JPS58110437A - Manufacture of base material for infrared fiber - Google Patents

Manufacture of base material for infrared fiber

Info

Publication number
JPS58110437A
JPS58110437A JP20371881A JP20371881A JPS58110437A JP S58110437 A JPS58110437 A JP S58110437A JP 20371881 A JP20371881 A JP 20371881A JP 20371881 A JP20371881 A JP 20371881A JP S58110437 A JPS58110437 A JP S58110437A
Authority
JP
Japan
Prior art keywords
heating
pipe
base material
fine powder
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20371881A
Other languages
Japanese (ja)
Inventor
Toshio Katsuyama
俊夫 勝山
Hiroyoshi Matsumura
宏善 松村
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20371881A priority Critical patent/JPS58110437A/en
Publication of JPS58110437A publication Critical patent/JPS58110437A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01294Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by delivering pulverulent glass to the deposition target or preform where the powder is progressively melted, e.g. accretion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To stably manufacture a base material with a low impurity content for an infrared optical fiber with a small optical loss due to absorption by depositing fine powder formed by a vapor phase chemical reaction on the inner wall of a glass pipe and by melting the deposited powder by heating. CONSTITUTION:A gaseous starting material is fed into a glass pipe 2 through a small tube 7 put in the pipe 2 and provided with a heating source 6 at one end. The material causes a vapor phase reaction under heating with the heating source 6, enters the pipe 2 without causing deposition in the tube 7 under heating with a heater 8 such as an Ni-Cr wire, and deposits on the inner wall of the pipe 2 as fine powder 4. While moving a heater 5 placed at the outside of the pipe 2, the deposited powder 4 is melted by heating to form a film 3, and by melt-sticking the film 3 to the pipe 2 by further heating, a base material for an optical fiber is manufactured. The base material has a very low impurity content, and an infrared optical fiber manufactured with the material causes a small optical loss due to absorption.

Description

【発明の詳細な説明】 本発明は、気相化学反応を用いた光フアイバ用母材の製
造方法、とくに気相化学反応に畏する加熱温度が、気相
化学反応によって生成した微粉末の浴融温度よりも高い
場合の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an optical fiber base material using a gas phase chemical reaction, and in particular, the heating temperature that is critical to the gas phase chemical reaction is controlled by a bath of fine powder produced by the gas phase chemical reaction. It relates to a manufacturing method when the temperature is higher than the melting temperature.

近年、石英ガラス系光フアイバ以外に、非石英系の光フ
ァイバが波長2〜3μm用の超低損失光ファイバあるい
は波長1O96μmのCO,レーザ用エネヘーギー導光
路として研究されている。これらの非石英系の材料とし
ては、01金属緻化吻ガラス、■ハロゲン化物の結晶あ
るいはガラス、■カルコゲナイドガラスなとが考えられ
ている。
In recent years, in addition to silica glass optical fibers, non-silica optical fibers have been studied as ultra-low loss optical fibers for wavelengths of 2 to 3 μm or as energy-hagy light guides for CO and lasers with wavelengths of 1096 μm. These non-quartz materials are considered to include 01 metal densified glass, (1) halide crystals or glasses, and (2) chalcogenide glass.

重金属敵化物ガラスの具体例としては、aeo。A specific example of heavy metal enemy glass is aeo.

ガラ、X (Qlihansky 、 Rland 5
cherer、 G、W、。
Gala, X (Qlihansky, Rland 5
cherer, G.W.

”)ljgh (jeQ、 QpHcal %aveg
u+des、’ 5thEuropean Confe
rence on □pt+BICommun+cat
ion  12.5 8ept、  1979  ) 
 、 T  eO@ガラス(B0nlort’et a
l、 ’ 1nfrared QlassQptlCa
l  i’1bre@  for  4  and  
10  MlcronBindi’、5 th Eur
opean Con1erence onQpHcal
 (:ommunication、 p9: 61−6
4+ 86G)l。
”) ljgh (jeQ, QpHcal %aveg
u+des,' 5thEuropean Confe
rence on □pt+BICommun+cat
ion 12.5 8ept, 1979)
, T eO@Glass (B0nlort'et a
l, ' 1nfrared QlassQptlCa
l i'1bre@for 4 and
10 MlcronBindi', 5th Eur
open Conference onQpHcal
(:communication, p9: 61-6
4+86G)l.

1980)などが知られている。1980) are known.

