JPS5810674B2 - Electric furnace equipment with preheating furnace - Google Patents

Electric furnace equipment with preheating furnace

Info

Publication number
JPS5810674B2
JPS5810674B2 JP55107410A JP10741080A JPS5810674B2 JP S5810674 B2 JPS5810674 B2 JP S5810674B2 JP 55107410 A JP55107410 A JP 55107410A JP 10741080 A JP10741080 A JP 10741080A JP S5810674 B2 JPS5810674 B2 JP S5810674B2
Authority
JP
Japan
Prior art keywords
furnace
preheating
exhaust gas
temperature
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55107410A
Other languages
Japanese (ja)
Other versions
JPS5731782A (en
Inventor
大西復治
木下孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takigawa Kogyo Co Ltd
Original Assignee
Takigawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takigawa Kogyo Co Ltd filed Critical Takigawa Kogyo Co Ltd
Priority to JP55107410A priority Critical patent/JPS5810674B2/en
Publication of JPS5731782A publication Critical patent/JPS5731782A/en
Publication of JPS5810674B2 publication Critical patent/JPS5810674B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 本発明は予熱炉付金属溶融用電波電気炉(以下電気炉と
いう)設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radio-controlled electric furnace (hereinafter referred to as electric furnace) equipment for metal melting with a preheating furnace.

近時回分式に運転される金属溶融用電気炉で、エネルギ
ー効率を高めるために、電気炉の排出ガスにより原料金
属(以下製鋼用電気炉を例にとって述べるので、原料ス
クラップ、またはスクラップという)を予熱することが
多い。
Recently, electric furnaces for metal melting have been operated in a batch manner, and in order to improve energy efficiency, raw metal (hereinafter referred to as raw material scrap or scrap) is generated using the exhaust gas of the electric furnace. Often preheated.

第1図に示した製鋼用電気炉設備の1例によってその構
成を説明すると、電気炉1で金属熔融の際に発生した排
出ガスはそのまま、または電気炉出口と導管2との連結
部から侵入した空気により燃焼して温度上昇し、予熱器
3内でスクラップを予熱し、(作業の都合によっては予
熱しないでバイパス4を通って)、冷却器5で水または
空気で冷却され、除塵器6で除塵され、排風機7で吸引
され、(したがって電気炉以外の排風機より上流の機器
は負圧に保たれて)、スタッフ8から放出される。
To explain the configuration using an example of electric furnace equipment for steelmaking shown in FIG. The scrap is combusted by the heated air and the temperature rises, and the scrap is preheated in the preheater 3 (passing through the bypass 4 without being preheated depending on the work circumstances), cooled with water or air in the cooler 5, and then removed from the dust remover 6. The dust is removed by the fan, sucked in by the fan 7 (therefore, equipment upstream of the fan other than the electric furnace is kept at a negative pressure), and discharged from the staff 8.

(上流、下流は排出ガスの流れにより定義する。(Upstream and downstream are defined by the flow of exhaust gas.

)一方原料スクラップは予熱炉に装入し、該予熱炉内で
所定の予熱が完了すると予熱炉を上記システムから切離
し、直接、またはスクラップバッグに移し変えて、電気
炉に装入することにより、熱エネルギーを回収している
) On the other hand, the raw material scrap is charged into a preheating furnace, and when the prescribed preheating is completed in the preheating furnace, the preheating furnace is separated from the above system, and the raw material scrap is directly or transferred to a scrap bag and charged into an electric furnace. It recovers heat energy.

この種の電気炉設備は電気炉およびスクラップ予熱炉が
回分的に運転されるためと、電気炉へのスクラップの装
入が電気炉の1回分について複数回行われるととがある
ため、エネルギー効率は概して低くこれを向上させるた
めには種種の工夫が必要である。
This type of electric furnace equipment is energy efficient because the electric furnace and scrap preheating furnace are operated in batches, and scrap is charged into the electric furnace multiple times for each electric furnace. is generally low, and various measures are required to improve it.

電気炉にスクラップを装入するためには、いったん、電
流を切り、電極の装着された土蓋を外してスクラップを
投入する方法をとるので、追装の場合、再スタートの時
点で電気炉、したがって排出ガスの温度は第2図(初装
後運転、追装置回後運転)に例示するように著しく降下
し、予熱炉内の温度よりも低温となり、予熱炉を逆に冷
却する事態を生ずる。
In order to charge scrap into the electric furnace, the electric current must be turned off, the earthen cover with the electrode attached must be removed, and the scrap must be loaded. Therefore, the temperature of the exhaust gas drops significantly as shown in Figure 2 (operation after initial loading, operation after additional equipment), and becomes lower than the temperature inside the preheating furnace, causing a situation where the preheating furnace is cooled in the opposite direction. .

