JPS5810709A - Optical system for automatic focus detecting device - Google Patents

Optical system for automatic focus detecting device

Info

Publication number
JPS5810709A
JPS5810709A JP10900581A JP10900581A JPS5810709A JP S5810709 A JPS5810709 A JP S5810709A JP 10900581 A JP10900581 A JP 10900581A JP 10900581 A JP10900581 A JP 10900581A JP S5810709 A JPS5810709 A JP S5810709A
Authority
JP
Japan
Prior art keywords
optical system
lens
optical path
path length
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10900581A
Other languages
Japanese (ja)
Inventor
Atsushi Kawahara
河原 厚
Masahiro Sawada
沢田 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP10900581A priority Critical patent/JPS5810709A/en
Publication of JPS5810709A publication Critical patent/JPS5810709A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To make the photometric range constant independently of the variation of the length of the optical path, by arranging a telecentric optical system between an object lens and an optical path length changing element to make main rays of the luminous flux going toward a photoelectric element parallel with the optical axis. CONSTITUTION:An optical path length changing element 1 consisting of plural parallel plane plates different in thickness is provided rotatably and exchangeably between an object lens 6 and a photoelectric element 7, and a lens 8 is provided between the object lens 6 and the optical path length changing element 1. The lens 8 is so arranged that its object-side focus coincides with the position of the exit pupil of the object lens 6 to constitute a telecentric optical system, and therefore, main rays emitted from an object point (a) at the outside of the axis and transmitted through a center Q of the exit pupil of the object lens 6 is refracted by the lens 8 so as to be parallel with the optical axis. Consequently, since the photometric visual field is constant even if the optical path length changing element 1 is exchanged, the focus position is detected with a high precision on a basis of the output signal of the photoelectric element 7.

Description

【発明の詳細な説明】 本発明は、顕微鏡等の光学装置の対物レンズによって形
成される空間像を光電素子上に結像させ、その像から得
られる映像信号を解析してその合焦位置を検出する自動
焦点検出装置の光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses a spatial image formed by an objective lens of an optical device such as a microscope on a photoelectric element, and analyzes a video signal obtained from the image to determine the focal position. The present invention relates to an optical system of an automatic focus detection device.

従来、光電素子を1個だけ用いて自動的に焦点位置を検
出する方法には、被検物を載せたステージ或いは対物レ
ンズを光軸方向に移動し、その結像を受光素子の前後に
動かして後、最もコントラストの高い位置を検出するも
のと、対物レンズの一部又は全部を光軸方向に振動させ
つつコントラストのより高い方向を判定し、その高い方
へレンズを移動して合焦位置を検出するものとが知らh
ている。前者では、一度合熱位置の前後に長い距離を走
査してみる必要があるため時間を要し、ステージ又は対
物レンズを動かしながら高低差の大きい被検物を連続的
に観察するような場合、そのピントずれに追従して自動
的に焦点調節を行なうようにすることが不可能である。
Conventionally, the method of automatically detecting the focal position using only one photoelectric element involves moving the stage or objective lens on which the object is placed in the optical axis direction, and moving the image to the front and back of the light receiving element. After that, the one that detects the position with the highest contrast, and the one that vibrates part or all of the objective lens in the optical axis direction, determines the direction with higher contrast, and moves the lens to that higher direction to find the in-focus position. is known to detect
ing. In the former case, it is necessary to scan a long distance before and after the combined heating position, which takes time, and when an object to be examined with a large height difference is continuously observed while moving the stage or objective lens, It is impossible to automatically adjust the focus by following the focus shift.

また、後者ではレンズを往復振動させるため、光学機器
全体が振動を起す恐れがある。これ等の欠点を解消して
、振動が殆んど無く、しかも迅速に焦点調節ができる追
従を自動焦点調節装置として、対物レンズと光電素子の
間に設けられた複数の光路長変更素子(平行平面板)を
回転交換して、光学系の光路長を迅速且周期的に変え、
像を光電素子の前後に移動させることによって合焦状態
を判定する自動焦点調節装置について、本出願人は既に
特許出願(特願昭55−91918号)をしている。し
かしこの焦点調節装置においては、光路長の伸び縮&に
従って測光範囲(測光視野)が拡大又は縮小されるので
、測定範囲が一定にならず、焦点調節の精度を低下させ
る恐れがある。
Furthermore, in the latter case, since the lens is vibrated back and forth, there is a risk that the entire optical device may vibrate. To solve these drawbacks, an automatic focusing system with almost no vibration and rapid focus adjustment was developed using multiple optical path length changing elements (parallel By rotating and exchanging the flat plate), the optical path length of the optical system can be changed quickly and periodically.
The applicant has already filed a patent application (Japanese Patent Application No. 55-91918) regarding an automatic focus adjustment device that determines the in-focus state by moving an image back and forth on a photoelectric element. However, in this focus adjustment device, the photometry range (photometering field of view) is expanded or reduced as the optical path length expands or contracts, so the measurement range is not constant and there is a risk that the accuracy of focus adjustment may be reduced.

