JPS58110834A - Auxiliary air control device of engine - Google Patents
Auxiliary air control device of engineInfo
- Publication number
- JPS58110834A JPS58110834A JP56207206A JP20720681A JPS58110834A JP S58110834 A JPS58110834 A JP S58110834A JP 56207206 A JP56207206 A JP 56207206A JP 20720681 A JP20720681 A JP 20720681A JP S58110834 A JPS58110834 A JP S58110834A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- engine
- air control
- passage
- thermally expansible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
- F02D41/064—Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Temperature-Responsive Valves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は暖機運転中のエンジン回転速度を高くするため
、スロットル弁を迂回して供給する補助空気の量を制御
する補助空気制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an auxiliary air control device that controls the amount of auxiliary air that is supplied bypassing a throttle valve in order to increase the engine rotational speed during warm-up operation.
この種の補助空気制御装置は、スロットル弁を迂回して
吸気通路に連通されたパイノ豐ス通路に、暖機運転中に
開弁作動される空気制御弁を設けである。この種空気制
御弁としては、エンジンの温度、たとえば冷却水温度に
応動するワックスなどの熱によって容積が変化する熱膨
張体からなるアクチュエータによりポペット弁ヲ作動さ
せ、このポ(ット弁でパイノ4スAW&の弁孔を閉止す
るものが知られている。This type of auxiliary air control device is provided with an air control valve that is opened during warm-up operation and is provided in a pinhole passage that bypasses the throttle valve and communicates with the intake passage. As this type of air control valve, a poppet valve is actuated by an actuator made of a thermally expandable body whose volume changes with heat, such as wax, which responds to engine temperature, for example, cooling water temperature. It is known to close the valve hole of SAW&.
しかしながら上記/ ’ y )弁を用いた4のは、こ
のIペット弁が全閉姿勢になるとポペット弁自身はこれ
以上作動されないことKなり、この状態でアクチュエー
タの熱膨張体がさらに熱膨張するとアクチュエータやぼ
ペット弁を破損する虞れがある。このため熱膨張体に、
/ ’ 、)弁が全閉状−以上の熱変形を生じる場合に
これを逃がすような逃し機構を設けているが、この逃し
機構は構造が複雑で、大輪なコスト高になる不具合があ
った〇
本発明はこのような事情にもとづきなされたもので、そ
の目的とするところは、格別な逃し機構を必要とせずし
かも弁孔が全閉状態において熱膨張体がさらに熱膨張し
ても破損等を生じなく確実な閉止状態が保たれるエンノ
ンの補助空気制御装置を提供しようとするものである。However, the reason for using the above /'y) valve is that when the pet valve is in the fully closed position, the poppet valve itself will not be operated any more, and if the thermal expansion body of the actuator further expands in this state, the actuator will There is a risk of damaging the Yabo PET valve. For this reason, in a thermally expandable body,
A relief mechanism is provided to release the thermal deformation of the valve when it is fully closed or higher, but this relief mechanism has a complicated structure and has the disadvantage of significantly increasing costs〇 The present invention was made based on the above circumstances, and its purpose is to eliminate the need for a special relief mechanism and to prevent damage, etc. even if the thermally expandable body expands further when the valve hole is fully closed. It is an object of this invention to provide an auxiliary air control device for Ennon that can maintain a reliable closed state without causing problems.
すなわち本発明は、空気制御弁としてe−)弁を使用し
、このr−ト弁はパイ・97通路の弁孔から偏心した位
置で軸によって回動自在に支持されるとともに上記弁孔
の開口面積を可変する開口部を有し、熱膨張体を有する
アクチュエータによって作動された場合に上記軸の周り
で回動し、この回動を非規制することによって熱膨張体
の過度の熱膨張があっても破損を生じさせないようにし
たことを特徴とする。That is, the present invention uses an e-) valve as an air control valve, and this r-t valve is rotatably supported by a shaft at a position eccentric from the valve hole of the pipe 97 passage, and The opening has a variable area and rotates around the axis when actuated by an actuator having a thermal expansion body, and by unregulating this rotation, excessive thermal expansion of the thermal expansion body is prevented. It is characterized by the fact that it does not cause damage even when it is used.
以下この発明を図に示す実施例により説明する。第1図
はこの発明を適用する゛−子制御式燃料噴射装置付エン
ジンの模式構成図であり、エンジン1は、周知の4サイ
クル火花点火式エンジンで、電子制御式燃料噴射装置に
より燃料が供給される。The present invention will be explained below with reference to embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram of an engine equipped with an electronically controlled fuel injection device to which the present invention is applied. Engine 1 is a well-known four-cycle spark ignition engine, and fuel is supplied by an electronically controlled fuel injection device. be done.
