JPS58107856A - Variable venturi carburetor - Google Patents

Variable venturi carburetor

Info

Publication number
JPS58107856A
JPS58107856A JP20606081A JP20606081A JPS58107856A JP S58107856 A JPS58107856 A JP S58107856A JP 20606081 A JP20606081 A JP 20606081A JP 20606081 A JP20606081 A JP 20606081A JP S58107856 A JPS58107856 A JP S58107856A
Authority
JP
Japan
Prior art keywords
piston
suction piston
face
suction
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20606081A
Other languages
Japanese (ja)
Other versions
JPH0229861B2 (en
Inventor
Norihiko Nakamura
徳彦 中村
Takaaki Ito
隆晟 伊藤
Takashi Kato
孝 加藤
Masaharu Hayakawa
早川 正春
Satomi Wada
里美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP20606081A priority Critical patent/JPS58107856A/en
Publication of JPS58107856A publication Critical patent/JPS58107856A/en
Publication of JPH0229861B2 publication Critical patent/JPH0229861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To introduce larger negative pressure to a negative pressure chamber, by communicating a Venturi part formed by a suction piston and the negative pressure chamber of said piston through a suction hole formed in the point end face of said piston gradually protruded toward the upstream side. CONSTITUTION:The captioned carburetor is operated in such a manner that a suction piston 3 is moved responsively to an intake air quantity to change area of a Venturi part 8 while a needle 4 connected to said piston 3 is intruded into a fuel passage 20 to cooperatively work with a metering jet 21 to measure fuel. Here the point end face of the piston 3 is gradually protruded toward the upstream side from the needle 4 while a protrusion well 24 is formed on the internal wall face of an intake passage located at a face-to-face position to the point end face of the piston 3. Then a throttle part is formed between these protruded point end face 25 and protrusion wall 24, and the Venturi part 8 formed in the downstream of said throttle part and a negative pressure chamber 15 of the suction piston are communicated through a suction hole 18 formed to said face 25.

Description

【発明の詳細な説明】 本発明は可変ベンチュリ型気化器に関する。[Detailed description of the invention] The present invention relates to variable venturi type carburetors.

可変ベンチュリ型気化器においてサクションピストンを
押圧する圧縮ばねのばね力を強くするとサクションピス
トンの摺動ヒステリシスが小さくなるためにサクション
ピストンのリフト量が増大するときと減少するときとで
供給燃料量のばらつきが小さくなり、斯くして吸入空気
量に応じた適切な量の燃料を常時供給することができる
。値に、サクションピストンを押圧する圧縮ばねのばね
力を強くするとサクションピストンの駆動力が大きくな
るためにサクションピストンに異物が挾まったとき、或
いはサクションピストンが凍結したときでもサクション
ピストンを移動させることができる。従って可変ペンチ
ーリ型気化器ではサクシロンピストンを押圧する圧縮ば
ねのばねカを強くすることが好ましい。しかしながら従
来の可変ベンチュリ型気化器ではこの圧縮ばねのばね力
を強くすると吸入空気量が多いときにサクションピスト
ンが吸気通路を全開しなくなるために圧縮ばねのばね力
を強めることができない。
In a variable venturi type carburetor, when the spring force of the compression spring that presses the suction piston is increased, the sliding hysteresis of the suction piston becomes smaller, which causes variations in the amount of fuel supplied when the lift amount of the suction piston increases and when it decreases. becomes small, and thus an appropriate amount of fuel can be constantly supplied according to the amount of intake air. If the spring force of the compression spring that presses the suction piston is strengthened, the driving force of the suction piston will increase, making it possible to move the suction piston even when a foreign object is caught in the suction piston or when the suction piston is frozen. Can be done. Therefore, in the variable Pencil type carburetor, it is preferable to strengthen the spring force of the compression spring that presses the saxilon piston. However, in conventional variable venturi type carburetors, if the spring force of the compression spring is strengthened, the suction piston will not fully open the intake passage when the amount of intake air is large, so the spring force of the compression spring cannot be strengthened.

本発明はサクションピストンを押圧する圧縮ばねのばね
力を強めても吸入空気量が多いときにサクションピスト
ンが吸気通路を全開できるようにした可変ペンチ−り型
気化器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a variable pliers type carburetor that allows the suction piston to fully open the intake passage when the amount of intake air is large even if the spring force of the compression spring that presses the suction piston is increased.