本発明は、前記のような光路長変更手段を有する自動焦
点検出装置において、光路長の変化に拘らず、測光範囲
の変らない焦点検出光学系を得ることを目的とする。
An object of the present invention is to provide a focus detection optical system in which the photometry range does not change regardless of changes in the optical path length in an automatic focus detection apparatus having the optical path length changing means as described above.

以下、本発明を実施例について詳細に説明する。Hereinafter, the present invention will be described in detail with reference to examples.

第1図及び第2図は本出願人によって特許出願された自
動焦点調節装置の説明図である。第1図において、光路
長変更素子は透明なプラスチック又はガラスで作られた
厚さの異る5個の平行平面板1(図ではそのうちの2個
が表わされている)であって、円板状ホルダー2の孔3
に固着されおり、更にこのホルダーには前記平行↑ 平面板の無い中空孔(図示せず。)が前記平行平面板と
共にモータ−40回転軸50周りに配置されている。こ
の5個の平行平面板1と中空孔は、モーターの駆動によ
り順次顕微鏡対物レンズ6の光軸上に置かれるので、そ
の都度対物レンズ6と光電素子7の間の光路長が変化し
、モーターの回転軸501回転毎に、光電素子7の近傍
の光軸上の6つの異る位置に物体像が結像される。この
場合、結像位置は変るが、その像は単に平行移動するの
みであって、像の大きさは変らない。第2図において、
対物レンズ6によって形成される光軸上の物点0の像は
平行平面板1の無い場合はOLに、また有る場合にはO
tC夫々結像されるものとすると、物点aより発して対
物レンズ乙の中心Qを通る主光線は、平行平面板の両面
の点す及びCにて屈折した後像点A!を通る。また平行
平面板1が無い場合には゛直進して像点A1を通る。両
像点A、及び八!の光軸からの高さXは曲述のように変
らない。いま、光電素子の光軸からの幅を高さXに等し
いものと仮定すると、像点O!の位置に光電素子がある
ときはo、 A2に共役な物体Oaの外にある物点から
の光を光電素子が受光することはない。また平行平面板
が無く、光電素子が像点0.にあるときも同様である。
1 and 2 are explanatory diagrams of an automatic focusing device for which a patent application has been filed by the present applicant. In FIG. 1, the optical path length changing elements are five parallel plane plates 1 (two of which are shown in the figure) of different thickness made of transparent plastic or glass, and are circular. Hole 3 of plate holder 2
Further, this holder has a hollow hole (not shown) without the parallel plane plate arranged around the rotation axis 50 of the motor 40 together with the parallel plane plate. These five parallel plane plates 1 and the hollow holes are sequentially placed on the optical axis of the microscope objective lens 6 by driving the motor, so the optical path length between the objective lens 6 and the photoelectric element 7 changes each time, and the motor Each rotation of the rotation axis 501, object images are formed at six different positions on the optical axis near the photoelectric element 7. In this case, although the imaging position changes, the image simply moves in parallel, and the size of the image does not change. In Figure 2,
The image of object point 0 on the optical axis formed by the objective lens 6 is at OL when there is no parallel plane plate 1, and at OL when there is plane parallel plate 1.
Assuming that each image is formed at tC, the chief ray emanating from object point a and passing through the center Q of objective lens B is refracted at points A and C on both sides of the plane-parallel plate, and then returns to image point A! pass through. In addition, if there is no parallel plane plate 1, the object moves straight and passes through the image point A1. Both image points A and 8! The height X from the optical axis does not change as stated above. Now, assuming that the width of the photoelectric element from the optical axis is equal to the height X, the image point O! When the photoelectric element is located at the position o, the photoelectric element will not receive light from an object point outside the object Oa that is conjugate to A2. In addition, there is no parallel plane plate, and the photoelectric element has an image point of 0. The same is true when it is in .