電子制御式燃料噴射装置は、吸気分岐管3に設けられ九
電磁式燃料噴射弁2、各噴射弁2へ燃料を供給する燃料
供給機構、各噴射弁2の開弁時間を制御する電子制御ユ
ニ、ト4、エンジン1の吸入空気量を測定する吸気置針
6等から構成され、主として吸入空気量に応じた燃料を
エンジン1へ供給する。The electronically controlled fuel injection device includes nine electromagnetic fuel injection valves 2 provided in the intake branch pipe 3, a fuel supply mechanism that supplies fuel to each injection valve 2, and an electronic control unit that controls the opening time of each injection valve 2. , 4, and an intake position needle 6 for measuring the intake air amount of the engine 1, and mainly supplies fuel to the engine 1 according to the intake air amount.
燃料供給機構は、燃料タンク6、この燃料タンク6から
燃料を圧送する燃料ボンデ7、この燃料ボンデ1から導
かれる燃料の一部を燃料タンク6へ戻し、かつ燃料供給
圧力を一定Kll!1する圧カレギーレータ8および燃
料を各噴射弁2へ分配する分配t9から構成されている
。The fuel supply mechanism includes a fuel tank 6, a fuel bonder 7 that pressure-feeds fuel from the fuel tank 6, a portion of the fuel led from the fuel bonder 1, and returns a portion of the fuel to the fuel tank 6, and maintains a constant fuel supply pressure Kll! 1, and a distribution t9 that distributes fuel to each injection valve 2.
m子制御ユニット4は、エアクリーナ10の゛下流に設
けられた吸気置針5からの吸入空気量信号と、エンジン
lの点火用ディストリビュータ11からのエンジン回転
速度信号と、吸気通路12内に設けられたスロットル弁
13からのスロットル信号とが人力され、これらの信号
により噴射弁2の開弁時間を演算し、開弁電気信号を各
11L流制限用抵抗器14を介して噴射弁2へ出力する
。The m-child control unit 4 receives an intake air amount signal from an intake position needle 5 provided downstream of the air cleaner 10, an engine rotation speed signal from an ignition distributor 11 of the engine 1, and a signal provided in the intake passage 12. The throttle signal from the throttle valve 13 is input manually, the valve opening time of the injection valve 2 is calculated based on these signals, and a valve opening electric signal is output to the injection valve 2 via each 11L flow limiting resistor 14.
次にエンジン1の吸気系について説明すると、主の空気
rまエアクリーナ10、吸気置針5、吸気通路12、吸
気分岐管3を通してエンシン1の各燃焼室へ導かれる。Next, the intake system of the engine 1 will be described. Main air is guided to each combustion chamber of the engine 1 through an air cleaner 10, an intake position needle 5, an intake passage 12, and an intake branch pipe 3.
またエンジン1の冷間始動時あるいは暖機運転中であっ
てスロットル升ノ3の全閉時には、吸入空気が補助空気
制御装置15を通り、スロットル弁13を迂回してエン
ノン1暢へ供給される。Furthermore, when the engine 1 is cold started or warmed up and the throttle valve 3 is fully closed, intake air passes through the auxiliary air control device 15, bypasses the throttle valve 13, and is supplied to the engine 1. .
E紀補助空気制御装di 1 sは吸気通路12のスロ
ットル弁13よりE流側に位置して開口された空気流入
口16および下流側に位置して開口された流出口17に
より構成され九ノ々イ・ヤス通路と、このパイ・ヤス通
路の空気連路面積を変化させる空気制御弁20とで構成
されている。The E-period auxiliary air control system di 1 s is composed of an air inlet 16 located on the E flow side and opened on the E flow side of the throttle valve 13 of the intake passage 12, and an air outlet 17 located on the downstream side and opened. It is composed of a first and second passage and an air control valve 20 that changes the air communication area of this first and second passage.
