JPS5810699B2 - Deodorizing performance measurement method - Google Patents
Deodorizing performance measurement methodInfo
- Publication number
- JPS5810699B2 JPS5810699B2 JP7718376A JP7718376A JPS5810699B2 JP S5810699 B2 JPS5810699 B2 JP S5810699B2 JP 7718376 A JP7718376 A JP 7718376A JP 7718376 A JP7718376 A JP 7718376A JP S5810699 B2 JPS5810699 B2 JP S5810699B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- deodorizing
- ethylene
- odor intensity
- lower unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
【発明の詳細な説明】
本発明は、セードセット型インキを使用するオフセット
輪転印刷機の乾燥排気ガス(以下、オフ輪排ガスと略す
)を燃焼方式で脱臭する装置の脱臭性能の測定法に関す
るものであり、その目的とするところは特に迅速かつ簡
便にして、客観的評価に富んだ、上記脱臭装置の脱臭性
能の測定法を提供することにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the deodorizing performance of a device that uses a combustion method to deodorize dry exhaust gas (hereinafter referred to as off-wheel exhaust gas) from an offset rotary printing press that uses shade set ink. The purpose is to provide a method for measuring the deodorizing performance of the deodorizing device described above, which is particularly quick, simple, and rich in objective evaluation.
ヒートセット型インキを使用するオフ輪排ガスは非常に
強い臭気を伴うものであるため、このオフ輪排ガスを燃
焼方式で脱臭する装置を使用することが広く行なわれて
いる。Since off-road vehicle exhaust gas using heat-set ink is accompanied by a very strong odor, it is widely used to deodorize off-road vehicle exhaust gas using a combustion method.
ところが、この脱臭装置の性能を客観的に評価できない
のが現状である。However, the current situation is that it is not possible to objectively evaluate the performance of this deodorizing device.
これは以下に詳述するように、オフ輪排ガスの燃焼後の
ガスの臭気が何によるのかが不明であることに原因する
。This is because, as will be explained in detail below, it is unclear what causes the odor of off-wheel exhaust gas after combustion.
従って、上記脱臭装置を製造する側においてその性能の
評価が異なるなどの不便を生じる。Therefore, this causes inconveniences such as different evaluations of the performance of the deodorizing devices on the side that manufactures them.
悪臭防止法において、悪臭物質とは、アンモニア、メチ
ルメルカプクンその他の不快なにおいの原因となり、生
活環境をそこなうおそれのある物質であって政令で定め
るものをいうと定義されており、工場その他の事業場に
おける事業活動に伴って発生する悪臭物質の排出を規制
することにより、生活環境を保全し、国民の健康の保護
に資することを目的としている。Under the Offensive Odor Prevention Act, offensive substances are defined as substances specified by government ordinance that cause unpleasant odors such as ammonia, methyl mercapulin, etc. and may damage the living environment. The purpose of this law is to preserve the living environment and contribute to the protection of public health by regulating the emission of foul-smelling substances generated by business activities at workplaces.
このような考えに基づき、昭和47年に代表的悪臭物質
として、アンモニア、メチルメルカプクン、硫化水素、
硫化メチルおよびトリメチルアミンが政令で指定され悪
臭防止法が施行されたが、これらの5物質では、クラフ
トパルプ製造業、化成場、魚腸骨処理場およびし尿処理
場等は、法規制が可能であるが、その他の悪臭苦情の多
い石油化学関連工場ならびに塗装・塗料工場等は法規制
が行いにくいのが現状である。Based on this idea, ammonia, methylmercapkun, hydrogen sulfide,
Methyl sulfide and trimethylamine have been designated by government ordinance and the Offensive Odor Prevention Law has been enforced, but these five substances can be regulated by law in the kraft pulp manufacturing industry, chemical plants, fish iliac processing plants, human waste processing plants, etc. However, the current situation is that it is difficult to enforce legal regulations for other petrochemical-related factories and painting/paint factories, which have many complaints of bad odors.
この点は印刷業におけるオフ輪排ガスについても同様で
ある。The same holds true for off-cycle exhaust gas in the printing industry.
しかも、上記法規制は各悪臭物質の濃度規制を行ってお
り、分析は機器分析によっている。Moreover, the above laws and regulations regulate the concentration of each malodorous substance, and analysis is based on instrumental analysis.
機器分析においては、高度の分析技術・機材が必要であ
り、操作が煩雑で即応性に乏しい。Instrumental analysis requires advanced analysis techniques and equipment, is complicated to operate, and lacks quick response.