ハロゲン化物としては、KR8−5M晶(TlBr−T
l1  )  (S、  Sakurag、t   e
tal、−1nfrared’l’ransmtisx
on  CapabtlsNe、a  of  ’l’
hB11iumHalsde and 15i1uei
r )laltde QpHcall”1bers  
 ”、   Ame口can  (HeramiC30
CCit)’   82nd Anllual Mee
ting (Checago )、 Apr、 198
0)あるいは、YJ4jmura et ll、 ”Q
rowth ofFler  Cuystals  f
or  1nfrared  □pt 1calWav
eguide”、  Japaneae   Jour
nal   of  AppliedPhysics 
、 vol 、 19. no、 5. pp、 L2
69−L272+uay 1980)、G ’ Fs 
−B 1k Fm  Z r F4ガラス(三田地ら、
「フッ化智光ファイバの作製」、1r紹相和55度電子
通信学会光・電波部門全国大会謂演論文集」査号360
. p、360.1980年9月)が研究されている。
As the halide, KR8-5M crystal (TlBr-T
l1) (S, Sakurag, te
tal, -1nfrared'l'ransmtisx
on CapabtlsNe, a of 'l'
hB11ium Halsde and 15i1uei
r)altdeQpHcall”1bers
”, Ame mouth can (HeramiC30
CCit)' 82nd Annual Mee
ting (Checago), April, 198
0) Or, YJ4jmura et ll, “Q
row of Fler Cuystals f
or 1nfrared □pt 1calWav
"Japanese Jour"
nal of Applied Physics
, vol, 19. No, 5. pp, L2
69-L272+uay 1980), G'Fs
-B 1k Fm Z r F4 glass (Mitachi et al.
"Fabrication of Fluoride Intelligent Optical Fiber", Proceedings of the National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers, No. 360
.. p, 360. September 1980) has been studied.

また、カルコゲナイドガラスとしては% As、s。Moreover, as chalcogenide glass, % As, s.

ガラス(N、 8. KMpany et al、 ”
 RecentI)evelopement tn I
nfrared i’1ber Qpt+cs、’1a
frared phys+ci、 vol、 5. p
p、 69−80゜1965 )、(3e−P−8ガラ
ス(8,8h1bataet  al、  ”  Qe
−p−8Chalcogenide  QlamsFI
ller’ + ’ J a g)asse J Ou
eArla 10 f AI)p l l edphy
alc@、  vol、19.  nO,10,99,
L603−L605. OCt、 1980 )か知ら
れている。
Glass (N, 8. KMpany et al, ”
Recent I) development tn I
nfrared i'1ber Qpt+cs,'1a
frared phys+ci, vol, 5. p
p, 69-80°1965), (3e-P-8 glass (8,8h1bataet al, "Qe
-p-8 Chalcogenide QlamsFI
ller' + ' J a g) asse J Ou
eArla 10 f AI) p l l edphy
alc@, vol, 19. nO, 10,99,
L603-L605. OCt, 1980) is known.

以上に述べた3梅類の材料で光ファイバを作製した場合
、材料中に含まれる棟々の不純物による光吸収損失が問
題となる。この不純物の混入を防ぐために鵠1図に示す
ようにガラス管2の内壁面に気相化学反応で1敗した値
松禾4を船積し、しかるのち堆積微粉末を加熱によりで
佑剰し、つぎにさらに加熱して1#を浴着し光フアイバ
用母材を作製する方法がすでに発明さ才tている(赤外
ファイバの製造方法、昭和56年3月6日出願、特願昭
56−31152)。Cのような気相化学反応を用いた
一台不糾物の混入か少ない理由は、出発原料が気体わる
いは液体であるため、糾化しやすいこと、ま九、反応、
が密閉糸で行なわれ、外部からの不純物混入が少ないた
めでおる。
When optical fibers are manufactured using the three types of materials mentioned above, light absorption loss due to ridged impurities contained in the materials becomes a problem. In order to prevent the contamination of this impurity, as shown in Figure 1, the glass tube 2 is loaded with pine nuts 4 that have been subjected to a gas phase chemical reaction on the inner wall surface, and then the deposited fine powder is removed by heating, and then A method has already been invented in which a preform for optical fiber is produced by further heating 1# and bath-coating it (method for manufacturing infrared fiber, filed on March 6, 1981, patent application 1982- 31152). The reason why there is less contamination in one unit using a gas phase chemical reaction such as C is that the starting materials are gaseous or liquid, so they are easily agglomerated.
This is possible because the process is carried out using sealed threads, which reduces the amount of impurities coming in from the outside.

