JPS58109903A - Plant controlling method - Google Patents

Plant controlling method

Info

Publication number
JPS58109903A
JPS58109903A JP56207084A JP20708481A JPS58109903A JP S58109903 A JPS58109903 A JP S58109903A JP 56207084 A JP56207084 A JP 56207084A JP 20708481 A JP20708481 A JP 20708481A JP S58109903 A JPS58109903 A JP S58109903A
Authority
JP
Japan
Prior art keywords
simulator
plant
steel
controller
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56207084A
Other languages
Japanese (ja)
Inventor
Yasuo Morooka
泰男 諸岡
Shinya Tanifuji
真也 谷藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56207084A priority Critical patent/JPS58109903A/en
Publication of JPS58109903A publication Critical patent/JPS58109903A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the reliability of a simulator, by controlling a plant based on a simulated value, while performing the simulation of the plant time by time. CONSTITUTION:In a converter 1, as steel making reactions, reactions such as dephosphorization, denitration, desulfurization, and decarburization are carried out. Further, a reaction simulator operates a reaction equation at a prescribed time interval and outputs the result of operation to a controller 5. The controller 5 operates the supply amount of oxygen and of slag making agent and outputs the result to the simulator 4 and regulators 2, 3. The simulator 4 operates the next states by using an output value of the controller 5. When one stage of steel-making is finished, the molten steel is discharged and the content of steel is analyzed at an analyzer 7 inputted from a sensor 12 and the result of analysis 13 is outputted to a model correcting device 6. The device 6 obtains error of the operation of the simulator and corrects 11 the mathematical model of the simulator.

Description

【発明の詳細な説明】 本発明は、鉄鋼、火力、半導体製造、化学、電力系統等
のプラント制御法に係ね、特に、通常の工槃用計側器が
設置できない状態にあるプラントあるいは適切な計測器
が実在しない状態にあるプロセスの制御に好適なプラン
ト制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to plant control methods for steel, thermal power, semiconductor manufacturing, chemistry, power systems, etc. The present invention relates to a plant control method suitable for controlling processes in which no measuring instruments exist.

従来のプ″il:/)制御は、制御のためのプロセス状
態の計測に、温度、圧力、応力等の検出器が設置され、
咳検出器の出力信号に基づいて制御するのが通常であり
九。しかし、火力プラントにおけるボイラ内温度や、鉄
鋼における炉内温度は加(3)度@度となり、現存する
連続計測可能な検出aは無く、制御も運転員の経験に依
る所が大きい。まえ、化学反応、金属反応を伴うプロセ
スにおいてはリアルタイムに反応状態を検出することは
困難で経験と勘により運転されているのが実情である。
In conventional control, temperature, pressure, stress, etc. detectors are installed to measure process conditions for control.
Control is usually based on the output signal of a cough detector. However, the temperature inside a boiler in a thermal power plant or the temperature inside a furnace in a steel plant is heated to (3) degrees Celsius, and there is no existing detection a that can be continuously measured, and control largely depends on the experience of the operator. In fact, in processes involving chemical or metal reactions, it is difficult to detect the reaction state in real time, and the process is operated based on experience and intuition.

本発明の目的は、上述の様な直接測定が困難かプロセス
の制御に効果的な制御法を提供するものである。
An object of the present invention is to provide an effective control method for controlling processes that are difficult to directly measure as described above.

本発明はプラントにおける制御対象のプロセスシミュレ
ーションを数学モデルを用いて、時々刻刻リアルタイム
に実行させ、咳シミュレータの演算値を用いて、プロセ
スを制御するとともに、プレレトア環境条件やプラント
で生産される物質ある似゛は燃料等の時間的変化に対し
てシミュレータを固定させ・″t7v−タ0信頼性を向
上させる様にしたものである。
The present invention uses a mathematical model to perform a process simulation of a controlled object in a plant in real time, and uses the calculated values of a cough simulator to control the process, and also to adjust the pre-restore environmental conditions and substances produced in the plant. A similar example is one in which the simulator is fixed against temporal changes in fuel, etc., and reliability is improved.

本発明の理解を深めるために、以下実施例によって詳細
に説明する。
In order to deepen the understanding of the present invention, the present invention will be explained in detail by way of examples below.