又、悪臭主因物質が明確であることが必要であり、しか
も比較的単純な組成のガスであることが好ましい。Further, it is necessary that the main substance causing the malodor is clear, and it is preferable that the gas has a relatively simple composition.
これに対し、オフ輪排ガスの場合、インキ溶剤分の高沸
点の石油系溶剤が乾燥中で蒸発し、一部加熱分解された
後、ガスバーナー等により700〜800℃で燃焼させ
るか、又は、触媒接触燃焼させて脱臭する方式を採用し
ており、複雑な熱分解、燃焼過程を経る為生成される物
質は数10成分に及び、多種類の臭気成分の混合具から
なっており、その主要悪臭物質も固定されていないのが
現状である。On the other hand, in the case of off-wheel exhaust gas, the high boiling point petroleum solvent for the ink solvent evaporates during drying, is partially thermally decomposed, and is then burned at 700 to 800°C using a gas burner or the like, or It uses a catalytic catalytic combustion method to deodorize, and as it goes through a complex thermal decomposition and combustion process, dozens of substances are produced, and the main Currently, malodorous substances are not fixed either.
又、臭気排出源が数ケ所有る場合が多く、更に排出され
るガス濃度も印刷機の稼動状態により大きく変化する為
迅速なサンプリング、分析が要求され、悪臭防止法に準
する悪臭物質の機器分析法では対処しきれない場合が多
い。In addition, in many cases, there are several odor emission sources, and the concentration of emitted gas varies greatly depending on the operating conditions of the printing press, so prompt sampling and analysis are required. In many cases, analytical methods cannot cope with the problem.
次に、脱臭性能の測定方法の直接的な方法として人間の
嗅覚を用いる官能検査法がある。Next, there is a sensory test method that uses the human sense of smell as a direct method for measuring deodorizing performance.
最も実情に即した方法であり、ASTM法、食塩水平衡
法、三点比較式臭袋法等があり、例えば東京都公害局の
指導目標として、三点比較式臭袋法によって排出口での
臭気強度(臭気限界濃度まで無臭の空気で稀釈する倍数
)が300倍以下とされている例がある。This is the most practical method, and includes the ASTM method, saline solution balance method, and three-point comparison odor bag method.For example, as a guidance goal of the Tokyo Metropolitan Pollution Bureau, the three-point comparison odor bag method There are examples where the odor intensity (the number of times it is diluted with odorless air to reach the odor limit concentration) is 300 times or less.
これらには、嗅覚被試験者(パネル)の個人差が避は難
く、又、多数のサンプルの測定を一時に行うことはパネ
ルの確保、感覚の疲労等の問題があり困難である。In these cases, individual differences among olfactory test subjects (panels) are unavoidable, and it is difficult to measure a large number of samples at once due to problems such as securing panels and sensory fatigue.
更に、注射器又は実装自体が持つ臭気を完全に除くこと
が極めて難しく測定誤差の原因となる。Furthermore, it is extremely difficult to completely remove the odor of the syringe or the packaging itself, which causes measurement errors.
又、実装等の消耗資材費が高い等の欠点がある。Additionally, there are drawbacks such as high costs for consumable materials such as mounting.
本発明者らは、上記の欠点を解消して、オフ輪排ガスの
燃焼方式による脱臭装置の脱臭性測を迅速かつ簡便にし
て客観的評価に富んだ方法を提供せんことを目的として
研究を進めたところ、ガスクロマトグラフィー(以下G
Cと略す)でオフ輪排ガスの燃焼後のガスの全成分の分
析を行うと同時に官能検査で臭気強度の測定を行い、こ
の測定を数10回繰り返して集めたデータからGCで得
られた各成分の濃度と臭気強度の関係を調査し、悪臭物
質の分析ではなく、臭気強度と特定の成分濃度との間に
相関性が有り、かつ比較的高濃度で分析容易な成分を選
択しうろことを見い出して本発明を完成したものである
。The present inventors have conducted research with the aim of solving the above-mentioned drawbacks and providing a method that is quick and easy to measure the deodorizing performance of a deodorizing device using the off-wheel exhaust gas combustion method and is rich in objective evaluation. However, gas chromatography (hereinafter referred to as G
At the same time, the odor intensity was measured using a sensory test, and this measurement was repeated several dozen times to collect data. Investigating the relationship between component concentration and odor intensity, rather than analyzing malodorous substances, there is a correlation between odor intensity and specific component concentration, and it is recommended to select components that are relatively high in concentration and easy to analyze. The present invention was completed by discovering the following.