さて、前述の非石英系材料は、波長2μm以上で透明で
おるため、一般VC一点りないは軟化点が低いという%
1iat−壱する。このfCの、気相化学反応でファイ
バ用母材を作製する場合、第1図のような従来の気相化
学反応を起こ6ぜる部分と堆積微粉末t″浴鵬る部分を
ほぼ同一にし、なおかつ同一の加熱源1で反応と浴−と
同時に行なう方法では、堆積*@末福の一点あるいeユ
軟化点が低いために、気相化学反応が起こる温度で加熱
すると堆積微粉末が蒸発して最終堆積膜3の量が少なく
なる欠点がめった。
Now, since the non-quartz material mentioned above is transparent at wavelengths of 2 μm or more, it is said that general VC has a low softening point.
1iat - 1. When producing a fiber base material by a gas-phase chemical reaction of this fC, the part where the conventional gas-phase chemical reaction occurs and the part where the deposited fine powder t'' bath is applied are almost the same as shown in Figure 1. In addition, in a method in which the reaction and the bath are carried out simultaneously using the same heating source 1, the deposition *@Suefuku single point or eyu has a low softening point, so heating at a temperature at which a gas phase chemical reaction occurs will cause the deposited fine powder to deteriorate. The disadvantage is that the amount of the final deposited film 3 decreases due to evaporation.

本発明の目的は、上述の欠点すなわち堆積微粉末の低い
一点(軟化点)による堆積効率の低減を防ぎ、安定に高
効率で光フアイバ用母材を作製する方法を提供すること
にある。
An object of the present invention is to provide a method for stably and highly efficiently producing an optical fiber base material by preventing the above-mentioned drawback, that is, a decrease in deposition efficiency due to the low single point (softening point) of the deposited fine powder.

第2図に示す装置は、上述の欠点を解消するための方法
を示すもので、堆積するガラス管2の内部に#lい管7
を挿入し、管7の一趨に気相反応用加熱源6を設けたも
のである。図で、左方から管7に送られた原料ガスは加
熱源6で加熱され気相反応を起こす。ここで管7には図
に示すように加−熱装置(たとえばニクロム線8會管7
に巻いたもの)を設けである。気相反応で住成した微粉
末は、この加熱装置の温度を適当に設定することによっ
て、雷7には堆積ぜず、雪2に至って初めて堆積する。
The apparatus shown in FIG. 2 shows a method for eliminating the above-mentioned drawbacks.
is inserted, and a gas phase applied heating source 6 is provided along one end of the tube 7. In the figure, the raw material gas sent from the left to the tube 7 is heated by the heating source 6 and causes a gas phase reaction. Here, the tube 7 is equipped with a heating device (for example, a nichrome wire 8 tube 7) as shown in the figure.
(wrapped) is provided. By appropriately setting the temperature of this heating device, the fine powder formed by the gas phase reaction does not accumulate on the lightning 7, but only on the snow 2.

この堆積した微粉末4は別途設けた加熱源5で初めて浴
融され、管3の内壁面に膜3として堆積する。
The deposited fine powder 4 is melted in a bath for the first time by a separately provided heat source 5, and is deposited as a film 3 on the inner wall surface of the tube 3.

加熱源6の温度は気相化学反応か起こる温度に設足し、
加熱源5の温度は、微粉末が溶融する温度より尚くなら
ない工うに設置する。この工うにすれば、たとえ気相反
応が起こる温度が微粉末を浴融すゐ最適な温良以上に商
い勧曾でも、俗離温度を低く保つことが出来、生成値粉
末の蒸発が少なく、シたがって尚効率で堆積膜が侍られ
、浴着後に光フアイバ母材が安定に倚られる。
The temperature of the heating source 6 is set at a temperature at which a gas phase chemical reaction occurs,
The temperature of the heating source 5 is set at a temperature not lower than the temperature at which the fine powder melts. With this method, even if the temperature at which the gas phase reaction occurs is higher than the optimum temperature for melting the fine powder in the bath, the melting temperature can be kept low, the evaporation of the produced powder is small, and the Therefore, the deposited film can be treated more efficiently, and the optical fiber base material can be stably held after bath deposition.

具体的な微粉末の陪−の方法は、第2図のように加熱源
5を左方KMかしなから浴融してもよく、また右方へ動
かしながら浴融してもよい。さらに、管2の投手方向に
均一に微粉末を堆積するために、管7の出口を管2の投
手方向に移動場せてもよい。
As a specific method for melting the fine powder, the heating source 5 may be melted from the left KM center as shown in FIG. 2, or may be melted while moving to the right. Furthermore, in order to deposit the fine powder uniformly in the direction of the pitch of the tube 2, the outlet of the tube 7 may be moved in the direction of the pitch of the tube 2.