第1図は本発明を鉄鋼プラントにおける転炉の制御に適
用したものである。
FIG. 1 shows the application of the present invention to the control of a converter in a steel plant.

1は転炉を示し、溶鉄を酸素2、造滓剤3によって製鋼
化するプロセスである。この様なプロセスに対して、転
炉内の金属反応現象をシずニレ−ジョンするリアルタイ
ムシミュレータ4と、そのシミユレーション値に基づい
て転炉の酸素吹込量、造滓剤投入量を調整するプントロ
ー25を具備する。
Reference numeral 1 indicates a converter, which is a process in which molten iron is made into steel using oxygen 2 and slag forming agent 3. For this type of process, we use a real-time simulator 4 that simulates the metal reaction phenomenon in the converter, and adjust the amount of oxygen blown into the converter and the amount of slag forming agent input based on the simulation values. Equipped with Puntro 25.

転炉の製鋼反応は脱燐、脱硝、脱硫、脱炭等の反応を行
なわせるが、反応中の状況を時々刻々検出測定すること
は出来ない。また、反応も発熱反応を伴い、炉内温度は
150 Q C以上に達する。この様なプロセスに対し
て、反応シミュレータとは二定の時間周期で、反応方程
式を演算し、その演算−呆をコントローラ5に出力する
。コントローラ5はシミュレータ4の出力値に基づいて
、酸素供給量、造滓剤供給量を演算し、シミュレータ4
及び各調整装置2.3に出力する。シミュレータ4はコ
ントローラ5の出力値を用いて、次の状態を演算してゆ
く。製鋼の一つの過程が終了すると溶鋼は排出されるが
、その時、センサー12より入力した分析装置7で、溶
鋼成分の分析を行ない、モデル修正装置6に分析結果1
3を出力する。モチk ’Ilk正装置6はシずユレー
タの最終演算値10を入力し、分析値13との比較によ
って、シミュレータの演算誤差を求め、シミュレータの
数学モデルの修正11を行なう。この修正方法としては
、誤差をそのまtあるいは平均化して、モデルに加算す
ることでも良く、分析値13とシミユレーション値10
の比をモデル修正係数として、シミュレータに出力して
も曳い。
Steelmaking reactions in converters include dephosphorization, denitrification, desulfurization, decarburization, and other reactions, but it is not possible to detect and measure the conditions during the reactions from moment to moment. Moreover, the reaction is also accompanied by an exothermic reaction, and the temperature inside the furnace reaches 150 Q C or higher. For such a process, the reaction simulator calculates a reaction equation at two constant time periods and outputs the calculation results to the controller 5. The controller 5 calculates the amount of oxygen supplied and the amount of slag forming agent supplied based on the output value of the simulator 4.
and output to each adjustment device 2.3. The simulator 4 uses the output value of the controller 5 to calculate the next state. When one process of steelmaking is completed, the molten steel is discharged, and at that time, the analyzer 7 receives input from the sensor 12 to analyze the molten steel components, and the analysis result 1 is sent to the model correction device 6.
Outputs 3. The mochik'Ilk correcting device 6 inputs the final calculated value 10 of the sysulator, compares it with the analyzed value 13 to determine the calculation error of the simulator, and performs correction 11 of the mathematical model of the simulator. As a correction method, it is possible to add the error as it is or to average it and add it to the model, and the analysis value 13 and the simulation value 10
It is also possible to output the ratio to the simulator as a model correction coefficient.

火力プラントのダイ2制御に適用する場合は、第1図に
おける反応シミュレータ4が、燃料投入量を検出しなが
ら発熱量及び蒸気発生量等のシミュレーションを実施し
、コントローラ廊は燃料供給量、排煙ダンパ開度、給水
流量等の操作を行な−う。モデル修正装置は排ガス温度
、蒸気量、燃料投入量隻を検出してシさユレータのモデ
ル誤差を評価し、モデル修正量をシミュレータに出力す
る。
When applied to the die 2 control of a thermal power plant, the reaction simulator 4 in Fig. 1 performs simulations of the calorific value and steam generation amount while detecting the amount of fuel input, and the controller simulator detects the amount of fuel supply and smoke exhaust. Perform operations such as damper opening and water supply flow rate. The model correction device detects the exhaust gas temperature, steam amount, and fuel input, evaluates the model error of the oscillator, and outputs the model correction amount to the simulator.

