JPS5810677B2 - Forced heat exchange method - Google Patents

Forced heat exchange method

Info

Publication number
JPS5810677B2
JPS5810677B2 JP54089331A JP8933179A JPS5810677B2 JP S5810677 B2 JPS5810677 B2 JP S5810677B2 JP 54089331 A JP54089331 A JP 54089331A JP 8933179 A JP8933179 A JP 8933179A JP S5810677 B2 JPS5810677 B2 JP S5810677B2
Authority
JP
Japan
Prior art keywords
pipe
heat exchange
inner tube
heat
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54089331A
Other languages
Japanese (ja)
Other versions
JPS5616090A (en
Inventor
大西勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54089331A priority Critical patent/JPS5810677B2/en
Publication of JPS5616090A publication Critical patent/JPS5616090A/en
Publication of JPS5810677B2 publication Critical patent/JPS5810677B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、強制的熱交換方法に関するものである。[Detailed description of the invention] (Technical field of invention) The present invention relates to a forced heat exchange method.

さらに詳しくいえば、この発明は偏心二重管式熱交換器
を使用して熱交換を能率良く行わせるための熱交換方法
に関するものである。
More specifically, the present invention relates to a heat exchange method for efficiently exchanging heat using an eccentric double-tube heat exchanger.

(技術的背景) 流体(気体または液体)を加熱または冷却するために、
現在一般に使用されている熱交換器は、熱交換の能率を
向上するために多数のフィン(ひれ成板)を備えている
ものが多い。
(Technical background) To heat or cool a fluid (gas or liquid),
Many of the heat exchangers currently in common use are equipped with a large number of fins (fin plates) to improve heat exchange efficiency.

その一般的構造を概念的に図示すれば、第1図および第
2図のとおりである。
Its general structure is conceptually illustrated in FIGS. 1 and 2.

第1図は正面図、第2図は第1図のA−A線に沿う断面
図である。
FIG. 1 is a front view, and FIG. 2 is a sectional view taken along line A--A in FIG. 1.

図示のように枠1に取付けられた多数のフィン2を熱交
換用パイプ3が貫通している。
As shown in the figure, a heat exchange pipe 3 passes through a large number of fins 2 attached to a frame 1.

そして加熱または冷却される流体は、第2図において矢
印で示すようにフィン2と平行の方向に流動するのが普
通である。
The fluid to be heated or cooled usually flows in a direction parallel to the fins 2, as indicated by the arrows in FIG.

加熱または冷却される流体は、フィン2の表面および熱
交換用パイプ3の表面において熱を援受する。
The fluid to be heated or cooled receives heat on the surfaces of the fins 2 and the heat exchange pipes 3.

上記のような構造の熱交換器において、熱交換用パイプ
3はその断面が円形、小判形または楕円形などの一重壁
のパイプである。
In the heat exchanger having the above structure, the heat exchange pipe 3 is a single-walled pipe whose cross section is circular, oval, or oval.

小判形または楕円形のパイプは、断面積が同一の円形パ
イプよりも表面積が大きく、加熱または冷却される流体
の流動を妨害する割合も小さいから、熱交換用パイプの
表面における熱の援受が多いという利点があって、円形
パイプよりも熱交換能率は改善されている。
Oval or elliptical pipes have a larger surface area than circular pipes with the same cross-sectional area, and because they impede the flow of the fluid to be heated or cooled to a lesser extent, they receive less heat on the surface of the heat exchange pipe. There is an advantage that there are many pipes, and the heat exchange efficiency is improved compared to circular pipes.

近年、熱交換器の据付面積を増大させることなく、また
は占有容積を可及的に小さくして性能のすぐれた熱交換
器、換言すれば、小形で高性能の熱交換器を所望する要
望が高まっている。
In recent years, there has been a demand for a heat exchanger with excellent performance without increasing the installation area of the heat exchanger or by minimizing the occupied volume, in other words, for a compact and high-performance heat exchanger. It's increasing.