しかし光電素子が像点0.の位置にあり、しかも平行平
面板が光路中にあるため像が点0.の位置に結像されて
いるとすると、点A:を通る主光線a b c Alは
o、 A、と交わる点dを通る。それ故、0IAIの位
置にある光電素子は、幅d A、に相当する分だけ余分
に物体Oa外の点からの光を受光できることになる。逆
に、平行平面板の交換によって光路長が伸びると光電素
子の測光範囲(測光視野)、、縮小される。従って測光
範囲が一定しないので、光電素子に対し異る位置に結像
する像の映像信号に差異を生じ、焦点検出精度を低下さ
せることになる。この測光範囲の変化は、第2図におけ
るように、軸外の像点に結像する光束の主光線が光軸と
傾斜していることに起因する。本発明においては、上記
の欠点を除くために対物レンズと平行平面板の間にテレ
センドリンク光学系を形成すること(より、光路長の変
化に拘らず測光範囲が一定になるように構成されている
1゜ 第3図は本発明の詳細な説明図であって1は前述の光路
長変更素子で、第1図と同様に5個の厚さの異る平行平
面板より成り、別に設けられた中空孔と共に対物レンズ
6と光電素子7の間の光路中に回転交換可能に設けられ
、更に対物レンズ6と前記の光路長変更素子1との間に
レンズ8が設けられている。このレンズの物体側焦点は
前記対物レンズ6の射出瞳の位置に一致するように配置
さh1テレセントリック光学系を構成している。従って
軸外の物点aを発して対物レンズの前記射出瞳中心。を
通る主光線ハ、レンズ8によって光軸と平行【なるよう
に屈折される。像点0.及びA1は前記平行平面板の無
いとき即ち中空孔が光軸Eにあるとき、像点O冨及びA
、は平行平面板が光軸上にあるときの物点O及びaに対
応するものである。いま、平行平面板の厚さをt1屈折
率をnとすると、光路長の差dは次の式で表わされる。
However, the photoelectric element has an image point of 0. , and since the parallel plane plate is in the optical path, the image is at point 0. Assuming that the image is formed at the position, the chief ray a b c Al passing through point A: passes through point d, which intersects o, A. Therefore, the photoelectric element located at the position 0IAI can receive an extra amount of light from a point outside the object Oa by an amount corresponding to the width dA. Conversely, if the optical path length is increased by replacing the parallel plane plate, the photometric range (photometric field of view) of the photoelectric element is reduced. Therefore, since the photometry range is not constant, differences occur in the video signals of images formed at different positions with respect to the photoelectric element, resulting in a decrease in focus detection accuracy. This change in the photometry range is due to the fact that the chief ray of the light beam focused on the off-axis image point is inclined with respect to the optical axis, as shown in FIG. In the present invention, in order to eliminate the above-mentioned drawbacks, a telesend link optical system is formed between the objective lens and the parallel plane plate (so that the photometry range is constant regardless of changes in the optical path length).゜ Fig. 3 is a detailed explanatory diagram of the present invention, in which 1 is the aforementioned optical path length changing element, which, like Fig. 1, is composed of five parallel plane plates of different thicknesses, and a separately provided hollow plate. A lens 8 is provided along with the hole so as to be rotatably exchangeable in the optical path between the objective lens 6 and the photoelectric element 7, and furthermore, a lens 8 is provided between the objective lens 6 and the optical path length changing element 1. The side focal point is arranged to match the position of the exit pupil of the objective lens 6, forming an h1 telecentric optical system.Therefore, an off-axis object point a is emitted and the main focus passing through the center of the exit pupil of the objective lens is emitted. The ray C is refracted by the lens 8 so that it is parallel to the optical axis.The image points 0 and A1 are the same as the image points 0 and A1 when there is no plane parallel plate, that is, when the hollow hole is on the optical axis E.
, correspond to object points O and a when the parallel plane plate is on the optical axis. Now, assuming that the thickness of the parallel plane plate is t1 and the refractive index is n, the difference d in optical path length is expressed by the following equation.