火力プラントに適用する場合、プラントの応答遅れが大
きいため、シミュレータは通常数分光の状態を予測し、
該予測値を用い1制御するのが通常である。この場合第
2図に示す様に、現時点をシきニレ−ジョンするリアル
タイムシミュレータ23と、腋すアルタイムシ電ユレー
タの出力値を用いて数分後の状態を予測する予測シミュ
レータ24に分離しても良い。この纂2図において、2
0はプラント、211〜全13は検出器を示す。
When applied to thermal power plants, the response delay of the plant is large, so the simulator usually predicts the state of light for several minutes,
Normally, one control is performed using the predicted value. In this case, as shown in Fig. 2, it is possible to separate the real-time simulator 23, which simulates the present moment, and the predictive simulator 24, which predicts the state several minutes later using the output value of the armpit real-time simulator. good. In this 2nd diagram, 2
0 indicates a plant, and 211 to 13 indicate a detector.

22は、リアルタイムシミュレータ23のシミュレート
結果と、検出器211〜213の出力とを用いて、シミ
ュレータ23のモデル誤差を求め、そのモデルの適応修
正を行なうモデル適応修正装置である。25は、予−シ
ミュレータ24のシミュレート結果を用いて、プラント
20のプラシト制御量を演算する制御演算装置を示す。
Reference numeral 22 denotes a model adaptive correction device that uses the simulation results of the real-time simulator 23 and the outputs of the detectors 211 to 213 to determine model errors of the simulator 23 and adaptively corrects the model. Reference numeral 25 denotes a control calculation device that calculates the plant control amount of the plant 20 using the simulation results of the preliminary simulator 24.

この演算装置259演算し九制御量に基づきプラントを
調整する調整装置は省略している。
The adjustment device for adjusting the plant based on the nine control variables calculated by the calculation device 259 is omitted.

以上本発明の実施例について述べたが、要約すれば、本
発明はプラントのシミュレーションを時時刻々行ないな
がら眩シミ゛ニレージョン値に基づいてプラントを制御
するものであり、シミュレータとコントローラの組合せ
で制御することを%黴とする。
The embodiments of the present invention have been described above, but to summarize, the present invention controls the plant based on the glare stain value while simulating the plant from time to time, and is controlled by a combination of a simulator and a controller. % mold.

実際のシステムとしては計算機1台でシミュレータとコ
ントローラを組込むことも可能であり、2台の計算機で
シミュレータとコントローラを分離しても良い。まえ、
モデル修正装置はシミュレータと一緒に組込むことも可
能であり、別計算機にすることも出来る。
In an actual system, it is possible to incorporate a simulator and a controller into one computer, or it is also possible to separate the simulator and controller into two computers. front,
The model correction device can be incorporated together with the simulator, or it can be a separate computer.

本発明の実施によυ、従来検出、計l111jできなか
ったパラメータが制御的には可観測になり、より高度な
制御が可能となる。また、この結果、省エネルギ、省資
源を目的とした制御を実施する上で非常に有効な制御方
法となる効果がある。
By implementing the present invention, parameters that could not be detected or totaled in the conventional art become observable in terms of control, and more sophisticated control becomes possible. Moreover, as a result, the present invention has the effect of becoming a very effective control method in implementing control aimed at energy saving and resource saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す図、第2図は本発
明の他の実施例を示す図である。
FIG. 1 shows a first embodiment of the invention, and FIG. 2 shows another embodiment of the invention.

Claims (1)