袂は、気相反応を起こさせる部分と浴融する部分が別の
所にあれば、高効率で光ファイノく用母Iが得られるこ
とでるる。
On the other hand, if the part that causes the gas phase reaction and the part that melts the bath are located in different places, optical fibers can be obtained with high efficiency.

さて、微粉末を管7に堆積させな′いための、加熱装[
8の温度は微粉末の材料・組成に依存する。
Now, in order to prevent fine powder from accumulating in the tube 7, a heating device [
The temperature in step 8 depends on the material and composition of the fine powder.

たとえは、カルコケナイドガラスのGes、の場合は2
00C以上、(3eBe、のmeは1000以上である
For example, in the case of Ges of chalcokenide glass, 2
00C or more, (3eBe, me is 1000 or more.

第3図は、第2図に示した方法とは別の堆積俗離方法を
示したものである。第3図に示す方法は、加熱した管7
奮堆積する管2に挿入するかわりに、堆積する管2自身
を加熱するものでおる。
FIG. 3 shows a different deposition method from the method shown in FIG. The method shown in FIG.
Instead of being inserted into the tube 2 where the deposit is to be made, the tube 2 itself which is being deposited is heated.

第3図では、f#t9の左方から原料ガスを管9中に送
り込み、加熱源6で加熱して気相化学反応を起こさせ、
つぎに反応生成物を12中に送り込む。
In FIG. 3, raw material gas is fed into the tube 9 from the left side of f#t9, heated by the heating source 6 to cause a gas phase chemical reaction,
Next, the reaction product is fed into 12.

この時、IIt2は加熱装置(たとえばニクロム線)l
Oで生成微粉末が堆積しない温度に設定されているため
、加熱装置がない管2の長手方向位置に至って初めて堆
積する。堆積した微粉末は、加熱源5によって溶融され
、膜状の堆積物3が得られる。この第3図に示す方法に
よれば、第2図に示す方法よりも構成部品が少なくなる
。この場合も、加熱源5は図に示すように左方に移動し
てもよく、またカロ熱源5の移動に伴って加熱装置10
を同時に移動してもよい。この加熱源の移動は本発明の
本質ではなく、要は気相反応を起こさせる部分と浴融す
る部分が別の所におれば、高効率で光フアイバ用母材が
得られることである。
At this time, IIt2 is a heating device (for example, nichrome wire) l
Since the temperature is set at such a temperature that the fine powder produced by O does not accumulate, it will not accumulate until it reaches the position in the longitudinal direction of the tube 2 where there is no heating device. The deposited fine powder is melted by a heating source 5, and a film-like deposit 3 is obtained. The method shown in FIG. 3 requires fewer components than the method shown in FIG. In this case as well, the heating source 5 may move to the left as shown in the figure, and as the Calo heat source 5 moves, the heating device 10
may be moved at the same time. This movement of the heating source is not the essence of the present invention; the point is that if the part that causes the gas phase reaction and the part that melts the bath are located in different places, a preform for optical fiber can be obtained with high efficiency.

以上示し友ように、本発明による方法は、気相化学反応
を起こさせる温度が生成微粉末を溶融するIM展より商
い揚台においても、高効率で光フアイバ用母材を作製出
来る長所を有する。
As shown above, the method according to the present invention has the advantage of being able to produce optical fiber preforms with high efficiency even on a commercial platform rather than an IM exhibition where the temperature that causes the gas phase chemical reaction melts the generated fine powder. .

以下、本発明の実施例を説明する。Examples of the present invention will be described below.