空気制御弁20は第2図および第3図にm−されている
。すなわち21はハウジングであり、上6己吸気通路1
2を偶成する吸気管に対して一ルト22・・・で取り付
けられ、かつシール材23によって気密、液密に連結さ
れている。ノ為つジング21はカバー24で閉基されて
おり、このハウジング21内には弁室25が形成されて
いる。弁室25は、導入口26を介して前記空気流入口
16と連通しており、かつ導出口21を介して流出口1
7に通じている。したがって、流入口16、導入口26
、弁室25、導出口21および流出口17によってパイ
・ヤス通路を形成している。Air control valve 20 is illustrated in FIGS. 2 and 3. That is, 21 is a housing, and the upper 6 intake passages 1
It is attached to the intake pipes 2 and 2 with a bolt 22, and is connected airtightly and liquidtightly by a sealing material 23. The housing 21 is closed with a cover 24, and a valve chamber 25 is formed within the housing 21. The valve chamber 25 communicates with the air inlet 16 via an inlet 26 and communicates with the air outlet 1 via an outlet 21.
7. Therefore, the inlet 16, the inlet 26
, the valve chamber 25, the outlet port 21, and the outlet port 17 form a piston passage.
上記導出口27には弁座30がメルト51を介して取り
付けられている。この弁座30には屑円形の空気通路を
なす弁孔31が開口されており、この弁孔31は弁室2
5と導出口21を連通させている。上記弁座30には上
記弁孔31を開閉するだめのダート弁32が支持軸JJ
Kよって回動自在に取り付けられている。r−)升32
はほぼ扇形をなし、その要(かなめ)部が上記支持軸3
3によって回動自在に枢支されているもので、支持軸3
3は弁孔31の位置より偏位されている。f−)弁32
には楕円形を若干変形させた形の開口部34が設けられ
ており、この開口部34は弁座30Kfjlけだ弁孔3
1とによってパイ・91通路の通路面積を変化させて空
気tlLIlを制御する。?−)弁32はスプリング3
5によって常に一方向へ回動付勢されており、このr−
)弁32がスプリング35に引かれ九位瞳にあるときに
は開口部34が弁孔31を全開させるべく対向される。A valve seat 30 is attached to the outlet 27 with a melt 51 interposed therebetween. This valve seat 30 is opened with a valve hole 31 forming a waste circular air passage, and this valve hole 31 is connected to the valve chamber 2.
5 and the outlet 21 are communicated with each other. A dart valve 32 for opening and closing the valve hole 31 is mounted on the support shaft JJ on the valve seat 30.
K is rotatably attached. r-) 32 squares
is almost fan-shaped, and its key part is the support shaft 3.
3, which is rotatably supported by the support shaft 3.
3 is offset from the position of the valve hole 31. f-) Valve 32
is provided with an opening 34 having a slightly deformed oval shape, and this opening 34 is connected to the valve seat 30Kfjl and the valve hole 3.
1 and 1 to control the air tlLIl by changing the passage area of the pi-91 passage. ? -) Valve 32 is spring 3
5 is always urged to rotate in one direction, and this r-
) When the valve 32 is pulled by the spring 35 and is in the ninth position, the opening 34 faces the valve hole 31 to fully open it.
ハウソング21には熱応動アクチュエータ40の収¥1
部36および冷却水導入室37が形成されている。冷却
水導入室37は冷却水導管3839を介してエンジンの
ウォニタジャケット(図示しない)と連通されており、
エンジン冷却水が盾に循環されるようになっている。上
記収納部36に取り付けられた熱応動アクチュエータ4
゜はケーシング41内に可動@42を設け、この1Tf
IJJ壁42にロッド43を連結するとともに、可動壁
42により区割された空間内に熱膨張体44を充填して
あ石。この熱膨張体44はたとえばワックスに熱伝導性
の優れた金属粉末を混入する等のごとく、熱によって容
積を変化するものであり、上記ワックス以外の液体また
は固体であってもよい。上記熱膨張体44の周壁は感熱
部45とされており、この感熱部45け前記冷却水導入
室37内に臨まされている。Thermal response actuator 40 is included in Howsong 21 for ¥1
A section 36 and a cooling water introduction chamber 37 are formed. The cooling water introduction chamber 37 is communicated with the engine's wonita jacket (not shown) via a cooling water conduit 3839.
Engine coolant is now circulated through the shield. Thermal response actuator 4 attached to the storage section 36
゜ is provided with a movable @42 inside the casing 41, and this 1Tf
A rod 43 is connected to the IJJ wall 42, and a thermal expansion body 44 is filled in the space divided by the movable wall 42. The thermally expandable body 44 is made by mixing wax with a metal powder having excellent thermal conductivity, and changes its volume with heat, and may be a liquid or solid other than the wax. The peripheral wall of the thermal expansion body 44 is a heat sensitive section 45, and this heat sensitive section 45 faces into the cooling water introduction chamber 37.