【特許請求の範囲】 1、計算機を利用してプラントを制御する方法において
、該プラントにおけるプロセス現象の時々刻々の変化を
シミュレーションし、誼シミュレーション演算値を制御
量演算のためのパラメータとして、前記プラントの制御
量を決定し、該制御量によって前記プラントを制御する
ことを特徴とするプラント制御方法。 2、計算機を利用してプラン)を制御する方法において
、該プラントにおけるプロセス現象の時々刻々の変化ヲ
シミュレーションし、該シミュレーション演算値を制御
サンプリング時の初期値として予定時間後の前記プロセ
ス現象を予測的にシミュレーションL、誼予11J的に
シミュレーションされた演算値を用いて前記プラントの
制御量を決定し、該制御量に基づ龜前記プラントを制御
することを特徴とするプラント制御方法。 ・
[Claims] 1. In a method of controlling a plant using a computer, momentary changes in process phenomena in the plant are simulated, and the calculated value of the simulation is used as a parameter for calculating the controlled amount. 1. A plant control method, comprising: determining a control amount, and controlling the plant based on the control amount. 2. In a method of controlling a plan using a computer, the moment-by-moment changes in process phenomena in the plant are simulated, and the process phenomena after a scheduled time are predicted using the simulation calculated values as initial values at control sampling. A plant control method characterized in that a control amount of the plant is determined using calculated values simulated in a simulation L and a simulation 11J, and the plant is controlled based on the control amount.・
JP56207084A 1981-12-23 1981-12-23 Plant controlling method Pending JPS58109903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207084A JPS58109903A (en) 1981-12-23 1981-12-23 Plant controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207084A JPS58109903A (en) 1981-12-23 1981-12-23 Plant controlling method

Publications (1)

Publication Number Publication Date
JPS58109903A true JPS58109903A (en) 1983-06-30

Family

ID=16533926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207084A Pending JPS58109903A (en) 1981-12-23 1981-12-23 Plant controlling method

Country Status (1)

Country Link
JP (1) JPS58109903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179001A (en) * 1986-01-31 1987-08-06 Idemitsu Petrochem Co Ltd Simulation method for process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052477A (en) * 1973-09-12 1975-05-09
JPS5430380A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Pseude-operation method of calculation controlling system
JPS55113998A (en) * 1979-02-27 1980-09-02 Nippon Atomic Ind Group Co Core flow rate control device for atomic power plant
JPS56153405A (en) * 1980-04-30 1981-11-27 Mitsubishi Heavy Ind Ltd Control system for thermal power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052477A (en) * 1973-09-12 1975-05-09
JPS5430380A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Pseude-operation method of calculation controlling system
JPS55113998A (en) * 1979-02-27 1980-09-02 Nippon Atomic Ind Group Co Core flow rate control device for atomic power plant
JPS56153405A (en) * 1980-04-30 1981-11-27 Mitsubishi Heavy Ind Ltd Control system for thermal power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179001A (en) * 1986-01-31 1987-08-06 Idemitsu Petrochem Co Ltd Simulation method for process

Similar Documents

Publication Publication Date Title
CN109447346B (en) Converter oxygen consumption prediction method based on gray prediction and neural network combined model
US8140248B2 (en) System and method for obtaining an optimal estimate of NOx emissions
CN107561941A (en) A kind of full working scope qualified discharge control method of fired power generating unit denitrating system
CN112742187A (en) Method and device for controlling pH value in desulfurization system
CN112221347A (en) Accurate ammonia injection control method for SCR denitration system
JP2016506302A (en) Acid concentration control method and apparatus for pickling in cold rolling
JPS58109903A (en) Plant controlling method
TW201502280A (en) Compensating apparatus, method and method for refining iron
CN116085823A (en) Boiler combustion control method and system
JPH08238416A (en) Method and apparatus for controlling injection of ammonia into denitration apparatus
CN112697977A (en) Thermal power station boiler flue gas NOx index prediction method
KR960023106A (en) Carbon Concentration Prediction Method Using Flue Gas and Neural Network and Converter Endpoint Blowing Control System Using It
JPH07332602A (en) Steam temperature prediction control device
JP2912086B2 (en) Blast furnace control method
RU2652663C2 (en) Method of controlling purge process of converter melting with use of waste gas information
CN113204189B (en) Desulfurization system control model, establishment method thereof and desulfurization system control method
Birk et al. Model-based estimation of molten metal analysis in the LD converter: experiments at SSAB Tnnplat AB in Lulea
JP2690754B2 (en) Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment
JPS62248003A (en) Control device for ammonia injection quantity to denitrating device
Wells et al. Advances in process control applications
JP4110780B2 (en) Estimation method of hot metal temperature and disturbance in blast furnace
JPH09111318A (en) Method for predicting abnormal operation of plant
Medvedev et al. Model-based estimation of molten metal analysis in the LD converter: experimental results
CN117753198A (en) Low-load denitration control system of thermal power generating unit
Uebber et al. A novel data-driven prediction model for BOF endpoint