すなわち、本発明はヒートセット型インキを使用するオ
フセット輪転印刷機の乾燥排気ガスを燃焼方式で脱臭す
る装置の脱臭性能を測定する方法であって、燃焼脱臭後
のガス中の一種又は二種以上の低級不飽和炭化水素の濃
度を測定し、次いで、該低級不飽和炭化水素濃度と臭気
強度との正の相関関係に基いて臭気強度を求めることを
特徴とする上記脱臭装置の脱臭性能の測定法を要旨とす
る。That is, the present invention is a method for measuring the deodorizing performance of an apparatus that uses a combustion method to deodorize the dry exhaust gas of an offset rotary printing press that uses heat-set type ink, and the method comprises: Measurement of the deodorizing performance of the deodorizing device described above, characterized in that the concentration of lower unsaturated hydrocarbons is measured, and then the odor intensity is determined based on the positive correlation between the lower unsaturated hydrocarbon concentration and the odor intensity. The gist is the law.
以下、上記の本発明について詳細に説明する。Hereinafter, the above-mentioned present invention will be explained in detail.
マレイン酸樹脂、フェノール樹脂などの高融点樹脂に少
量の油脂類を加えて、これを高沸点の石油系溶剤に溶か
したものを媒質とするヒートセット型インキを使用する
オフセット輪転印刷機の乾燥排気ガスを直接燃焼式ある
いは触媒接触燃焼式脱臭装置等の各種燃焼方式脱臭装置
で燃焼脱臭したガスは無臭物質に完全には分解されず、
この中には各種の成分が含まれている。Dry exhaust from an offset rotary printing machine that uses heat-set ink, which uses a high-melting-point resin such as maleic acid resin or phenolic resin with a small amount of oil and fat dissolved in a high-boiling petroleum solvent as a medium. Gas deodorized by combustion using various combustion deodorizing devices such as direct combustion or catalytic combustion deodorizing devices is not completely decomposed into odorless substances.
This contains various ingredients.
本発明者らは上記の如く、このガスをGC分析したとこ
ろ、不飽和炭化水素のC2〜C4の低沸点成分とCI3
〜C15の高沸点成分の約10成分が濃度と臭気強度に
相関関係の有る臭気関係成分であることを究明した。As mentioned above, the present inventors conducted GC analysis of this gas, and found that the C2 to C4 low boiling point components of unsaturated hydrocarbons and CI3
It was determined that about 10 of the high boiling point components of ~C15 are odor-related components that have a correlation between concentration and odor intensity.
CI3〜C15の高沸点成分は分析上困難を伴うことや
、相関性の信頼度にやや欠ける点から好ましくなく、分
析の容易さを考慮し、低沸点物のアセチレン、エチレン
、プロピレン等の02〜C4の低級不飽和炭化水素を選
択するのが適当である。High boiling point components of CI3 to C15 are not preferable because they are difficult to analyze and the reliability of correlation is somewhat lacking. It is appropriate to choose C4 lower unsaturated hydrocarbons.
上記の如く、本発明では低級不飽和炭化水素の濃度を求
めれば良く、この時、アセチレン、エチレン、プロピレ
ン等のC2〜C4成分の一種についてでも良く、また上
記の二種以上を総和したものについても良い結果を得る
ことができる。As mentioned above, in the present invention, it is sufficient to determine the concentration of lower unsaturated hydrocarbons, and in this case, it is sufficient to determine the concentration of lower unsaturated hydrocarbons, and at this time, it is sufficient to determine the concentration of lower unsaturated hydrocarbons, and at this time, it is also possible to determine the concentration of one of the C2 to C4 components such as acetylene, ethylene, propylene, etc., or the concentration of the above two or more components. can also give good results.
特に濃度の高いエチレンについて分析してその濃度を求
めることが好ましい。In particular, it is preferable to analyze and determine the concentration of ethylene, which has a high concentration.
以下、このエチレンを例にとり、その濃度と臭気強度と
の関係について詳述する。Hereinafter, using ethylene as an example, the relationship between its concentration and odor intensity will be explained in detail.
第1図はエチレン濃度と臭気強度との関係を示す図であ
り、官能検査のバラツキが有ることを考慮すると良い正
の相関性が有り、およそ
〔臭気強度)−soox(エチレン濃度〕但し、臭気強
度:稀釈倍数
エチレン濃度:ppmC1
(メタン換算)
の関係がある。Figure 1 is a diagram showing the relationship between ethylene concentration and odor intensity. Considering the variations in sensory tests, there is a good positive correlation, and approximately [odor intensity] - soox (ethylene concentration) There is a relationship between strength: dilution factor and ethylene concentration: ppmC1 (methane equivalent).