また一方では冷蔵・冷凍食品の普及にともない、急速冷
却を行なうための強制ファン方式が多く採用されている
が、この方式では野菜や果実の冷蔵庫の場合には、冷蔵
品が乾燥して保存期間が短かくなるなどの欠点があり、
収納物の乾燥を抑えて急速冷却ができる熱交換器が待望
されている。
On the other hand, with the spread of refrigerated and frozen foods, many forced fan systems have been adopted to achieve rapid cooling. There are disadvantages such as being short,
A heat exchanger that can rapidly cool stored items while preventing them from drying out has been long-awaited.

(先行技術) 二重パイプ方式の熱交換用パイプとしては、下記のもの
が知られている。
(Prior Art) The following are known as double pipe type heat exchange pipes.

(1)二重管の外管の外側と内管の内側に冷却媒体を流
通させ、両管の間の空間に被冷却液を循環させて、外管
の外表面と内管の内表面において熱交換させるようにし
た二重冷却管(実公昭6−10711号公報) (2)二重管の内管内に水を通し、外管の外側に空気を
流通させ、両管の間の空間に被冷却液を流通させる二重
管式熱交換用パイプ。
(1) A cooling medium is passed between the outside of the outer tube and the inside of the inner tube of the double tube, and the liquid to be cooled is circulated in the space between the two tubes, so that the cooling medium is circulated between the outer surface of the outer tube and the inner surface of the inner tube. Double cooling tube designed to exchange heat (Japanese Utility Model Publication No. 10711/1989) (2) Water is passed through the inner tube of the double tube, air is circulated outside the outer tube, and the space between the two tubes is A double-pipe heat exchange pipe that circulates the liquid to be cooled.

(実公昭42−700号公報、実公昭43−15886
号公報) (3)二重管の内管から多数のフィンを突設し、内管の
上側のフィンを下側のフィンよりも長くすることによっ
て内管を外管の中心よりも下方に偏心させて、外管の外
側に空気を流通させ、内管内に水を循環させ、両管の間
の空間に被冷却液を流通させる二重管式熱交換用パイプ
(Utility Model Publication No. 42-700, Utility Model Number 43-15886
(3) By providing a large number of fins protruding from the inner tube of the double tube and making the upper fins of the inner tube longer than the lower fins, the inner tube is eccentrically positioned downward from the center of the outer tube. A double-pipe heat exchange pipe that circulates air outside the outer tube, circulates water inside the inner tube, and circulates the liquid to be cooled in the space between the two tubes.

(実公昭47−27230号公報) 上記公知の二重管式熱交換用パイプは、いずれも被冷却
液を外管と内管との間の空間に流通させ冷却用媒体たと
えば空気および/または水を外管の外側と内管の内側さ
に流通させる方式である。
(Japanese Utility Model Publication No. 47-27230) All of the above-mentioned known double-tube heat exchange pipes circulate the liquid to be cooled through the space between the outer tube and the inner tube and use a cooling medium such as air and/or water. This is a method in which the water is distributed between the outside of the outer tube and the inside of the inner tube.

したがってこれら公知の熱交換用パイプにおいては、一
定量の流体を冷却または加熱するために多量の媒体(た
とえば空気および/または水)を流通させなければなら
ないという欠点を有する。
These known heat exchange pipes therefore have the disadvantage that a large amount of medium (for example air and/or water) must be passed through them in order to cool or heat a certain amount of fluid.

(発明の目的) この発明は、二重管式熱交換器を使用して熱交換する方
法において、流体の流動に対する妨害作用ができるだけ
軽微であって、しかも熱交換用パイプの表面において援
受される熱量を増大させた熱交換用パイプを使用して、
能率良く熱交換をする熱交換方法を提供することを目的
とするものである。
(Objective of the Invention) The present invention provides a method for exchanging heat using a double-pipe heat exchanger, in which the interference effect on the flow of fluid is as slight as possible and is supported on the surface of the heat exchange pipe. Using heat exchange pipes with increased heat capacity,
It is an object of the present invention to provide a heat exchange method that efficiently exchanges heat.