d中t□ 七°L故平行平面板は厚さを変えて像点を移動させても
よいし、また屈折率又は厚さと屈折率の双方を変えても
よい。この場合物点aに対応する像点A1とA2の高さ
く光軸からの距#1)は、主光線が光軸に平行であるか
ら変らない。9は絞りである。その径は、光束をグラな
いように、その位置に応じて決めらhる。絞り9は鏡筒
内面反射等によって既に生じてしまった迷光1−1st
、を防止し、また、光路長変更素子側面による入射する
光線をカットするので散乱光を低減する機能があり、そ
の結果コントラストの良い像が得られる。
d in t□ 7°L Therefore, the thickness of the parallel plane plate may be changed to move the image point, or the refractive index or both the thickness and the refractive index may be changed. In this case, the height of the image points A1 and A2 corresponding to the object point a and the distance #1) from the optical axis does not change because the chief ray is parallel to the optical axis. 9 is the aperture. Its diameter is determined according to its position so as not to distort the luminous flux. Aperture 9 collects stray light 1-1st that has already occurred due to internal reflection of the lens barrel, etc.
, and also has the function of reducing scattered light since it cuts the incident light rays by the side surface of the optical path length changing element, and as a result, an image with good contrast can be obtained.

第5図は本発明の光学系を撮影装置付顕微鏡に設けた一
実施例で、光電素子として固体撮像素子7が使用され、
光路長変更素子として厚さの異る平行平面ガラス板1が
設けられ、第1図と同様にモーターにより回転交換され
るように構成されている。6は顕微鏡対物レンズ、8は
テレセンドリンク光学系用レンズ、9は絞りで、レンズ
8から撮像素子7に至る測光光路は、光線分割鏡10に
よつで撮影装置11に向う光路から分岐されている。平
行平面ガラス板1の交換(よって周期的に変る撮像素子
7の出力映像信号は、信号処理装置[112によって解
析され、ピント合せのための信号がステージ駆動装置1
3(送られ、ステージ14がF下に移動してピント合せ
が完了する。
FIG. 5 shows an embodiment in which the optical system of the present invention is installed in a microscope with an imaging device, in which a solid-state image sensor 7 is used as a photoelectric element,
Parallel plane glass plates 1 of different thicknesses are provided as optical path length changing elements, and are configured to be rotated and replaced by a motor as in FIG. 1. Reference numeral 6 denotes a microscope objective lens, 8 a lens for a telescopic link optical system, and 9 an aperture diaphragm. There is. Replacing the parallel plane glass plate 1 (Thus, the periodically changing output video signal of the image sensor 7 is analyzed by the signal processing device [112, and a signal for focusing is sent to the stage drive device 1.
3 (feeds, the stage 14 moves below F, and focusing is completed.

以上述べた如く、対物レンズと光路長変更素子0間に本
発明においてはテレセンドリンク光学系を配置して、光
電索子tこ向う光束の主光線が光軸と平行になるようr
−構成したので、結像位置が移動しても、像の高さく同
じ物点に対応する像点と光軸との距離)は変らない。従
って光路長変更素子を交換しても測光範囲(測光視野)
は一定であるから、光電素子の出力信号からピント位置
を精度よく検出することができる。
As described above, in the present invention, a telesend link optical system is arranged between the objective lens and the optical path length changing element 0, so that the principal ray of the light beam facing the photoelectric cable t becomes parallel to the optical axis.
- Because of this structure, even if the imaging position moves, the height of the image (the distance between the image point corresponding to the same object point and the optical axis) does not change. Therefore, even if the optical path length changing element is replaced, the photometric range (photometric field of view)
Since is constant, the focus position can be detected with high accuracy from the output signal of the photoelectric element.

〔主要部分の符号の説明〕[Explanation of symbols of main parts]

1・・・・・・光路長変更素子  6・・・・・・対物
レンズ7・・・・・・光電素子  8・・・・・・テレ
センドリンク光学系用レンズ  9・・・・・・絞り 出願人 日本光学工業株式会社 代理人 渡 辺 隆 男 オ、、3図 才4囚
1... Optical path length changing element 6... Objective lens 7... Photoelectric element 8... Lens for telescopic link optical system 9... Aperture Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Takashi Watanabe, 3 years old, 4 years old

Claims (1)

