JPS5810963A - Picture compensation processing method - Google Patents

Picture compensation processing method

Info

Publication number
JPS5810963A
JPS5810963A JP56109765A JP10976581A JPS5810963A JP S5810963 A JPS5810963 A JP S5810963A JP 56109765 A JP56109765 A JP 56109765A JP 10976581 A JP10976581 A JP 10976581A JP S5810963 A JPS5810963 A JP S5810963A
Authority
JP
Japan
Prior art keywords
picture
noted
image
level
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56109765A
Other languages
Japanese (ja)
Inventor
Keiji Sekikawa
関川 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP56109765A priority Critical patent/JPS5810963A/en
Publication of JPS5810963A publication Critical patent/JPS5810963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To obtain an excellent compensated picture, by referencing a noted picture element and picture elements around the noted picture element and performing an MTF compensation to the noted picture element only when the change in density at a limited small area is a specific value or over, in the picture compensation processing method for multi-value quantized picture. CONSTITUTION:An input picture signal obtained by sampling an original picture with a scanner is quantized into 8-value at a quantizer 100 and stored in an input buffer 101 temporarily. An MTF compensation circuit 105 fetches a noted picture element Q7 at that time and surrounding picture elements Q3, Q6, Q8 and Q11 from the input buffer 101 to output the MTF compensation level Q7' of the noted picture element. An adder 102 fetches the noted picture element Q7 and the surrounding picture elements Q1-Q6, Q8-Q13 from the buffer 101 and obtains the density level sum of the picture elements including the noted picture element and that for three picture elements not including the noted picture element and the discrimination of the change in the density is made at a comparison discrimination circuit 103. When the result of discrimination is effective, the MTF compensation level Q7' is given to an output buffer 106 and if not, the level Q7 is given.

Description

【発明の詳細な説明】 本発明は、多値量子化画像を鮮明化するための画像補正
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to image correction for sharpening multilevel quantized images.

ディジタル複写機などでは、原稿を走査して画素濃度を
サンプリングし、それをさら(=多値量子化すること(
二より多値量子化画像を得、これに必要な処理を施す。
Digital copying machines scan the original, sample the pixel density, and then further (=multilevel quantization) the pixel density.
A multi-level quantized image is obtained from the second step, and the necessary processing is performed on it.

このような機器の画像読取り部のM T F (Mod
ulat ion Transfer’ Functi
on )は、CCDイメージセンサを使用した場合、一
般に40*(6tp/wx)前後であるため、画質改善
のため(−MTP補正を施すことが多い。
M T F (Mod
ulation Transfer'Functi
on) is generally around 40*(6tp/wx) when a CCD image sensor is used, so (-MTP correction is often applied to improve image quality).

MTF補正は、現在はディジタルフィルタを用いて行な
うのが一般的である。第1図(a)はそのフィルタの一
例を示している。このフィルタによりTF補正後のレベ
ルX′は、 X’=3 xX−0,5x (B+D+B+G)となる
。実際には、この値X′を正規化してから出力する。
Currently, MTF correction is generally performed using a digital filter. FIG. 1(a) shows an example of the filter. The level X' after TF correction by this filter becomes X'=3xX-0,5x (B+D+B+G). Actually, this value X' is normalized before being output.

ところで、本来、MTF補正は画像の中間調レベルを減
らし、画像を鮮明化しようとするものである。したがっ
て、文字画像などの線画像;二連用すると極めて効果的
である。その反面、写真などの中間調画像にMTF補正
を施すと、白抜けなどの好ましくない現象を年越しやす
い。
By the way, MTF correction is originally intended to reduce the halftone level of an image and make the image clearer. Therefore, it is extremely effective to use line images such as character images twice. On the other hand, when MTF correction is applied to halftone images such as photographs, undesirable phenomena such as white spots are easily removed.

° 実際、ディジタル複写機などの読取り部で原稿を読
み取り量子化して得られる多値量子化画像は、同一濃度
の画像部であっても、量子化ノイズを含めて±ルベル程
度の濃度レベルのバラツキ(濃度ムラ)が見られるのが
普通である。そのため、MTF補正を施すと粒状ノイズ
が発生したり、中間調レベルのエツジ部分:二白抜けが
発生したりして、良好な中間調画像を得られないことが
多い。
° In fact, in multi-level quantized images obtained by reading and quantizing originals in the reading section of digital copying machines, even if the image parts have the same density, there are variations in the density level of about ±1000 lbs., including quantization noise. It is normal to see (density unevenness). Therefore, when MTF correction is applied, granular noise occurs or edge portions at halftone levels: two-white omissions occur, so that it is often impossible to obtain a good halftone image.