以下、姫付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1は気化器本体、2は垂直方向に
延びる吸気通路、3は吸気通路2内を横方向に移動する
サクションピストン、4はサクションピストン3の先端
面に取付けられたニードル、5はサクションピストン3
の先端面に対向して吸気通路2の内壁面上に固定された
スペーサ、6はサクションピストン3下流の吸気通路2
内に設けられたスロットル弁、7は気化器フロート室を
夫々示し、サクションピストン3の先端面とスペーサ5
の間にはペンチーリ部8が珍成される。気化器本体1 
、には中空円筒状のケーシング9が固定され、このケー
シング9にはケーシング9の内部でケーシング9の軸線
方向に延びる案内スリーブ】0が取付けられる。案内ス
リーブ10内には多数のボール11を具えた軸受12が
挿入され、また案内スリーブ10の外端部は盲蓋13に
よって閉鎖される。一方、サクシ1ンピストン3には案
内ロッド14が固定され、この案内ロッド14は軸受】
2内に案内ロッド14の軸線方向に移動可能に挿入され
る。このようにサクションピストン3は軸受12を介し
てケーシング9により支持されるのでサクションピスト
ン3はその軸線方向に滑らかに移動することができる。
Referring to FIG. 1, 1 is a carburetor main body, 2 is an intake passage extending vertically, 3 is a suction piston that moves laterally within the intake passage 2, and 4 is a needle attached to the tip surface of the suction piston 3. , 5 is suction piston 3
A spacer 6 is fixed on the inner wall surface of the intake passage 2 facing the tip surface of the intake passage 2 downstream of the suction piston 3.
Throttle valves 7 are provided inside the carburetor float chamber, and the tip surface of the suction piston 3 and the spacer 5 are connected to each other.
In between, a penchili part 8 is created. Vaporizer body 1
A hollow cylindrical casing 9 is fixed to the casing 9, and a guide sleeve 0 extending in the axial direction of the casing 9 inside the casing 9 is attached. A bearing 12 with a number of balls 11 is inserted into the guide sleeve 10 , and the outer end of the guide sleeve 10 is closed by a blind cover 13 . On the other hand, a guide rod 14 is fixed to the piston 3, and this guide rod 14 has a bearing.
2 so as to be movable in the axial direction of the guide rod 14. Since the suction piston 3 is thus supported by the casing 9 via the bearing 12, the suction piston 3 can move smoothly in its axial direction.

ケーシング9の内部はサクションピストン3によって負
圧室15と大気圧室16とに分割され、負圧室15内に
はサクションピストン3を常時ベンチュリ部8に向けて
押圧する圧縮ばね17が挿入される。負圧室15はサク
ションピストン3に形成されたサクション孔18を介し
てベンチュリ部8に連結され、大気圧室16は気化器本
体1に形成された空気孔19を介してサクションピスト
ン3上流の吸気通路2内に連結される。
The interior of the casing 9 is divided by the suction piston 3 into a negative pressure chamber 15 and an atmospheric pressure chamber 16, and a compression spring 17 is inserted into the negative pressure chamber 15 to constantly press the suction piston 3 toward the venturi section 8. . The negative pressure chamber 15 is connected to the venturi section 8 through a suction hole 18 formed in the suction piston 3, and the atmospheric pressure chamber 16 is connected to the intake air upstream of the suction piston 3 through an air hole 19 formed in the carburetor body 1. It is connected within the passage 2.

一方、気化器本体1内にはニードル4が侵入可能なよう
にニードル4の軸線方向に延びる燃料通路20が形成さ
れ、この燃料通路20内には計量ジェット21が設けら
れる。計量ジェット21上流の燃料通路20は下方に延
びる燃料バイブ22を介してフロート室7に連結され、
フロート室7内の燃料はこの燃料パイプ22を介して燃
料通路20内に送り込まれる。更に、スペーサ5には燃
料通路20と共軸的に配置された中空円筒状のノズル2
3が固定される。このノズル23はスペーサ5の内壁面
からベンチュリ部8内に突出し、しかもノズル23の先
端部の上半分は下半分から更にサクションピストン3に
向けて突出している。
On the other hand, a fuel passage 20 extending in the axial direction of the needle 4 is formed in the carburetor body 1 so that the needle 4 can enter therein, and a metering jet 21 is provided within this fuel passage 20. A fuel passage 20 upstream of the metering jet 21 is connected to the float chamber 7 via a downwardly extending fuel vibe 22.
The fuel in the float chamber 7 is sent into the fuel passage 20 via this fuel pipe 22. Furthermore, the spacer 5 has a hollow cylindrical nozzle 2 disposed coaxially with the fuel passage 20.
3 is fixed. This nozzle 23 protrudes into the venturi portion 8 from the inner wall surface of the spacer 5, and the upper half of the tip of the nozzle 23 further protrudes from the lower half toward the suction piston 3.