(発明の構成) まず、この発明の方法において使用される熱交換用パイ
プの構成を説明する。
(Structure of the Invention) First, the structure of the heat exchange pipe used in the method of the invention will be described.

この発明において使用される熱交換用パイプは太いパイ
プの中に、その横断面が太いパイプの横断面と同一また
は類似の形状をした細いパイプを挿入固定して二重壁構
造にし、前記の細いパイプの両端は閉塞されて中空筒状
体を形成し、その中空筒状体の横断面が円形であるとき
はその横断面の中心が太いパイプの横断面の中心と一致
しないように固定し、また中空筒状体の横断面が円形で
ないときはその横断面の中心が太いパイプの横断面の長
軸上であってしかも太いパイプの横断面の中心と一致し
ないように固定した偏心二重壁パイプである。
The heat exchange pipe used in this invention has a double wall structure by inserting and fixing a thin pipe whose cross section is the same or similar to that of the thick pipe into a thick pipe. Both ends of the pipe are closed to form a hollow cylindrical body, and when the cross section of the hollow cylindrical body is circular, it is fixed so that the center of the cross section does not coincide with the center of the cross section of the thick pipe, In addition, when the cross section of the hollow cylindrical body is not circular, the eccentric double wall is fixed so that the center of the cross section is on the long axis of the cross section of the thick pipe and does not coincide with the center of the cross section of the thick pipe. It's a pipe.

この偏心二重壁パイプにおいてパイプの横断面が小判形
または楕円形の場合の長軸の長さ対短軸の長さの比は、
太きければ大きいほど(すなわち横断面の形状が偏平で
あれは偏平であるほど)パイプの容積に比して表面積が
大きくなって熱交換の能率は向上するが、あまり偏平に
すればパイプが折れ曲りやすくなり、しかもパイプの製
作も困難になるから、各種の事情を勘案して適当な範囲
を選定するべきである。
In this eccentric double wall pipe, when the cross section of the pipe is oval or oval, the ratio of the length of the major axis to the length of the minor axis is:
The thicker the pipe (that is, the flatter the cross-sectional shape), the larger the surface area compared to the volume of the pipe and the better the efficiency of heat exchange, but if the pipe is made too flat, the pipe may break. Since it becomes easy to bend and also makes it difficult to manufacture the pipe, an appropriate range should be selected in consideration of various circumstances.

その適当な範囲の目安をごく一般的に示せは、長軸の長
さは短軸の長さの1.5倍ないし3.5倍程度とするこ
とが好適である。
As a general guideline for the appropriate range, it is preferable that the length of the major axis is about 1.5 to 3.5 times the length of the minor axis.

この範囲の中でも、特に適当な範囲は長軸の長さを短軸
の長さの2.0倍ないし2.5倍程度とするのが良好で
ある。
Within this range, a particularly suitable range is that the length of the major axis is about 2.0 to 2.5 times the length of the minor axis.

この発明に使用する熱交換用パイプの内側の細いパイプ
(以下「内管」と記載する。
The thin pipe inside the heat exchange pipe used in this invention (hereinafter referred to as "inner pipe").

)の横断面の形状は、外側の太いパイプ(以下「外管」
と記載する。
) has a cross-sectional shape similar to that of the outer thick pipe (hereinafter referred to as the "outer pipe").
It is written as

)の横断面の形状と同一(ただし寸法が異なるから相似
形である。
) has the same cross-sectional shape (however, the dimensions are different, so they are similar shapes).

)であってもよいが、正確な相似形にしなくても類似の
形状であればさしつかえない。
), but it doesn't have to be an exact similar shape as long as it has a similar shape.