次にエチレンの簡易な分析方法について述べる。Next, a simple method for analyzing ethylene will be described.
測定機器はGCを用いることとし、検出器として検出感
度が高く、一般に広く普及しているFID(水素炎イオ
ン化検知器)検知器を、更に、分離カラムとしては低級
炭化水素に良い分離を示すものであれはいずれのもので
もよいが、たとえば本発明者らは取扱いが容易な炭素粒
の一種であるCarbosieve−B(40〜60メ
ツシユ)を採用した。The measuring equipment will be GC, and the detector will be FID (Flame Ionization Detector), which has high detection sensitivity and is widely used, and the separation column will be one that shows good separation of lower hydrocarbons. Although any material may be used, for example, the present inventors adopted Carbosieve-B (40 to 60 mesh), which is a type of carbon grain that is easy to handle.
その他のGCの条件、例えばキャリアガスの種類、流量
、分離、カラム温度、試料量、試料導入気化室温度等に
関しては特に限定はなく、分析精度、時間等を考慮して
自由に選択でき、通常のGC分析技術を適用して良い。There are no particular limitations on other GC conditions, such as carrier gas type, flow rate, separation, column temperature, sample amount, sample introduction vaporization chamber temperature, etc., and can be freely selected taking into account analysis accuracy, time, etc. GC analysis techniques may be applied.
試料ガスのサンプリングは、注射器、真空ビン、プラス
チック袋等で10m1以上採気し、その内1〜5mlの
ガスを正確に注射器等でGCに直接導入するだけでよい
。To sample a sample gas, it is sufficient to collect 10 ml or more of the gas using a syringe, vacuum bottle, plastic bag, etc., and accurately introduce 1 to 5 ml of the gas directly into the GC using the syringe or the like.
第2図に上記方法による触媒接触燃焼式脱臭装置の排気
ガス分析で得られたGCチャートを示す。FIG. 2 shows a GC chart obtained by exhaust gas analysis of the catalytic combustion type deodorizing apparatus according to the above method.
各ピークは1がメタン、2がアセチレン、3がエチレン
、4がエタンであり、これ以上の成分はこの分析条件で
は吸着されてしまい検出されていない。In each peak, 1 is methane, 2 is acetylene, 3 is ethylene, and 4 is ethane, and components beyond these are adsorbed under these analysis conditions and are not detected.
この場合のエチレンの濃度はメタン換算的7ppmC1
であり、前記第1図のグラフより臭気強度5600倍と
読み取れる。In this case, the concentration of ethylene is 7 ppm C1 in terms of methane.
According to the graph in FIG. 1, the odor intensity can be read as 5,600 times stronger.
分析所要時間は約3分であり、ガスのサンプリング時間
を入れても一点10分以内で測定が完了する。The time required for analysis is approximately 3 minutes, and even if gas sampling time is included, measurement can be completed within 10 minutes per point.
本発明によれば、オフ輪排ガスの燃焼式脱臭装置の脱臭
性能を、燃焼脱臭したガス中の低級不飽和炭化水素の濃
度をGCで測定し、該濃度から臭気強度を求めることが
できるのでサンプリングが簡単、迅速であり、試料の調
整が不要、分析・測定も簡便、迅速な機器分析であるの
で官能検査よりも信頼性が高く、数値的管理が可能であ
る。According to the present invention, the deodorizing performance of a combustion-type deodorizing device for off-wheel exhaust gas can be determined by measuring the concentration of lower unsaturated hydrocarbons in the combustion-deodorized gas using GC, and determining the odor intensity from the concentration. It is simple and quick, does not require sample preparation, and analysis and measurement are simple and quick.As it is an instrumental analysis, it is more reliable than sensory testing and allows for numerical control.
又、オフ輪排ガスの臭気と最も関係の深い物質を測定す
るので、正確な脱臭性能の測定が行えるものである。Furthermore, since the substance most closely related to the odor of off-wheel exhaust gas is measured, it is possible to accurately measure the deodorizing performance.