例えば、第2図に示す8値量子化画像に第1図(a)に
示したフィルタを用いてMTF補正を施すと、補正後の
画像は第3図の如くになる。第2図と第3図を対比して
観察すれば、かなりの白抜は現象が発生していることが
理解できよう。
For example, when MTF correction is applied to the 8-value quantized image shown in FIG. 2 using the filter shown in FIG. 1(a), the corrected image becomes as shown in FIG. 3. If you compare and observe Figures 2 and 3, you will understand that a phenomenon occurs in the large white areas.

以上に述べたようなMTF補正の性格を考慮し、ディジ
タル複写機などでは、扱おうとする原稿の種類に応じて
、MTF補正を行なうか否かを予め指定することも考え
られている。しかし、一般の文書などは文4字画像部分
と中間調画像部分とが混在しているのが普通であり、原
稿の種類(=よってMTF補正の有無を予め指定するの
では、殆んどの原稿に対してMTF補正を施せなくなり
、MTF補正の機能を設ける意味が無くなってしまう。
Considering the above-mentioned characteristics of MTF correction, it has been considered that in digital copying machines and the like, it is possible to specify in advance whether or not to perform MTF correction depending on the type of document to be handled. However, it is normal for general documents to contain a mixture of 4-character image parts and halftone image parts, and it is difficult to specify the type of original (= therefore, the presence or absence of MTF correction in advance) in most original documents. MTF correction cannot be applied to the data, and there is no point in providing an MTF correction function.

したがって本発明の目的は、文字や写真などの混在した
画像に対しても適用でき、また処理対象画像の読取り感
度のバラツキや量子化ノイズなどによる影響を軽減し、
良質な画像を再現することのできる画像補正処理方法を
提供2することである。
Therefore, it is an object of the present invention to be applicable to images containing a mixture of text and photographs, and to reduce the effects of variations in reading sensitivity and quantization noise of images to be processed.
An object of the present invention is to provide an image correction processing method capable of reproducing high-quality images.

多値量子化画像を詳しく観察すると、一般(=、文字部
分や線画部分では濃度レベルの変化が急激であるのに対
し、写真などの中間調画像の部分では濃度変化ははるか
に緩やかである。本発明はこのような性質を利用し、M
TF補正を選択的に施そうとするものである。
If you look closely at a multilevel quantized image, you will notice that in general (=, the density level changes rapidly in text and line drawing parts, but the density changes in halftone images such as photographs) are much more gradual. The present invention utilizes such properties to
This is an attempt to selectively apply TF correction.

すなわち、本発明による画像補正処理方法の主たる特徴
は1、多値量子化画像の注目する画素(注目画素)とそ
の周囲の画素を参照し、該注目画素を含む限定された小
領域(−おける濃度変化を調べ、ある特定の程度以上に
急激な濃度変化を検出したときにだけ該注目画素(=M
TF補正を施すことにある。
That is, the main features of the image correction processing method according to the present invention are 1. A pixel of interest (pixel of interest) of a multilevel quantized image and its surrounding pixels are referred to, and a limited small area (-) containing the pixel of interest is The density change is checked, and only when a sudden density change exceeding a certain degree is detected, the pixel of interest (=M
The purpose is to perform TF correction.

以下、本発明による画像補正処理の具体例を説明する。A specific example of the image correction process according to the present invention will be described below.

今、公知の方法で得られたn値量子化画像のある画素に
注目したとき、その注目画素を第4図のQlとし、その
周囲の画素をQl−Q6 、 Qs〜Q13とする。
Now, when focusing on a certain pixel of an n-value quantized image obtained by a known method, let the pixel of interest be Ql in FIG. 4, and the surrounding pixels be Ql-Q6 and Qs to Q13.

注目画素Q71−MTF補正を施すべきか否かを判定す
るために、画素Q1〜Q13について次のT1−T12
の値を算出する。
In order to determine whether or not to perform the target pixel Q71-MTF correction, the following T1-T12 for pixels Q1 to Q13 are applied.
Calculate the value of

T+  、== Q2 +Q3 +Q4T2  =Q6
 +Q7 +Qs T3・−Q10+ Qll + Q12T4  = Q
2 +Q6 +Q10 Ts  −Q3 +Q7 +Q11 T6  = Q4 +Qs +Q12 T7=Qろ−+ Q6 + Q3 Ts  =Q1o+Q7+Q4 T9  = Q11+Q8 +Qs Too = Ql +Q6 +Q11 T11= Q2 +Q? + Ql2   。
T+ , == Q2 +Q3 +Q4T2 =Q6
+Q7 +Qs T3・-Q10+ Qll + Q12T4 = Q
2 +Q6 +Q10 Ts -Q3 +Q7 +Q11 T6 = Q4 +Qs +Q12 T7=Qro-+ Q6 + Q3 Ts =Q1o+Q7+Q4 T9 = Q11+Q8 +Qs Too = Ql +Q6 +Q11 T11= Q2 +Q? +Ql2.