内管の長さは、外管の長手方向の長さとほぼ等しくなる
ようにすることが好ましい。
Preferably, the length of the inner tube is approximately equal to the length of the outer tube in the longitudinal direction.

なぜならば、内管の長さが不足すると内管を使用する目
的が十分に達成されないし、内管の長さが過大であれば
、外管相互の接続を困難にし、しかも熱交換パイプ中を
流れる熱媒体の流動抵抗を増大させ、ひいては熱交換能
率を低下させることになるからである。
This is because if the length of the inner tube is insufficient, the purpose of using the inner tube will not be fully achieved, and if the length of the inner tube is too long, it will be difficult to connect the outer tubes to each other, and the heat exchange pipes will be damaged. This is because it increases the flow resistance of the flowing heat medium and ultimately reduces the heat exchange efficiency.

次に、上記の熱交換用パイプを使用して本発明にしたが
って熱交換をする操作方法を説明する。
Next, an operation method for exchanging heat according to the present invention using the above-mentioned heat exchange pipe will be explained.

本発明の熱交換方法においては、前記の偏心二重壁パイ
プの外管と内管(すなわち中空筒状体)との間に形成さ
れる空隙内に加熱媒体または冷却媒体を流通させる。
In the heat exchange method of the present invention, a heating medium or a cooling medium is caused to flow through the gap formed between the outer tube and the inner tube (ie, the hollow cylindrical body) of the eccentric double-walled pipe.

そして被加熱流体または被冷却流体は上記偏心二重壁パ
イプの外側を流通させる。
The fluid to be heated or the fluid to be cooled flows outside the eccentric double-walled pipe.

ただし偏心二重壁パイプの外管と内管との間に形成され
る空隙(すなわち加熱媒体または冷却媒体の流路)の広
い側を被加熱流体または被冷却流体の上流方向へ向けて
使用しなければならない。
However, when using an eccentric double-walled pipe, the wide side of the gap formed between the outer pipe and the inner pipe (i.e., the flow path for the heating medium or cooling medium) is directed toward the upstream direction of the fluid to be heated or cooled. There must be.

実公昭6−10711号公報、実公昭42−700号公
報、実公昭43−15886号公報および実公昭47−
27230号公報に記載されている冷却用二重管におい
ては、被冷却流体は外管と内管との間に形成される空隙
を流通するのであるが、本発明においては被加熱流体ま
たは被冷却流体は外管の外側を流通するのであるから、
本発明においては熱交換用パイプの使用方法が全く新規
なものである。
Utility Model Publication No. 6-10711, Utility Model Publication No. 42-700, Utility Model Number 43-15886, and Utility Model Number 47-
In the double cooling pipe described in Japanese Patent No. 27230, the fluid to be cooled flows through the gap formed between the outer pipe and the inner pipe, but in the present invention, the fluid to be heated or the fluid to be cooled flows through the gap formed between the outer pipe and the inner pipe. Since the fluid flows outside the outer tube,
In the present invention, the method of using heat exchange pipes is completely new.

また本発明において使用される熱交換用パイプにおいて
は、内管は外管の直線部の内側にのみ設置されるのであ
るから、この点においても本発明は全く新規な発明であ
る。
Furthermore, in the heat exchange pipe used in the present invention, the inner tube is installed only inside the straight portion of the outer tube, so the present invention is also completely new in this respect.

さらに本発明において使用される熱交換用パイプにおい
ては、内管の両端は閉塞されているので、内管の内部を
流体が流動することはない。
Furthermore, in the heat exchange pipe used in the present invention, both ends of the inner tube are closed, so no fluid flows inside the inner tube.

この点においても本発明の新規性は、きわめて顕著なも
のである。
In this respect as well, the novelty of the present invention is extremely remarkable.