5I#、施例1 気相反応用原料としてGeCt4,5 CC/闘、8b
C40,5CC/〃rvt、 5IC4I 2.8 C
C/wx  ′(+−第2図に示す装置の石英ガラス管
7のに方がらArガス6g0CC,’M、H,ガス30
0CC/順とともに流し、電気炉6によって気相化学反
応を起こした。反応温度は9500である。つぎに、ニ
クロム線8によって管7の炉右方を温度200Cに加熱
し、Fガラス(軟化点540C)からなる外径10φ、
円径8φのカラス管の内部に生成したae−sb−sカ
ラス倣粉末を堆積した。堆積しfc微粉末は、−気炉5
によって龜腿450Cで溶融した。この−6′、電気炉
5はた方へ0.5■/lの割合で移動するようにしであ
る。また、管7の出口も0.5■/Sで左方へ移動した
。管7の出口と電気炉の左側は10crn島してろる。
5I#, Example 1 GeCt4,5 CC/T, 8b as gas phase applied raw material
C40,5CC/〃rvt, 5IC4I 2.8C
C/wx'(+-Ar gas 6g0CC,'M, H, gas 30
It was passed along with 0 CC/sequence to cause a gas phase chemical reaction in an electric furnace 6. The reaction temperature is 9500℃. Next, the right side of the furnace of the tube 7 is heated to a temperature of 200C using the nichrome wire 8, and a tube made of F glass (softening point 540C) with an outer diameter of 10φ,
The generated ae-sb-s glass imitation powder was deposited inside a glass tube with a circular diameter of 8φ. The deposited fc fine powder is - air furnace 5
It was melted at 450C. -6', the electric furnace 5 is moved in the opposite direction at a rate of 0.5 .mu./l. Furthermore, the outlet of tube 7 also moved to the left at a rate of 0.5 ■/S. There is a 10 crn island between the outlet of tube 7 and the left side of the electric furnace.

この左方への移動は20回繰り返し行なった。このよう
にして、′#20内壁面に厚さ20μmのQe−sb−
sガラスを堆積した。つぎに、堆積したガラス管を温度
600Cで浴着して赤外ファイバ用母材を侍た。しかる
のちこれを線引して中心部のGe−8b−8ガラス層の
径が66μmφ、外径が500μmφの光ファイバを得
た。この光ファイバの波長25μmにおける伝送損失は
50dB/ k mで、この鴇の赤外光ファイバとして
は非常に小さな伝送損失となっている。
This movement to the left was repeated 20 times. In this way, a 20 μm thick Qe-sb-
s glass was deposited. Next, the deposited glass tube was bath-bonded at a temperature of 600C to prepare a base material for infrared fiber. Thereafter, this was drawn to obtain an optical fiber in which the diameter of the central Ge-8b-8 glass layer was 66 μmφ and the outer diameter was 500 μmφ. The transmission loss of this optical fiber at a wavelength of 25 μm is 50 dB/km, which is an extremely small transmission loss for this infrared optical fiber.

実施例2 気相反応用原料ガスの種類と量は実施例1と同一にして
、第3図に示した装置を用いて反応温度950Cで加熱
炉6で反応させた。つぎに、加熱装置にクロム線)10
を用いて温度200Cに加熱し、加熱装置lOの左端部
の管2の内壁面にG e −13b −8力2ス倣粉末
を堆積させた。しかるのち、電気炉51fr用いて温度
450Cで溶融した。これらの電気炉5と加熱装置lO
は同一の速度0.5 wa/ @で左方に移動させてお
り、これを20回繰り返した。
Example 2 Gas phase application The type and amount of raw material gas were the same as in Example 1, and the reaction was carried out in a heating furnace 6 at a reaction temperature of 950C using the apparatus shown in FIG. Next, add a chrome wire to the heating device)
was heated to a temperature of 200 C using a heating device 1O, and Ge-13b-8 force 2-scanning powder was deposited on the inner wall surface of the tube 2 at the left end of the heating device IO. Thereafter, it was melted at a temperature of 450C using an electric furnace 51fr. These electric furnace 5 and heating device lO
was moved to the left at the same speed of 0.5 wa/@, and this was repeated 20 times.

このようにして、1に2の内壁面に厚さ25μmのGe
−8b−8ガラスを堆積した。つぎに堆積したガラス’
in一温度600Cで的層して赤外ファイバ用母材を侍
た。しかるのちこれを線引して中心部のGe−8b−8
ガラス層が75μmφ、りを径が500μmφの光ファ
イバを狗だ。この光ファイバのfi&2.5μmにおけ
る伝送損失は45d B/ k mで、この樵の赤外光
ファイバとしては非常に小さな伝送損失でおる。
In this way, Ge with a thickness of 25 μm was formed on the inner wall surface of 1 and 2.
-8b-8 glass was deposited. Next, the deposited glass'
The base material for infrared fiber was prepared by heating at a temperature of 600C. Afterwards, draw a line through this and get Ge-8b-8 in the center.
An optical fiber with a glass layer of 75 μmφ and a diameter of 500 μmφ is used. The transmission loss of this optical fiber at fi & 2.5 μm is 45 dB/km, which is a very small transmission loss for this infrared optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気相反応部と堆積値粉末浴融部が同一でめる従
来の方法を示す装m*成図、第2図および第3図は気相
反応部と堆積微粉末浴融部とを態別の場所に設けた本発
明の方法を示す映mm成図でめる。 2・・・ガラス管、3・・・膜、4・・・微粉末、5・
・・加熱源、′¥11 図 1 第 2 口
Figure 1 is a diagram showing a conventional method in which the gas phase reaction section and the deposited powder bath melting section are integrated, and Figures 2 and 3 are the gas phase reaction section and the deposited fine powder bath melting section. A photographic diagram illustrating the method of the present invention with and in different locations is shown. 2...Glass tube, 3...Membrane, 4...Fine powder, 5...
...Heating source, ¥11 Figure 1 2nd port