次に本発明を実施例により、更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例 1
ヒートセット型インキ(諸星インキ社製、WS−X)を
用いてオフセット輪転印刷機(三菱重T社製、8色B−
Bタイプ)の乾燥排気ガスを触媒接触燃焼式脱臭装置で
、触媒活性が低下し、脱臭性能が悪いと思われるもので
燃焼脱臭したガスにつき以下の条件で測定を行った。Example 1 An offset rotary printing machine (manufactured by Mitsubishi Heavy T Co., Ltd., 8-color B-
Type B) dry exhaust gas was deodorized by combustion using a catalyst catalytic combustion deodorizer that was thought to have reduced catalytic activity and poor deodorizing performance, and was then subjected to measurements under the following conditions.
○試料ガス サンプリング;注射器100m1O分析機
器;日立製作所 ガスクロマトグラフィー 063型
0試料導入量;注射器5m1
OGC条件;
カラム:Carbosieve−B 40/60メツシ
ュ1m×3mmダ
カラム温度=200C
検出器:FID
インジェクション温度:250C
キャリアーガス:N240m1/m1n
GCレンジ=1×4
チャート速度:10mm/min
この条件下で得られたGCチャートを第2図に示す。○Sample gas Sampling; Syringe 100m1O Analytical equipment; Hitachi Gas Chromatography Model 063 Sample introduction amount; Syringe 5m1 OGC conditions; Column: Carbosieve-B 40/60 mesh 1m x 3mm Dacolumn temperature = 200C Detector: FID Injection temperature: 250C Carrier gas: N240ml/mln GC range = 1x4 Chart speed: 10mm/min The GC chart obtained under these conditions is shown in Figure 2.
図中番号は前記の通りである。この場合のエチレン3濃
度はメタン換算7ppmC1であり第1図のエチレン濃
度と臭気強度の正の相関関係より臭気強度5600倍と
の結果が得られ、極めて脱臭効果が悪いことが判明した
。The numbers in the figure are as described above. The concentration of ethylene 3 in this case was 7 ppmC1 in terms of methane, and the positive correlation between the ethylene concentration and odor intensity shown in FIG. 1 showed that the odor intensity was 5600 times greater, and it was found that the deodorizing effect was extremely poor.
尚、測定所用時間はサンプリング3分、分析3分であり
、その他を含め約10分間で完了した。The measurement time was 3 minutes for sampling and 3 minutes for analysis, and the measurement was completed in about 10 minutes including the rest.
実施例 2
実施例1と同様の乾燥排気ガスを触媒接触燃焼式脱臭装
置で、触媒活性が比較的高く、脱臭性能が良いと思われ
るものにつき実施例1と同様の方法で測定を行った。Example 2 The same dry exhaust gas as in Example 1 was measured using a catalytic catalytic combustion type deodorizing device in the same manner as in Example 1 for those that had relatively high catalytic activity and seemed to have good deodorizing performance.
その結果を第3図に示す。エチレン3の濃度は0.35
ppmCIであり、臭気強度280倍と良い脱臭性能を
示している。The results are shown in FIG. The concentration of ethylene 3 is 0.35
ppmCI, and exhibits good deodorizing performance with 280 times the odor intensity.
実施例 3
実施例1と同様の乾燥排気ガスを直接燃焼式脱臭装置の
脱臭後の排気ガスの分析結果を第4図に示す。Example 3 FIG. 4 shows the analysis results of exhaust gas after deodorization by a direct combustion type deodorizing device for dry exhaust gas similar to Example 1.
エチレン1.8ppmC1、臭気強度1400倍との結
果を得、燃焼温度を更に上げて脱臭効果を上げる必要が
あることが分った。The results showed that ethylene was 1.8 ppmC1 and the odor intensity was 1400 times higher, indicating that it was necessary to further increase the combustion temperature to improve the deodorizing effect.
第1図はエチレン濃度と臭気強度の相関関係を示すグラ
フ、第2図〜第4図は測定結果のGCチャートである。
1・・・・・・メタン、2・・・・・・アセチレン、3
・・・・・・エチレン、4・・・・・・エタン。FIG. 1 is a graph showing the correlation between ethylene concentration and odor intensity, and FIGS. 2 to 4 are GC charts of the measurement results. 1...Methane, 2...Acetylene, 3
...Ethylene, 4...Ethane.