(実施例) 本発明の理解をいっそう容易にするために、図面を参照
して本発明の実施態様を以下に説明するが、本発明が下
記の実施例のみに限定されるものでないことは、いうま
でもない。
(Examples) In order to further facilitate understanding of the present invention, embodiments of the present invention will be described below with reference to the drawings, but it is noted that the present invention is not limited only to the following examples. Needless to say.

第3図は偏心二重壁パイプ式熱交換用パイプにおける内
管・外管の相対位置と固定の状態を示すものである。
FIG. 3 shows the relative position and fixed state of the inner tube and outer tube in an eccentric double-walled heat exchange pipe.

図面において4は外管、5は内管、6は内管の支持片を
示す。
In the drawings, 4 indicates an outer tube, 5 indicates an inner tube, and 6 indicates a support piece for the inner tube.

これらの実施例においては、外管も内管も円形または小
判形に形成されている。
In these embodiments, both the outer tube and the inner tube are circular or oval shaped.

また支持片6は板状に形成されているが、必ずしも板状
にする必要はなく、内管の位置を固定する作用をするも
のであれば棒状でも塊状でもさしつかえない。
Further, although the support piece 6 is formed in a plate shape, it does not necessarily have to be in a plate shape, and may be in the shape of a rod or a block as long as it functions to fix the position of the inner tube.

しかし支持片6は熱媒体の通路内に設置されるものであ
るから、できるだけ流体の流動抵抗の小さい形状が好ま
しい。
However, since the support piece 6 is installed in the heat medium passage, it is preferable that the support piece 6 has a shape that has as little resistance to fluid flow as possible.

また第3図にはパイプの形状が円形では3枚、小判形で
は5枚の支持片6が表示されているが、内管を所定の位
置に固定する作用があれば、支持片の個数は適宜に変更
することができる。
In addition, Fig. 3 shows three support pieces 6 for a circular pipe shape and five support pieces 6 for an oval shape pipe, but if the inner pipe has the function of fixing the inner pipe in a predetermined position, the number of support pieces 6 can be reduced. It can be changed as appropriate.

熱媒体は、第3図において外管と内管とによって形成さ
れる空隙1を通って流動し、冷却または加熱される流体
は第3図の矢印の方向に流動する。
The heating medium flows through the gap 1 formed by the outer tube and the inner tube in FIG. 3, and the fluid to be cooled or heated flows in the direction of the arrow in FIG.

第4図は外管の連結状態および内管端部の閉塞状態の説
明図である。
FIG. 4 is an explanatory diagram of the connected state of the outer tube and the closed state of the end of the inner tube.

内管5の両端に蓋9を溶接10するのであるが、この際
に内管5内の空気は加熱膨張しである程度排気されるの
で、溶接作業を終了して常温に戻った段階では内管の中
空部8は負圧になり、したがって内管5全体の熱容量は
単に中空のパイプよりも小さくなり、熱交換の能率がそ
れだけ向上する。
A lid 9 is welded 10 to both ends of the inner tube 5. At this time, the air inside the inner tube 5 is heated and expanded and is exhausted to some extent, so when the welding work is finished and the temperature returns to room temperature, the inner tube The hollow part 8 of the inner tube 5 is under negative pressure, so that the heat capacity of the entire inner tube 5 is smaller than that of a mere hollow pipe, and the efficiency of heat exchange is improved accordingly.

熱媒体Mは矢印の方向に流れる。The heat medium M flows in the direction of the arrow.

第5図はこの発明の熱交換方法において使用するのに適
当な熱交換器の概念図であって、3は熱交換用パイプ、
3′は熱交換用パイプの断面である。
FIG. 5 is a conceptual diagram of a heat exchanger suitable for use in the heat exchange method of the present invention, in which 3 is a heat exchange pipe;
3' is the cross section of the heat exchange pipe.