【特許請求の範囲】 (1)対物レンズと光電素子との間の光路中にレンズを
配置してテレ七ントリック光学系を構成し、該テレセン
トリック光学系用レンズと前記光電素子との間の光路中
に複数の光路長変更素子を交換可能に設けたことを特徴
とする自動焦点検出装置の光学系。 【2、特許請求の範囲第1項記載の光学系において、前
記テレセンドリンク光学系用レンズは、前記光電素子の
有効な受光面より大きい開口を有し、且つ該1/ンズの
物体側焦点が前記対物レンズの射出瞳位置に置かれるよ
うに配置されていることを特徴とする自動焦点検出装置
の光学系。 (3)  特許請求の範囲第1項記載の光学系において
、前記複数の光路長変更素子は夫々厚さの異るプラスチ
ック又はガラス製の平行平面板であって、前記光電素子
の受光面より大きい光透過面を有することを特徴とする
自動焦点検出装置の光学系。 用−レンズと前記光路長変更素子との間に絞り板を設け
て、乱反射光を遮断するように構成したことを特徴とす
る自動焦点検出装置の光学系。 子は夫々顕微鏡対物レンズと撮像素子であって、前記テ
レセンドリンク光学系用レンズ及び該撮像素子を含む測
光光学系は顕微鏡主光軸から分割された光路上に設けら
れていることを特徴とする自動焦点検出装置の光学系。
[Scope of Claims] (1) A telecentric optical system is constructed by arranging a lens in an optical path between an objective lens and a photoelectric element, and an optical path between the lens for the telecentric optical system and the photoelectric element 1. An optical system for an automatic focus detection device, characterized in that a plurality of optical path length changing elements are replaceably provided therein. 2. In the optical system according to claim 1, the lens for the telescopic link optical system has an aperture larger than the effective light receiving surface of the photoelectric element, and the object side focal point of the 1/lens is An optical system for an automatic focus detection device, characterized in that the optical system is placed at an exit pupil position of the objective lens. (3) In the optical system according to claim 1, each of the plurality of optical path length changing elements is a parallel plane plate made of plastic or glass and having a different thickness, and is larger than the light receiving surface of the photoelectric element. An optical system for an automatic focus detection device characterized by having a light-transmitting surface. 1. An optical system for an automatic focus detection device, characterized in that an aperture plate is provided between a lens and the optical path length changing element to block diffusely reflected light. The lenses are a microscope objective lens and an imaging device, respectively, and the photometric optical system including the telesend link optical system lens and the imaging device is provided on an optical path divided from the main optical axis of the microscope. Optical system of automatic focus detection device.
JP10900581A 1981-07-13 1981-07-13 Optical system for automatic focus detecting device Pending JPS5810709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10900581A JPS5810709A (en) 1981-07-13 1981-07-13 Optical system for automatic focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10900581A JPS5810709A (en) 1981-07-13 1981-07-13 Optical system for automatic focus detecting device

Publications (1)

Publication Number Publication Date
JPS5810709A true JPS5810709A (en) 1983-01-21

Family

ID=14499146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10900581A Pending JPS5810709A (en) 1981-07-13 1981-07-13 Optical system for automatic focus detecting device

Country Status (1)

Country Link
JP (1) JPS5810709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240895A (en) * 1985-04-16 1986-10-27 Ube Ind Ltd Driving method for pulse motor
WO2008084515A1 (en) 2007-01-10 2008-07-17 Nippon Thermostat Co., Ltd. Temperature sensitive indicator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240895A (en) * 1985-04-16 1986-10-27 Ube Ind Ltd Driving method for pulse motor
JPH0359680B2 (en) * 1985-04-16 1991-09-11 Ube Industries
WO2008084515A1 (en) 2007-01-10 2008-07-17 Nippon Thermostat Co., Ltd. Temperature sensitive indicator

Similar Documents

Publication Publication Date Title
US5917586A (en) Lens meter for measuring the optical characteristics of a lens
US5212514A (en) Camera having a focus detecting optical system
US4636627A (en) Focus detecting apparatus
JPS6311906A (en) Focus detecting device
JPS5810709A (en) Optical system for automatic focus detecting device
JPS6332508A (en) Projecting system for automatic focus detection
US6229602B1 (en) Photometering apparatus
US4697905A (en) Photographic apparatus
JPS6313010A (en) Focus detecting device
US4322615A (en) Focus detecting device with shielding
JP3728609B2 (en) Focus detection device
JP2600823B2 (en) Focus detection device
JPH0226205B2 (en)
JPH052131A (en) Focus detector
JPH0886641A (en) Light emitting and receiving type focus detector
JP2579977Y2 (en) Auxiliary floodlight for distance measurement
JPH0522883B2 (en)
JP3158538B2 (en) Apparatus and method for optical inspection of substrate surface
JPS6332509A (en) Projecting system for automatic focus detection
JPH06273664A (en) Focus detector
JP2971889B2 (en) Focus detection optical system
JP2008257254A (en) Photometric lens for single-lens reflex camera
JPH0224616A (en) Focus detecting device
JPS63291041A (en) Illumination device for detecting focus
JPS63169607A (en) Focus detector for camera