Tl2 = Q3 +Q8 + Q13上記のTl s
 T2 e T3はそれぞれ横方向に並ぶ3画素の濃度
レベルの和、T4 * T5 * T6はそれぞれ縦方
向に並ぶ3画素の濃度レベルの和、T7.T8゜T9は
それぞれ右斜め方向に並ぶ3画素の濃度レベルの和、T
10 * T11 e T12はそれぞれ左斜め方向C
二並ぶ3画素の濃度レベルの和である。
Tl2 = Q3 +Q8 + Q13 Tl s above
T2 e T3 is the sum of the density levels of three pixels arranged in the horizontal direction, T4 * T5 * T6 is the sum of the density levels of three pixels arranged in the vertical direction, T7 . T8゜T9 is the sum of the density levels of three pixels arranged diagonally to the right, T
10 * T11 e T12 are respectively diagonal left direction C
This is the sum of the density levels of three pixels in a row.

次に、注目画素Q7を含む画素の濃度レベル和と注目画
素を含まない3画素の濃度レベル和との差の絶対値を各
方向毎に算出し、次のような判定を行ナウ。こ\でT(
(はスレッシュホールドレベルである。
Next, the absolute value of the difference between the sum of density levels of pixels including the pixel of interest Q7 and the sum of density levels of three pixels not including the pixel of interest is calculated for each direction, and the following determination is made. This is T (
(is the threshold level.

(i)  I T2−T11≧’rHまたは1T2T3
1≧TIIならば、a = 1 (ii)  ITs  T41≧THまたは1T5−T
61≧T IIならば、a = 1 佃)  1T8−T71≧THまたはI Ts −T9
1≧Tllならば、a = 1 4v)  1T1t  Ttol≧T’Hまたは1Tu
−T121≧THならば、a = 1 (φ 上記の(1)〜翰のいずれの条件も成立しなけれ
ば、a = Q この判定結果aが0なら、注目画素Q7はMTF補正を
行なわず、そのま\のレベルで出力する。
(i) I T2-T11≧'rH or 1T2T3
If 1≧TII, a = 1 (ii) ITs T41≧TH or 1T5-T
If 61≧T II, a = 1 Tsukuda) 1T8-T71≧TH or I Ts -T9
If 1≧Tll, a = 1 4v) 1T1t Ttol≧T'H or 1Tu
-T121≧TH, then a = 1 (φ) If none of the above conditions (1) to 2 hold true, a = Q If the result of this determination is 0, the target pixel Q7 will not undergo MTF correction, Output at the same level.

a = 1なら、注目画素Q71:MTF補正を施して
出力する。
If a = 1, target pixel Q71: MTF correction is applied and output.

尚、MTF補正は、従来と同様に第1図(a)に示すよ
うなディジタルフィルタを用いて行なってよい。
Incidentally, the MTF correction may be performed using a digital filter as shown in FIG. 1(a) as in the conventional case.

例として、画素濃度をレベルO(白)〜レベル7(黒)
1=8値量子化した第2図の画像の補正処理を考えよう
。画像の平均レベル差/画素を3、つまり、上記の判定
閾値T Hを9とおき、MTF補正フィルタとして第1
図(a)のものを用いるとする。そうすると、第2図の
画像の補正画像は第5図のようになる。
As an example, set the pixel density to level O (white) to level 7 (black).
Let us consider the correction processing of the image shown in FIG. 2 which has been quantized with 1=8 values. The average level difference/pixel of the image is set to 3, that is, the above judgment threshold T H is set to 9, and the first MTF correction filter is
Let us use the one shown in Figure (a). Then, the corrected image of the image in FIG. 2 becomes as shown in FIG. 5.