第6図は、この発明の熱交換方法を自動車のラジェータ
に採用した場合の概念図であって、ラジェータの取付位
置によってファンモータ11の回転方向を変えれば吹出
風(第6図a)または吸出風(第6図b)となるので、
外管と内管の偏心位置がaとbでは逆になって、冷却用
空気は矢印の方向に流れて熱水Wを冷却する。
FIG. 6 is a conceptual diagram when the heat exchange method of the present invention is applied to a radiator of an automobile, and if the rotation direction of the fan motor 11 is changed depending on the mounting position of the radiator, air is blown out (FIG. 6a) or sucked out. Since the wind (Figure 6b)
The eccentric positions of the outer tube and the inner tube are reversed between a and b, and the cooling air flows in the direction of the arrow to cool the hot water W.

(発明の作用と効果) 本発明においては、1重パイプ方式のパイプよりも太い
外管内に両端を閉塞した細い内管を中心をずらして挿入
しであるだけでなく、熱交換用パイプの使用方法も特殊
な場合だけに限定しであるので、下記の作用効果がある
(Operations and Effects of the Invention) In the present invention, a thin inner tube with both ends closed is inserted off-center into an outer tube that is thicker than a single-ply pipe, and a heat exchange pipe is also used. Since the method is also limited to special cases, it has the following effects.

(イ)偏心2重パイプ式熱交換用パイプ中の熱媒体の量
を1重パイプ方式の場合とほぼ同量にした場合、熱交換
器全体の大きさを増大しなくても有効熱交換表面積が大
きくなり、熱交換能率が高くなって消費電力が低減する
(b) If the amount of heat medium in the eccentric double pipe heat exchange pipe is approximately the same as that in the single pipe method, the effective heat exchange surface area can be obtained without increasing the overall size of the heat exchanger. increases, heat exchange efficiency increases, and power consumption decreases.

(ロ)内管の中心を外管の中心からずらしであるので、
熱交換用パイプ中の熱媒体量の多い側に被熱交換流体を
あてることによって熱交換能率が高くなり、消費電力が
低減する。
(b) Since the center of the inner tube is shifted from the center of the outer tube,
By applying the heat exchange fluid to the side of the heat exchange pipe where the amount of heat medium is large, heat exchange efficiency is increased and power consumption is reduced.

(ハ)一般冷蔵庫(冷蔵温度3℃〜8℃)に採用すれば
、熱交換能率が高いのでフィンの数は少なくてすむ。
(c) If adopted in a general refrigerator (refrigeration temperature 3°C to 8°C), the number of fins can be reduced because the heat exchange efficiency is high.

したがってフィンに付着した水滴は互に連結して凍結を
始める前に落下するものが多くなり、付着が少なくなっ
て熱交換が更に促進される。
Therefore, more of the water droplets adhering to the fins connect with each other and fall before they start freezing, reducing adhesion and further promoting heat exchange.

一重バイブ方式と比較すると同一温度までの冷却時間は
1/2〜2/3となる。
Compared to the single-vibration method, the cooling time to the same temperature is 1/2 to 2/3.

一般冷凍器(冷凍温度−15℃〜−25℃)の場合には
、電熱ヒータで除霜するのが普通であるから、その消費
電力は圧縮器の消費電力の3〜4倍であるが、この発明
の二重パイプ方式でホットガス方式による除霜を行なえ
ば、電熱ヒータは不要である。
In the case of general refrigerators (freezing temperature -15°C to -25°C), it is common to defrost with an electric heater, so the power consumption is 3 to 4 times the power consumption of the compressor. If defrosting is performed using the hot gas method using the double pipe method of this invention, an electric heater is not required.

に)両端を閉塞した内管は内部が負圧になっているので
、内管の熱容量は小さくなり、熱交換効率の向上が顕著
になる。
(b) Since the inner tube with both ends closed has a negative pressure inside, the heat capacity of the inner tube becomes smaller and the heat exchange efficiency is significantly improved.