Claims (1)
刷機の乾燥排気ガスを燃焼方式で脱臭する装置の脱臭性
能を測定する方法であって、燃焼脱臭後のガス中の一種
又は二種以上の低級不飽和炭化水素の濃度を測定し、次
いで、該低級不飽和炭化水素濃度と臭気強度との正の相
関関係に基いて臭気強度を求めることを特徴とする上記
脱臭装置の測定法。 2 低級不飽和炭化水素の炭素数2〜4である特許請求
の範囲第1項記載の測定法。 3 低級不飽和炭化水素がアセチレン、エチレン、およ
びプロピレンからなる群の少なくとも一種である特許請
求の範囲第1項記載の測定法。 4 低級不飽和炭化水素がエチレンである特許請求の範
囲第1項記載の測定法。[Scope of Claims] 1. A method for measuring the deodorizing performance of an apparatus for deodorizing dry exhaust gas of an offset rotary printing press using a heat-set type ink using a combustion method, the method comprising: A measuring method for the deodorizing device described above, characterized in that the concentration of lower unsaturated hydrocarbons of at least one species is measured, and then the odor intensity is determined based on the positive correlation between the lower unsaturated hydrocarbon concentration and the odor intensity. . 2. The measuring method according to claim 1, wherein the lower unsaturated hydrocarbon has 2 to 4 carbon atoms. 3. The measuring method according to claim 1, wherein the lower unsaturated hydrocarbon is at least one member of the group consisting of acetylene, ethylene, and propylene. 4. The measuring method according to claim 1, wherein the lower unsaturated hydrocarbon is ethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7718376A JPS5810699B2 (en) | 1976-06-30 | 1976-06-30 | Deodorizing performance measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7718376A JPS5810699B2 (en) | 1976-06-30 | 1976-06-30 | Deodorizing performance measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS533390A JPS533390A (en) | 1978-01-13 |
JPS5810699B2 true JPS5810699B2 (en) | 1983-02-26 |
Family
ID=13626689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7718376A Expired JPS5810699B2 (en) | 1976-06-30 | 1976-06-30 | Deodorizing performance measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5810699B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140664A (en) * | 1988-11-21 | 1990-05-30 | Fujita Corp | Method and apparatus for evaluating deodorization performance |
-
1976
- 1976-06-30 JP JP7718376A patent/JPS5810699B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS533390A (en) | 1978-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Munoz et al. | Monitoring techniques for odour abatement assessment | |
Bulliner IV et al. | Characterization of livestock odors using steel plates, solid-phase microextraction, and multidimensional gas chromatography–mass spectrometry–olfactometry | |
Giungato et al. | Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques | |
Hatch et al. | Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors | |
Woolfenden | Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods | |
Persaud et al. | Assessment of conducting polymer odour sensors for agricultural malodour measurements | |
Okuda et al. | Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions | |
Lestremau et al. | Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography–pulsed flame photometric detection | |
Stilo et al. | Delineating the extra-virgin olive oil aroma blueprint by multiple headspace solid phase microextraction and differential-flow modulated comprehensive two-dimensional gas chromatography | |
Hodgson et al. | Volatile organic compounds and indoor air | |
Van Langenhove et al. | Gas chromatography/mass spectrometry identification of organic volatiles contributing to rendering odors | |
Polvara et al. | Chemical characterization of odorous emissions: A comparative performance study of different sampling methods | |
Papa | Gas chromatography—measuring exhaust hydrocarbons down to parts per billion | |
CN114935618B (en) | Non-target screening-based precise identification method for odor-causing substances | |
Gutiérrez et al. | Compost pile monitoring using different approaches: GC–MS, E-nose and dynamic olfactometry | |
Hayes et al. | The use of gas chromatography combined with chemical and sensory analysis to evaluate nuisance odours in the air and water environment | |
Ebersviller et al. | Gaseous VOCs rapidly modify particulate matter and its biological effects–Part 2: Complex urban VOCs and model PM | |
Zhang et al. | Odor and odorous chemical emissions from animal buildings: Part 5. Simultaneous chemical and sensory analysis with gas chromatography-mass spectrometry-olfactometry | |
JPS5810699B2 (en) | Deodorizing performance measurement method | |
Conner et al. | Evaluation of field sampling techniques including electronic noses and a dynamic headspace sampler for use in fire investigations | |
Salthammer et al. | Sensory evaluation in test chambers: Influences of direct and indirect assessment | |
Wilson | Application of a conductive polymer electronic-nose device to identify aged woody samples | |
Alvarez-Martin et al. | SPME-GC–MS for the off-gassing analysis of a complex museum object | |
Cuzuel et al. | Sampling method development and optimization in view of human hand odor analysis by thermal desorption coupled with gas chromatography and mass spectrometry | |
Parker et al. | Background odors in Tedlar® bags used for CAFO odor sampling |