また上記可動壁42に連結したロッy4sの先端は、上
記f−)弁32のかなめ部に突設した突部32瓢に当接
されている。なお、46゜47.48はそれぞれOIJ
ソング示す。Further, the tip of the lock 4s connected to the movable wall 42 is brought into contact with a protrusion 32 protruding from the latch of the f-) valve 32. In addition, 46°47.48 are respectively OIJ
Show song.
このような構成による実施例の作用を説明する。The operation of the embodiment with such a configuration will be explained.
エンジンの冷開始□動時には冷却水温度が低いので熱膨
張体44が非膨張状態であり、したがってロッド43は
第2図および第3図の状態よりも図示左方向に位1して
いるとともに、r−ト弁32はスプリング35の吸引力
によって図示状膳よりも時計方向に回動された位置にあ
る。When the engine starts to cool down, the cooling water temperature is low, so the thermal expansion body 44 is in a non-expanded state, and therefore the rod 43 is positioned further to the left in the figure than in the states shown in FIGS. 2 and 3. The r-to-valve 32 is in a position rotated more clockwise than in the illustrated position due to the suction force of the spring 35.
このため弁座30の弁孔31と、ダート弁32の開口部
34が重なり合い、弁孔31、換dすればパイ・91通
路が全開に近い状態で導通しているので、エンジン1に
向ってこのパイノクス通路を介して補助空気が多量に供
給される。このとき、吸気緻針5も作動し、かつ燃料も
捕助空気瀘に蒐合って噴射され、エンジン1のアイドル
回転速度は高く保持される。この結果、エンジン1は、
オイルの低温にもとづく粘性等の摩擦に打ち勝って安定
的に回転する。For this reason, the valve hole 31 of the valve seat 30 and the opening 34 of the dart valve 32 overlap, and if the valve hole 31 is replaced, the pipe 91 passage is nearly fully open and conductive, so that the valve hole 31 is closed toward the engine 1. A large amount of auxiliary air is supplied via this pinox passage. At this time, the intake needle 5 also operates, fuel is also injected into the trap air filter, and the idle speed of the engine 1 is maintained at a high level. As a result, engine 1 is
It rotates stably by overcoming the friction caused by the viscosity caused by the low temperature of the oil.
つぎにエンジン1の始動後には、エンジン冷却水温度が
徐々に上昇し、この温度上昇した冷却水は導管38.3
9を介して冷却水導入室37に遍するので、アクチュエ
ータ40の感熱部45に収容し良熱膨張体44が膨張さ
れる。この膨張は可#Ib壁42を介してロッド43を
第2図および第3図中右方向へ徐々に移動させる。ロッ
ド43の先端はf−)弁32の突部32mに当っている
から、ロッド43はf−)弁32を押し、よってr−)
弁32はスプリング35の吸引力に抵して第2図の反時
計方向へ回動される。Next, after the engine 1 is started, the temperature of the engine cooling water gradually rises, and this temperature-raised cooling water is transferred to the conduit 38.3.
9 to the cooling water introduction chamber 37, the good thermal expansion body 44 is accommodated in the heat sensitive portion 45 of the actuator 40 and expanded. This expansion gradually moves the rod 43 to the right in FIGS. 2 and 3 via the #Ib wall 42. Since the tip of the rod 43 is in contact with the protrusion 32m of the f-) valve 32, the rod 43 pushes the f-) valve 32, and therefore r-)
The valve 32 is rotated counterclockwise in FIG. 2 against the attractive force of the spring 35.
このf−)弁320回動により、r−)弁32の開口部
34と弁座30の弁孔31との重なり合う面積、つまり
弁孔31の開口面積が徐々に減じられる。したがってパ
イ・91通路の通路面積が徐々に減少させられる。This rotation of the f-) valve 320 gradually reduces the overlapping area of the opening 34 of the r-) valve 32 and the valve hole 31 of the valve seat 30, that is, the opening area of the valve hole 31. Therefore, the passage area of the pie 91 passage is gradually reduced.
このようにしてエンジン1に供給される補助空気量が減
少し、エンジン1のアイドル回転速度は徐々に下がって
通常のアイドル回転速度となる。In this way, the amount of auxiliary air supplied to the engine 1 is reduced, and the idle rotation speed of the engine 1 gradually decreases to the normal idle rotation speed.