またホットガス方式による除霜に採用すれば、ホットガ
スの熱量がペイプに無駄に吸収されることがなく、熱効
率が良いので除霜時間が短縮される。
Furthermore, if a hot gas method is used for defrosting, the heat of the hot gas will not be wasted by the tape, and the defrosting time will be shortened due to the high thermal efficiency.

(ホ)熱交換能力が向上するのでフィンの間隔を一重バ
イブ方式の場合よりも拡げることができ、したがってフ
ィンにチリが付着しにくくなり、熱交換能力の低下を防
ぐことができ、消費電力の低減に寄与する。
(e) Since the heat exchange capacity is improved, the spacing between the fins can be wider than in the case of a single-vibration system, which makes it difficult for dust to adhere to the fins, preventing a decrease in heat exchange capacity, and reducing power consumption. Contribute to reduction.

(ハ)この発明の熱交換方法は、熱交換器の凝縮器と蒸
発器のいずれにも使用できる。
(c) The heat exchange method of the present invention can be used in both a condenser and an evaporator of a heat exchanger.

蒸発器では冷暖いずれにも使用でき、暖房の場合には温
水または蒸気を、冷房の場合は高圧フレオンガスを通せ
ばよい。
The evaporator can be used for both heating and cooling; hot water or steam can be passed through it for heating, and high-pressure Freon gas can be passed through it for cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱交換器の概略正面図、第2図は第1図
のA−A線断面図、第3〜6図はこの発明の実施例を示
し、第3図は偏心二重壁熱交換用パイプの断面図、第4
図は同じく外管の連結および内管端部の閉塞状態を示す
説明図、第5図は、偏心二重壁熱交換用パイプを取付け
た熱交換器の概略図、第6図a、bは自動車のラジェー
タ用として偏心二重壁熱交換用パイプを使用した場合の
構造と吹出風、および吸出風の説明図である。 図面中の符号は、それぞれ下記のものを表わす。 1・・・枠、2・・・フィン、3・・・熱交換用パイプ
、3′・・・同断面図、4・・・外管、5・・・内管、
6・・・支持片、7・・・空隙、8・・・内管の中空部
、9・・・内管の蓋、10・・・溶接部、11・・・フ
ァンモータ、M・・・熱媒体、W・・・熱水。
Fig. 1 is a schematic front view of a conventional heat exchanger, Fig. 2 is a sectional view taken along line A-A in Fig. 1, Figs. 3 to 6 show embodiments of the present invention, and Fig. 3 is an eccentric Sectional view of wall heat exchange pipe, No. 4
The figure is an explanatory diagram showing the connection of the outer tube and the closed state of the inner tube end, FIG. 5 is a schematic diagram of a heat exchanger equipped with an eccentric double-wall heat exchange pipe, and FIGS. 6 a and b are FIG. 2 is an explanatory diagram of the structure, blowing air, and suction air when an eccentric double-wall heat exchange pipe is used for a radiator of an automobile. The symbols in the drawings represent the following, respectively. DESCRIPTION OF SYMBOLS 1... Frame, 2... Fin, 3... Heat exchange pipe, 3'... Same sectional view, 4... Outer tube, 5... Inner tube,
6... Support piece, 7... Gap, 8... Hollow part of inner tube, 9... Lid of inner tube, 10... Welded part, 11... Fan motor, M... Heat medium, W...hot water.