Claims (1)

【特許請求の範囲】[Claims] 1、ガラス管の内壁面に気相化学反応によって生成した
微粉末を堆積し、これを浴融してから該ガラス管を浴着
する工程を有する光フアイバ線引用棒状母材を製造する
方法において、鋏気相化学反応を起こす部分を該微粉末
の堆積するガラス管部分以外の場所に設けたことを特徴
とする赤外ファイバ用母材の製造方法。
1. A method for manufacturing an optical fiber wire rod-shaped base material comprising the steps of depositing fine powder produced by a gas phase chemical reaction on the inner wall surface of a glass tube, melting it in a bath, and then bath-bonding the glass tube. A method for manufacturing an infrared fiber base material, characterized in that a part that causes a gas phase chemical reaction is provided at a location other than the glass tube part where the fine powder is deposited.
JP20371881A 1981-12-18 1981-12-18 Manufacture of base material for infrared fiber Pending JPS58110437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20371881A JPS58110437A (en) 1981-12-18 1981-12-18 Manufacture of base material for infrared fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20371881A JPS58110437A (en) 1981-12-18 1981-12-18 Manufacture of base material for infrared fiber

Publications (1)

Publication Number Publication Date
JPS58110437A true JPS58110437A (en) 1983-07-01

Family

ID=16478691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20371881A Pending JPS58110437A (en) 1981-12-18 1981-12-18 Manufacture of base material for infrared fiber

Country Status (1)

Country Link
JP (1) JPS58110437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403070C (en) * 2001-07-26 2008-07-16 株式会社藤仓 Optical fiber, prefabricated optical fiber rod and its making process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403070C (en) * 2001-07-26 2008-07-16 株式会社藤仓 Optical fiber, prefabricated optical fiber rod and its making process

Similar Documents

Publication Publication Date Title
US4249925A (en) Method of manufacturing an optical fiber
US4557561A (en) Doped glass and process for making
US4165223A (en) Method of making dry optical waveguides
US4486212A (en) Devitrification resistant flame hydrolysis process
US4125388A (en) Method of making optical waveguides
US4441788A (en) Optical wave guide with fluorine-doped core
JPS58125631A (en) Manufacture of optical fiber
JPS5814370B2 (en) How to form glass optical waveguides
SE439480B (en) PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS
US4306767A (en) Single-mode optical fiber
DE69031571T2 (en) Method of making an optical fiber preform
DE2615534B2 (en) FIBER OPERATING FIBER SUITABLE FOR MESSAGE TRANSMISSION WITH GRADIENT PROFILE MADE FROM MULTI-COMPONENT GLASS WITH ADAPTED COEFFICIENT OF EXPANSION BETWEEN THE GLASS CORE AND THE GLASS SHEATH, AND THE PROCESS FOR THEIR PRODUCTION
US4518407A (en) Optical fibre preform manufacture
US4236930A (en) Optical waveguide and method and compositions for producing same
JPH034491B2 (en)
JPS58110437A (en) Manufacture of base material for infrared fiber
US4243299A (en) Optical fibers for communication transmission having high stability to nuclear radiation
GB1596088A (en) Method of making glass articles
GB1559978A (en) Chemical vapour deposition processes
US6266980B1 (en) Centerline protection using heavy inert gases
JPS61230105A (en) Method and apparatus for manufacturing optical fiber for operation in medium infrared transmission area
EP0223852B1 (en) Method of fabricating optical fiber preforms having reduced susceptibility to radiation damage
DE3526436C2 (en) Process for the production of fluorine-doped silicon dioxide
DD290871A5 (en) LIGHT LENS FROM GLASS AND METHOD OF MANUFACTURE
GB1598760A (en) Optical fibre preforms and their manufacture