エンジン1の暖機後は、冷却水温度がさらに上昇し、熱
膨張体44の熱膨張も増すので、r−ト弁32は弁孔3
1を完全に閉止し、よって補助空気の供給が停止される
。After the engine 1 is warmed up, the cooling water temperature further rises and the thermal expansion of the thermal expansion body 44 also increases, so the r-toe valve 32
1 is completely closed, thus stopping the supply of auxiliary air.
しかしてこのようにr−)弁32が弁孔31を全閉した
状態で、さらに冷却水温度の上昇等により熱膨張体44
が過度に熱膨張した場合、f−)弁32は単にスプリン
グ35の吸引力に抗して反時針方向へ回動される。すな
わち、r−ト弁32は熱膨張体44の熱膨張量に追従し
て回動するだけであるから、熱膨張体44の過度のWa
はf−)弁32の回動によって吸収する。このため格別
な逃し機構は必要としなく、かつ?−)弁32やアクチ
ュエータ40の破損は生じない、なおf−)弁32は過
度に回動されても、弁孔31を全閉していることには何
ら変わらないものである。However, when the r-) valve 32 fully closes the valve hole 31 in this way, the thermal expansion body 4
If there is excessive thermal expansion, the f-) valve 32 is simply rotated counterclockwise against the attractive force of the spring 35. That is, since the r-to-valve 32 only rotates following the amount of thermal expansion of the thermal expansion body 44, excessive Wa of the thermal expansion body 44 can be avoided.
f-) is absorbed by the rotation of the valve 32. For this reason, no special release mechanism is required, and? -) There is no damage to the valve 32 or actuator 40, and f-) Even if the valve 32 is rotated excessively, the valve hole 31 is still fully closed.
上記実施例では電子制御式燃料噴射装置付エンジンに本
発明を適用した例を示したが、吸気flitの作動によ
り機械的に燃料噴射量を調量する機械制御式燃料噴射装
置付エンジンへの適用4h可能である。In the above embodiment, an example was shown in which the present invention was applied to an engine with an electronically controlled fuel injection device, but the present invention can also be applied to an engine with a mechanically controlled fuel injection device that mechanically adjusts the fuel injection amount by the operation of the intake flit. 4 hours is possible.
を九上記実施例では熱膨張体を膨張させる手段としてエ
ンジン冷却水を用いたが、たとえばコイルヒータ、正特
性(PTC)抵抗体等に通電させることによる発熱を利
用して熱膨張体を膨張させるようKしてもよい。In the above embodiment, engine cooling water was used as a means to expand the thermally expandable body, but the thermally expandable body may be expanded using heat generated by, for example, energizing a coil heater, positive characteristic coefficient (PTC) resistor, etc. You may also do so.
さらに本実施例においては、空気制御装置154↑
の制御弁20を、スロットル弁137近の吸気管壁に一
体的に取り付けたが、特に走行風を受は難い場所などの
ような他の位置に設置してもよい。Furthermore, in this embodiment, the control valve 20 of the air control device 154↑ is integrally attached to the wall of the intake pipe near the throttle valve 137, but it may be installed in another position, such as a place where it is difficult to receive wind from the vehicle. It may be installed.
以上詳述した通り本発明は、パイノ臂ス通路の通路面積
を制御する制御弁として、弁孔より偏心した位置に設け
た軸の回りに回動されるr−ト弁を、熱によって容積が
変化される熱膨張体の熱膨張により軸方向へ変位される
口、ドで回動させるようにしたから、熱膨張体が過fK
熱膨張されてもf−)弁が単にスプリングに抗して回動
することにより吸収することKなり1よって熱膨張体を
含むアクチュエータやゲート弁の破損を防止することが
できるとと−に格別な逃し機構を必要としないので、構
成が簡単でコストも安くなるなどの優れた利点を有する
。As described in detail above, the present invention is a control valve for controlling the passage area of a pinot arm passage, and the r-toe valve, which is rotated around an axis provided eccentrically from the valve hole, is heated to reduce its volume. Since the thermal expansion body is rotated in the axial direction by the thermal expansion of the thermal expansion body, the thermal expansion body does not exceed fK.
Even if the thermal expansion occurs, the valve absorbs the thermal expansion by simply rotating against the spring.This makes it especially possible to prevent damage to actuators and gate valves containing thermal expansion bodies. Since no special release mechanism is required, it has excellent advantages such as a simple configuration and low cost.