ニードル4はノズル23並びに計量ジェノ)21内を貫
通して延び、燃料はニードル4と計量ジェット21間に
形成される環状間隙により計量された後にノズル23か
ら吸気通路2内に供給される。
The needle 4 extends through the nozzle 23 as well as the metering jet 21, and the fuel is metered by the annular gap formed between the needle 4 and the metering jet 21 before being fed from the nozzle 23 into the intake passage 2.

第1図から第4図を参照すると、サクションピストン3
の先端面はニードル4から上流に向けて徐々に隆起して
おり、この隆起面25の中央部には断面V字形の溝26
が形成される。従って隆起面25は溝26の底部に向け
て傾斜する一対の傾斜壁部25aを有し、これら傾斜壁
部25mの一方にサクシロン孔18が形成される、第4
図かられかるようにサクションピストン先端面の上流端
27は7字形をなしており、このV字形上流端27と対
向する吸気通路2の内壁面上には吸気通路2内に向けて
水平方向に突出する隆起壁24(第1図)が形成される
。これらのサクションピストン先端面上流端27と隆起
壁24はそれらの間に吸入空気流入制御絞9部を形成す
る。機関運転が開始されると空気は吸気通路2内を下方
に向けて流れる。このとき空気流はピストン先端面上流
端27と隆起壁24間において絞られるためにベンチュ
リ部8には負圧が発生し、との負圧がサクション孔18
を介して負王室15内に導びかれる。サクションピスト
ン3は負圧室15と大気圧室】6との圧力差が圧縮ばね
17のばね力により定まるほぼ一定圧となるように、即
ちベンチュリ部8内の負圧がほぼ一定ととなるように移
動する。
Referring to FIGS. 1 to 4, the suction piston 3
The distal end surface of the needle 4 is gradually raised upstream from the needle 4, and a groove 26 with a V-shaped cross section is formed in the center of this raised surface 25.
is formed. Therefore, the raised surface 25 has a pair of inclined wall portions 25a that are inclined toward the bottom of the groove 26, and the succilon hole 18 is formed in one of these inclined wall portions 25m.
As can be seen from the figure, the upstream end 27 of the tip surface of the suction piston has a 7-shape, and on the inner wall surface of the intake passage 2 facing this V-shaped upstream end 27, there is a horizontal direction toward the inside of the intake passage 2. A protruding raised wall 24 (FIG. 1) is formed. The upstream end 27 of the suction piston tip surface and the raised wall 24 form an intake air inflow control restrictor 9 between them. When engine operation is started, air flows downward in the intake passage 2. At this time, the airflow is restricted between the upstream end 27 of the piston tip surface and the raised wall 24, so negative pressure is generated in the venturi portion 8, and this negative pressure is applied to the suction hole 18.
It is led into the negative royal room 15 via. The suction piston 3 is arranged so that the pressure difference between the negative pressure chamber 15 and the atmospheric pressure chamber 6 becomes an almost constant pressure determined by the spring force of the compression spring 17, that is, the negative pressure inside the venturi section 8 becomes almost constant. Move to.

このようにサクションピストン3はベンチュリ部8内の
負圧が一定となるように移動するがベンチュリ部8内の
負圧はベンチュリ部8内の全領域に亘って一定ではなく
、ベンチュリ領域内で場所毎に夫々異なった大きさにな
っている。第6図は第5図に示すように種々の位置にサ
クション孔】8を設けた場合に負王室15内に発生する
負圧の大きさを示している。第6図において縦軸Pは負
圧室15の負圧(mmAq ) k示し、横軸Qは吸入
空気量(gr/see )を示す。なお、第6図におい
て曲a a + b * c 1 dは夫々第5図の位
置a。
In this way, the suction piston 3 moves so that the negative pressure inside the venturi section 8 is constant, but the negative pressure inside the venturi section 8 is not constant over the entire area inside the venturi section 8, and there are places within the venturi area. Each one has a different size. FIG. 6 shows the magnitude of negative pressure generated within the negative chamber 15 when suction holes 8 are provided at various positions as shown in FIG. In FIG. 6, the vertical axis P indicates the negative pressure (mmAq) k in the negative pressure chamber 15, and the horizontal axis Q indicates the intake air amount (gr/see). In addition, in FIG. 6, the songs a a + b * c 1 d are at positions a in FIG. 5, respectively.