第2図と第5図を対比すれば、濃度変化の緩やかな部分
にはMTF補正が行なわれず、白抜けなどの好ましくな
い現象は生じていないことを理解できる。一方1.濃度
変化の急激な部分はMTF補正が行なわれ、より鮮明に
なっていることが認められる。
Comparing FIG. 2 and FIG. 5, it can be seen that no MTF correction is performed in portions where the density changes are gradual, and undesirable phenomena such as white spots do not occur. On the other hand 1. It can be seen that the MTF correction is performed on the parts where the density changes sharply, and the parts become clearer.

なお、上例では注目画素のMTF補正の適否の判定に、
横、縦、斜めの各方向について3画素の組、計12組を
考えたが、この組数を減らしたり、あるいは更に増加さ
せることも可能である。つまり、参照すべき注目画素周
辺画素の数は、必ずしも上例に限定されるものではない
。壕だ、MTF補正の適否の判定式も上例に限るもので
はなく、濃度変化を正しく反映すれば別の判定式によっ
てもよい。さら(二マた、MTF補正フィルタも前掲の
ものに限るものではない。
In addition, in the above example, to determine whether the MTF correction of the pixel of interest is appropriate,
Although a total of 12 sets of three pixels in each of the horizontal, vertical, and diagonal directions were considered, it is also possible to reduce or even increase the number of sets. In other words, the number of pixels surrounding the pixel of interest to be referenced is not necessarily limited to the above example. However, the formula for determining whether MTF correction is appropriate is not limited to the above example, and another formula may be used as long as it correctly reflects density changes. Furthermore, the MTF correction filter is not limited to the one mentioned above.

次に、本発明による画像補正を実行する装置の一例を第
6図によって説明する。
Next, an example of an apparatus for performing image correction according to the present invention will be described with reference to FIG.

公知のスキャナ(図示せず)によって原画像をサンプリ
ングして得た入力画信号は、量子化器100によって例
えば8値量子化され、入カバソファ101に一時蓄積さ
れる。MTF補正器105は、8値量子化画像のその時
点における注目画素Q7とその周囲の画素Q3. Q6
. Qst Qll (第1図のフィルタによりMTF
補正をするとして)を入力バッファ101より取り込み
1、注目画素のMTF補正レベしQ7を出力する。
An input image signal obtained by sampling an original image using a known scanner (not shown) is subjected to, for example, eight-level quantization by a quantizer 100, and is temporarily stored in an input sofa 101. The MTF corrector 105 calculates the current pixel Q7 of the 8-level quantized image and the surrounding pixels Q3 . Q6
.. Qst Qll (MTF by the filter in Figure 1)
(1) is taken in from the input buffer 101, the MTF correction level of the pixel of interest is determined, and Q7 is output.

加算器102は、注目画素Q7とその周囲の画素Q1〜
Q6 、 Qs〜Q13を入力バッファ101より取り
込み、前述のT1−T13の値を求める。このT1−T
13の値を用い、比較判定器103で前述の濃度変化に
関する判定が行なわれ、その判定結果(前述のa)は出
力レベル選択器104に送られる。
The adder 102 selects the pixel of interest Q7 and the surrounding pixels Q1 to Q7.
Q6, Qs to Q13 are taken in from the input buffer 101, and the above-mentioned value of T1-T13 is determined. This T1-T
Using the value No. 13, the comparison/judgment unit 103 makes a determination regarding the density change described above, and the determination result (a) is sent to the output level selector 104.

出力レベル選択器104は、比較判定回路103の判定
結果が有効(a=1)のときは、MTF補正器105よ
り送られるMTF補正レベしQ7′ヲ出カバソファ10
6へ送り、そうでなければ、入カバソファ101より送
られる注目画素レベルQ7を選択して出力バッファ10
6へ送る。かくして、出力バッファ106を経由して、
8値量子化画像の補正画像の信号が出力される。
When the judgment result of the comparison judgment circuit 103 is valid (a=1), the output level selector 104 selects the MTF correction level sent from the MTF corrector 105 and outputs the output cover sofa 10 from Q7'.
If not, select the pixel level of interest Q7 sent from the input cover sofa 101 and send it to the output buffer 10.
Send to 6. Thus, via the output buffer 106,
A signal of a corrected image of the 8-value quantized image is output.