図面は本発明の一実施例を示し、第1図は燃料噴射装置
付エンジンを示す概略的構成図、嬉2図はその補助空気
制御装置の一部切欠して示、−t1平面図、第3図は第
2図中■−団線に沿う断面図である。
1・・・、:cン)y、12・・・吸気A路、1 s・
・・スロットル弁、16・・・流入口(バイパス通路)
、11・・・流出口(バイパス通路)、3o・・・弁座
、3ノ・・・弁孔(バイ/4ス通路)、32・・・y−
4弁、33・・・支持軸、34・・・開口部、35・・
・スプリング、40・・・アクチュエータ、43・・・
ロッド、44・・・熱膨張体。The drawings show one embodiment of the present invention, and FIG. 1 is a schematic configuration diagram showing an engine with a fuel injection device, FIG. FIG. 3 is a cross-sectional view taken along the - group line in FIG. 2. 1..., :cn)y, 12...Intake A path, 1 s.
...Throttle valve, 16...Inflow port (bypass passage)
, 11... Outlet (bypass passage), 3o... Valve seat, 3no... Valve hole (bis/fourth passage), 32... y-
4 valves, 33...support shaft, 34...opening, 35...
・Spring, 40... Actuator, 43...
Rod, 44...thermal expansion body.
Claims (1)
けられたパイ・臂ス通路と、この・9イノ豐ス通路の途
中に設けられ上記エンジンの暖機運転中に開弁作動され
る空気制御弁とを備え、この空気制御弁は上記パイ・臂
ス通路の弁孔に対して偏心して位置された軸の回りに回
動自在に枢支されかつ上記弁孔の開口面積を可変する開
口部を有するゲート弁と、このダート弁の開口部が上記
弁孔を開放するようにこのy−ト弁を一方向へ回動付勢
するスプリングと、熱により容積が変化される固体もし
くは液体の熱膨張体およびこの熱膨張体の容積変化を軸
方向変位に変換して上記f−)弁を回動させるロッドか
らなる熱応動アクチュエータとを具備したことを特徴と
するエンジンの補助空気制御装置。A pi/arm passage is provided to bypass the throttle valve provided in the intake passage of the Ennon, and an air control valve is provided in the middle of the intake passage and the valve is opened during warm-up operation of the engine. a valve, the air control valve is rotatably supported around a shaft eccentrically positioned with respect to the valve hole of the pie-arm passage, and has an opening that changes the opening area of the valve hole. a gate valve having a gate valve; a spring that biases the dart valve to rotate in one direction so that the opening of the dart valve opens the valve hole; An auxiliary air control device for an engine, comprising an expansion body and a thermally responsive actuator consisting of a rod that converts a change in volume of the thermal expansion body into an axial displacement to rotate the valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56207206A JPS58110834A (en) | 1981-12-23 | 1981-12-23 | Auxiliary air control device of engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56207206A JPS58110834A (en) | 1981-12-23 | 1981-12-23 | Auxiliary air control device of engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58110834A true JPS58110834A (en) | 1983-07-01 |
Family
ID=16535987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56207206A Pending JPS58110834A (en) | 1981-12-23 | 1981-12-23 | Auxiliary air control device of engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58110834A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6278348U (en) * | 1985-10-21 | 1987-05-19 |
-
1981
- 1981-12-23 JP JP56207206A patent/JPS58110834A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6278348U (en) * | 1985-10-21 | 1987-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4187131B2 (en) | Thermostat device | |
JPS636739B2 (en) | ||
GB2167836A (en) | A pivot valve | |
US3278171A (en) | Carburetor | |
US4132211A (en) | Fuel injection system | |
US1998636A (en) | Intake manifold heating device | |
JPS58110834A (en) | Auxiliary air control device of engine | |
JPS629739B2 (en) | ||
US3814071A (en) | Coolant temperature responsive exhaust crossover valve system | |
JPH094546A (en) | Control device of auxiliary air volume of internal combustion engine | |
JPH0128286Y2 (en) | ||
JPS6148623B2 (en) | ||
JPH0248691Y2 (en) | ||
JP3913966B2 (en) | Engine intake control system | |
JPS6327073Y2 (en) | ||
RU2251623C1 (en) | Electrically controlled thermostat | |
JPS6246689B2 (en) | ||
JP2001182644A (en) | Hot water type fast idle device | |
JPH0631178Y2 (en) | Auxiliary air control device for internal combustion engine | |
JPS6319695B2 (en) | ||
JPH0224946Y2 (en) | ||
JPH0330584Y2 (en) | ||
JPS5918125Y2 (en) | Engine auxiliary air control device | |
JP3875468B2 (en) | Bypass intake air amount control device | |
JPH0311418Y2 (en) |