B2 (en) Method and apparatus for aligning optical axis between semiconductor element and optical transmission line
CN207689721U (en) A kind of multi-channel laser array transceiver module Auto-coupling System
CN221225302U (en) Automatic focusing projector based on laser
CN215548174U (en) Clamp for BOB test of terminal
CN221039502U (en) End face imaging mechanism and laser welding machine
CN217019034U (en) Automatic marking machine of pipe fitting vision
CN220971096U (en) Paraxial laser engraving machine
CA1256728A (en) Method of positioning light receiving end of light conductor at focal point of lens and apparatus therefor
CN116818711B (en) Near infrared spectrum detector
JPH09197197A (en) Assembling device for optical module
CN214278627U (en) LED parallel light source system of IC lead frame
CN214444324U (en) Screw upset feedway