本発明の画像補正処理方法は以上に説明した如くであり
、文字画像、写真画像、あるいは、これら両者が混在し
た画像など、画像の種類に関係なく補正処理を適用でき
、また、画像の読取り手段の感度のバラツキによる濃度
牟うや量子化ノイズの影響も最小限に抑え、良好な補正
画像を得ることができ、本発明の効果は顕著である。
The image correction processing method of the present invention is as described above, and the correction processing can be applied regardless of the type of image, such as a character image, a photographic image, or an image that is a mixture of both. The effect of the present invention is remarkable because it is possible to minimize the influence of density variations and quantization noise due to variations in sensitivity, and to obtain a good corrected image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMTF補正フィルタの一例を説明する図、第2
図は8値量子化画像の一例を示す図、第3、図は第2図
の画像に単純にMTF補正した画像を示す図、第4図は
本発明(=よる画像補正の具体例を説明するための図、
第5図は第2図の画像を本発明の方法により補正処理し
た画像を示す図、第6図は本発明の画像補正処理を実行
するための装置の一例を示すブロック図ゼある。 100・・・量子化器、  101・・・入カッ(ツフ
ァ、102・・・加算器、 103・・・比較判定器、
  104・・・出力レベル選択器、 105・・・M
TF補正器、 106・・・出力バッファ。 第1図 第3図
Figure 1 is a diagram explaining an example of an MTF correction filter, Figure 2 is a diagram explaining an example of an MTF correction filter.
The figure shows an example of an 8-value quantized image, the third figure shows an image obtained by simply performing MTF correction on the image in figure 2, and figure 4 explains a specific example of image correction according to the present invention. diagram for,
FIG. 5 is a diagram showing an image obtained by correcting the image in FIG. 2 by the method of the present invention, and FIG. 6 is a block diagram showing an example of an apparatus for executing the image correction process of the present invention. 100... Quantizer, 101... Input buffer, 102... Adder, 103... Comparison judge,
104...Output level selector, 105...M
TF corrector, 106...output buffer. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、 多値量子化画像の注目する画素(注目画素)とそ
の周囲の画素を参照し、該注目画素を含む限定された小
領域における濃度変化を調べ、ある特定の程度以上に急
激な濃度変化が検出されたときだけ該注目画素をM T
 F (Modulation’l’ransfer 
Function )補正を施すことを特徴とする画像
補正処理方法。
1. Referring to the pixel of interest (pixel of interest) in the multi-level quantized image and its surrounding pixels, examine density changes in a limited small area including the pixel of interest, and detect density changes that are more rapid than a certain degree. Only when the pixel of interest is detected is M T
F (Modulation'l'transfer
Function) An image correction processing method characterized by performing correction.
JP56109765A 1981-07-14 1981-07-14 Picture compensation processing method Pending JPS5810963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109765A JPS5810963A (en) 1981-07-14 1981-07-14 Picture compensation processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109765A JPS5810963A (en) 1981-07-14 1981-07-14 Picture compensation processing method

Publications (1)

Publication Number Publication Date
JPS5810963A true JPS5810963A (en) 1983-01-21

Family

ID=14518655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109765A Pending JPS5810963A (en) 1981-07-14 1981-07-14 Picture compensation processing method

Country Status (1)

Country Link
JP (1) JPS5810963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
EP0459389A2 (en) * 1990-05-30 1991-12-04 Sharp Kabushiki Kaisha Image signal processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
EP0459389A2 (en) * 1990-05-30 1991-12-04 Sharp Kabushiki Kaisha Image signal processing apparatus
US5297221A (en) * 1990-05-30 1994-03-22 Sharp Kabushiki Kaisha Image signal processing apparatus
EP0459389B1 (en) * 1990-05-30 1997-08-06 Sharp Kabushiki Kaisha Image signal processing apparatus

Similar Documents

Publication Publication Date Title
JPH0254683A (en) Picture scanner and its correction method
JPH0787313A (en) System and device for image processing
US6178010B1 (en) Image processing device
JPS5810963A (en) Picture compensation processing method
JPH01115271A (en) Image processor
JPS58173974A (en) Processing method of picture sharpening
JPH09212642A (en) Image processor
US5150223A (en) Copier with single pass auto exposure
JPS5888969A (en) Processing method for clearing picture
JPS6180964A (en) Picture signal processing method
JPH0457274B2 (en)
JP2857906B2 (en) Halftone binarization processor
JPS632517B2 (en)
JP2629183B2 (en) Image area identification device
JP3281400B2 (en) Image playback device
JPH04270561A (en) Picture processor
JPH01252066A (en) Halftone picture separation processor
JPS6356063A (en) Picture processing method
JPH0561677B2 (en)
JPH06225122A (en) Image forming device
JPH0832802A (en) Image processing unit
JPH0276474A (en) Picture processor
JPS63197171A (en) Digital copying machine
JPS6180970A (en) Picture signal processor
Conway SI 675-Digitization for Preservation