Claims (1)

【特許請求の範囲】[Claims] 1 両端を閉塞した細いパイプを太いパイプの中に固定
して封入し、パイプが円形の場合は細いパイプの中心は
太いパイプの中心からずらしてあり、パイプが小判形ま
たは楕円形の場合は細いパイプの中心は太いパイプの長
軸上にあって太いパイプの中心からずらしである偏心二
重管を使用した熱交換器の内管と外管との間隙に熱媒体
を循環させ、内管と外管との間隔が広い側の外管の外表
面に、被熱交換流体を強制的に流動接触させることを特
徴とする強制的熱交換方法。
1 A thin pipe with both ends closed is fixed and enclosed inside a thick pipe, and if the pipe is circular, the center of the thin pipe is offset from the center of the thick pipe, and if the pipe is oval or oval, the center of the thin pipe is offset from the center of the thick pipe. The center of the pipe is on the long axis of the thick pipe, and the heat medium is circulated in the gap between the inner and outer tubes of a heat exchanger using eccentric double pipes. A forced heat exchange method characterized by forcibly bringing a fluid to be heat exchanged into fluid contact with the outer surface of the outer tube on the side with a wider distance from the outer tube.
JP54089331A 1979-07-16 1979-07-16 Forced heat exchange method Expired JPS5810677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54089331A JPS5810677B2 (en) 1979-07-16 1979-07-16 Forced heat exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54089331A JPS5810677B2 (en) 1979-07-16 1979-07-16 Forced heat exchange method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13217581A Division JPS5774583A (en) 1981-08-25 1981-08-25 Pipe for heat exchanger

Publications (2)

Publication Number Publication Date
JPS5616090A JPS5616090A (en) 1981-02-16
JPS5810677B2 true JPS5810677B2 (en) 1983-02-26

Family

ID=13967694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54089331A Expired JPS5810677B2 (en) 1979-07-16 1979-07-16 Forced heat exchange method

Country Status (1)

Country Link
JP (1) JPS5810677B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604531Y2 (en) * 1993-11-17 2000-05-22 オリオン機械株式会社 Heat exchanger structure
US11255614B2 (en) * 2019-07-29 2022-02-22 Hamilton Sundstrand Corporation Heat exchanger with barrier passages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4315886Y1 (en) * 1965-01-09 1968-07-02
JPS4727230U (en) * 1971-04-13 1972-11-28
JPH0610711U (en) * 1992-06-30 1994-02-10 株式会社日立ホームテック High frequency heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4315886Y1 (en) * 1965-01-09 1968-07-02
JPS4727230U (en) * 1971-04-13 1972-11-28
JPH0610711U (en) * 1992-06-30 1994-02-10 株式会社日立ホームテック High frequency heating device

Also Published As

Publication number Publication date
JPS5616090A (en) 1981-02-16

Similar Documents

Publication Publication Date Title
JPS589911B2 (en) Evaporator for refrigerator
JP3223166B2 (en) refrigerator
CN207132764U (en) Flat pipe, micro-channel heat exchanger and refrigeration equipment
US6289691B1 (en) Refrigerator
WO2022220159A1 (en) Heat exchanger
JPS5810677B2 (en) Forced heat exchange method
CN202281423U (en) Micro-channel cooling evaporating apparatus
KR100493697B1 (en) The refrigerator for improvement on heat exchange efficiency
JPH0410530Y2 (en)
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
WO2018133735A1 (en) Brazed plate-and-shell type evaporator and manufacturing method thereof
CN217082989U (en) Novel refrigerant heat exchanger
CN216745672U (en) Double-channel folding inner finned tube structure
KR200169554Y1 (en) Pipe for heat exchanger
JP2000121204A (en) Heat exchanger
CN208567620U (en) A kind of flat tube and the heat exchanger using the flat tube
KR100244206B1 (en) Condenser for refrigerator
JP3756311B2 (en) Heat exchanger
JPS63123995A (en) Heat storage type heat exchanger
CN117889676A (en) Relieved tooth type microchannel heat exchanger and manufacturing method thereof
KR100304876B1 (en) Heat exchanger for refrigerator
KR100339565B1 (en) Condenser for refrigerator
KR20000066528A (en) Air-cooled heat exchanger for condenser in refrigerator and water cooler
JP2000028226A (en) Heat exchanger for carbonic acid refrigerating cycle
JP3738404B2 (en) Heat exchanger for air conditioning