b、c、dにサクション孔18を設けた場合の実験結果
を示す。更に、第6図において破線eは第7図並びに第
8図に示すようにサクションピストン3が平坦な先端面
を有し、ニードル4後流のサクションピストン先端面に
サクション孔1Bを形成しだ従来の可変ベンチュリ型気
化器について示している。第6図かられかるようにサク
ション孔18を第5図の位置aに形成した場合には他の
位置す、c、d並びに従来の可変ベンチュリ型気化器(
破&le)に形成した場合に比べて負圧室15内の負圧
がかなり大きくなる。負圧室15内の負圧が大きくなる
ということはそれだけ圧縮ばね17のばね力を強めるこ
とができることを意味している。
Experimental results when suction holes 18 are provided in b, c, and d are shown. Furthermore, in FIG. 6, the broken line e indicates that the suction piston 3 has a flat end surface as shown in FIG. 7 and FIG. A variable venturi type carburetor is shown. When the suction hole 18 is formed at position a in FIG. 5 as shown in FIG.
The negative pressure inside the negative pressure chamber 15 becomes considerably larger than that in the case where the negative pressure chamber 15 is formed with a break. An increase in the negative pressure in the negative pressure chamber 15 means that the spring force of the compression spring 17 can be increased accordingly.

このように本発明によればサクションピストン先端面の
形状を独特の形状とすることにより同一の吸入空気量に
対して従来よりも高い負圧をサクションピストンの負圧
室内に導ひくことができ、斯くしてサクションピストン
を押圧する圧縮ばねのばね力を強めることができる。そ
の結果、サクションピストンの摺動ヒステリシスが小さ
くなるために燃料の供給量が安定し、更にサクションピ
ストンに異物が挾まったり、或いはサクションピストン
が凍結してもサクションピストンを強制的に移動せしめ
ることができる。また、第6図において曲線aと破線e
tl−比較すると吸入空気量Qが多いときには負圧Pに
大きな差があるが吸入空気iQが少なくなると負圧Pに
ほとんど差がなくなる。従って吸入空気量Qが多いとき
にサクションピストンが吸気通路を全開するようにサク
ションピストンの圧縮ばねのばね力を設定すると、吸入
空気量Qが少ない場合には本発明の方が従来の可変ベン
チュリ型気化器に比べてベンチエリ部の負圧が大きくな
り、それだけ吸入空気の流速が速められる。従って吸入
空気量Qが少ないときの燃料の霧化を促進できることに
なる。
As described above, according to the present invention, by making the shape of the suction piston tip end surface unique, it is possible to introduce a higher negative pressure into the negative pressure chamber of the suction piston than before for the same amount of intake air. In this way, the spring force of the compression spring that presses the suction piston can be strengthened. As a result, the sliding hysteresis of the suction piston is reduced, so the amount of fuel supplied becomes stable, and even if a foreign object gets caught in the suction piston or the suction piston freezes, the suction piston can be forcibly moved. . In addition, in Fig. 6, the curve a and the broken line e
When compared with tl, there is a large difference in the negative pressure P when the intake air amount Q is large, but when the intake air iQ is small, there is almost no difference in the negative pressure P. Therefore, if the spring force of the compression spring of the suction piston is set so that the suction piston fully opens the intake passage when the intake air amount Q is large, when the intake air amount Q is small, the present invention is better than the conventional variable venturi type. Compared to the carburetor, the negative pressure in the vent area is greater, and the flow rate of intake air is increased accordingly. Therefore, atomization of fuel can be promoted when the amount of intake air Q is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による可変ベンチュリ型気化器の側面断
面図、第2図は第1図の矢印AK沿ってみたサクシ1ン
ピストン先端面の正面図、第3図は第2図のm−■sに
沿ってみた断面図、第4図は第2図のIV−IV線に沿
ってみた断面図、第5図はサクションピストン先端面の
正面図、第6図はサクシ目ンピストン負圧呈内の負圧と
吸入空気量の関係を示す図、第7図は従来のサクション
ピストンの側面断面図、第8図は第7図のサクシ日ンピ
ストン先端面の正面図である。 1・・・気化器本体、3・・サクションピストン、4・
・ニードル、6山スロツトル弁、18山サクシlン孔、
24・・・隆起壁。 特許出願人 トヨタ自動車工業株式会社 愛三工業株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士 中山恭介 弁理士  山 口 昭 之
Fig. 1 is a side cross-sectional view of a variable venturi type carburetor according to the present invention, Fig. 2 is a front view of the front end of the piston, viewed along arrow AK in Fig. 4 is a sectional view taken along the line IV-IV in FIG. FIG. 7 is a side sectional view of a conventional suction piston, and FIG. 8 is a front view of the tip of the suction piston shown in FIG. 1... Carburetor body, 3... Suction piston, 4...
・Needle, 6-way throttle valve, 18-way spool hole,
24... Raised wall. Patent applicant Toyota Motor Corporation Aisan Industries, Ltd. Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Nakayama Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 吸入空気量に応動してベンチュリ面積を変化させるサク
ションピストンと、該サクションピストンに連結された
ニードルと、該ニードルが侵入可能なように該ニードル
の軸線方向に延びる燃料通路と、該燃料通路内に設けら
れて該ニードルと協働する計量ジェットとを具備した可
変ベンチエリ型気化器において、サクションピストン先
端面と対向する吸気通路内壁面上に吸気通路内に突出す
る隆起壁を形成し、上記サクションピストン先端面を上
記ニードルから上流側に向かって徐々に隆起せしめて該
隆起先端面の上流側端部と該隆起壁間に吸入空気流入制
御絞p部を形成し、該絞り部の後流に形成されるベンチ
ュリ部とサクションピストン負圧室とを連通するサクシ
ョン孔をサクションピストンの上記隆起先端面上に形成
した可変ベンチュリ型気化器。
A suction piston that changes the venturi area in response to the amount of intake air, a needle connected to the suction piston, a fuel passage extending in the axial direction of the needle so that the needle can enter, and a fuel passage inside the fuel passage. In the variable venteri type carburetor, which is provided with a metering jet that is provided and cooperates with the needle, a raised wall projecting into the intake passage is formed on an inner wall surface of the intake passage opposite to the tip surface of the suction piston, and the suction piston The tip surface is gradually raised upstream from the needle to form an intake air inflow control throttle section between the upstream end of the raised tip surface and the raised wall, and is formed downstream of the throttle section. A variable venturi type carburetor in which a suction hole is formed on the raised tip surface of the suction piston to communicate the venturi portion and the suction piston negative pressure chamber.
JP20606081A 1981-12-22 1981-12-22 Variable venturi carburetor Granted JPS58107856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20606081A JPS58107856A (en) 1981-12-22 1981-12-22 Variable venturi carburetor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20606081A JPS58107856A (en) 1981-12-22 1981-12-22 Variable venturi carburetor

Publications (2)

Publication Number Publication Date
JPS58107856A true JPS58107856A (en) 1983-06-27
JPH0229861B2 JPH0229861B2 (en) 1990-07-03

Family

ID=16517188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20606081A Granted JPS58107856A (en) 1981-12-22 1981-12-22 Variable venturi carburetor

Country Status (1)

Country Link
JP (1) JPS58107856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143257A (en) * 1984-08-07 1986-03-01 Toyota Motor Corp Variable venturi type carburetor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859344A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Variable venturi type carburettor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859344A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Variable venturi type carburettor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143257A (en) * 1984-08-07 1986-03-01 Toyota Motor Corp Variable venturi type carburetor

Also Published As

Publication number Publication date
JPH0229861B2 (en) 1990-07-03

Similar Documents

Publication Publication Date Title
US4530805A (en) Flow regulating carburetors
US4495112A (en) Variable venturi-type carburetor
JPS58107856A (en) Variable venturi carburetor
US4275016A (en) Variable venturi type carburetor
JPH032780Y2 (en)
JPS58107849A (en) Variable venturi carburetor
US4464311A (en) Variable venturi-type carburetor
JPH0341671B2 (en)
JPH0110430Y2 (en)
US1957631A (en) Carburetor
JPS5915659A (en) Variable venturi type carbureter
JP4206262B2 (en) carburetor
GB2112863A (en) Piston air valve constant suction carburettor
JPS58107845A (en) Variable venturi carburetor
JPS58107848A (en) Variable venturi carburetor
JPS58107853A (en) Variable venturi carburetor
JPS58126454A (en) Variable venturi carburetor
JPH0238058Y2 (en)
JPS5999052A (en) Variable venturi type carburettor
JPH0615850B2 (en) Fuel supply controller for variable bench lily type carburetor
JPS6143258A (en) Variable venturi type carburetor
JPS60153459A (en) Constant vacuum carburetor
JPS6357619B2 (en)
JPS5982554A (en) Suction gas passage of carburettor
GB2112073A (en) Engine temperature responsive control of carburettor choke piston lift