この対策として、例えば実開昭55−26255号によ
れば、電気炉出口に、(イ)蓄熱塔、複数のスクラップ
予熱炉を直列につないだ熱エネルギー回収ルートと、(
ロ)これら全体のバイパスルートとを形成し、排ガスの
温度の高いときにのみ、(イ)のルートを使用する予熱
装置が開示されているが、この装置では蓄熱塔はりジェ
ネレーターの作用を持たず、入熱を平均化して出熱とす
る熱的アキュムレ−タの作用をなし、熱力学第2法則か
ら明らかなように平均有効温度差を減じ、また、1系統
の直列予熱炉を使用しているため、スクラップ出し入れ
などで、予熱器を1基停止すると、全予熱装置が停止す
る欠点がある。
As a countermeasure for this, for example, according to Utility Model Application Publication No. 55-26255, a thermal energy recovery route in which (a) a heat storage tower and a plurality of scrap preheating furnaces are connected in series is installed at the outlet of the electric furnace;
(b) A preheating device is disclosed that forms a bypass route for all of these and uses route (a) only when the exhaust gas temperature is high, but this device does not have the action of a heat storage tower beam generator. , acts as a thermal accumulator that averages the heat input and outputs the heat, reduces the average effective temperature difference as is clear from the second law of thermodynamics, and uses one series preheating furnace. Therefore, there is a drawback that if one preheater is stopped due to taking in or taking out scrap, all preheating devices will stop.

本発明は上記欠点を除くためになされたものであって、
さらに詳しくいうと、前記したような予熱炉の冷却現象
を起こすことなく、熱的アキュムレータを使用せず、予
熱炉を並列に設置した、したがって熱回収率が高く、稼
動率の高い予熱炉付電気炉設備を提供することである。
The present invention has been made to eliminate the above-mentioned drawbacks, and includes:
To be more specific, an electric preheating furnace with a preheating furnace that does not cause the cooling phenomenon described above, does not use a thermal accumulator, and has preheating furnaces installed in parallel, has a high heat recovery rate, and has a high operating rate. The purpose is to provide furnace equipment.

すなわち、本発明は、電気炉の排ガスをそのまま、また
は空気を補給して燃焼した後、この排ガスにより次回ま
たは次回以後の回に電気炉で溶融する原料金属を予熱す
る並列複数基の予熱器を持ち、各予熱炉ごとに、該予熱
炉に流入する排ガスの温度が、その予熱炉について予め
決められた設定温度により高い場合に開き、低い場合に
閉まる自動制御弁で流量調節され、全予熱炉の自動弁が
閉まった場合に、バイパスに通じる弁が開き、排出ガス
がバイパスを流れるようになった予熱炉付電気炉設備で
ある。
That is, the present invention uses a plurality of parallel preheaters that burns exhaust gas from an electric furnace as it is or with air supplemented, and then uses this exhaust gas to preheat raw metal to be melted in the electric furnace next time or after the next time. For each preheating furnace, the flow rate is adjusted by an automatic control valve that opens when the temperature of the exhaust gas flowing into the preheating furnace is higher than the preset temperature set for that preheating furnace, and closes when it is lower than the temperature set in advance for that preheating furnace. This is electric furnace equipment with a preheating furnace in which when the automatic valve closes, the valve leading to the bypass opens and the exhaust gas flows through the bypass.

前記した設定温度は定値であっても、たとえば予熱炉の
特定の場所の温度のように経時変化をする温度であって
も差支えない。
The above-described set temperature may be a fixed value or may be a temperature that changes over time, such as the temperature at a specific location in the preheating furnace.

以上の構成によって明らかに排出ガスによる予熱炉の冷
却がさけられることになる。
The above configuration clearly avoids cooling of the preheating furnace by exhaust gas.

次に1基の予熱炉を使用した場合(第3図)により自動
制御弁の使用態様について述べた後、並列複数の予熱炉
を使用した場合(第4図)について説明する。
Next, we will describe how the automatic control valve is used when one preheating furnace is used (FIG. 3), and then we will explain the case where a plurality of parallel preheating furnaces are used (FIG. 4).

第3図は連装を1回行い、初装のスクラップのみを予熱
炉で予熱する場合を例示した工程図で、この場合は予熱
炉を1基設ければよいが、第1図の従来法の例ではバイ
パス4は予熱炉の故障その他特に予熱器を止める必要が
ある場合にのみ使用するのに対し、本実施例では前記の
場合以外にも自動切替弁9を設けて、たとえば温度検出
器10で図の位置の温度を検出して、予め決めた設定温
度と比較し、もし検出温度が設定温度より低ければ、排
出ガスをバイパス4に流し、逆に高ければ予熱炉3のみ
に流すように調節する。
Figure 3 is a process diagram illustrating the case where continuous loading is performed once and only the first loading scrap is preheated in a preheating furnace. In the example, the bypass 4 is used only when there is a malfunction in the preheating furnace or when there is a particular need to stop the preheater. Detect the temperature at the position shown in the figure and compare it with the preset set temperature. If the detected temperature is lower than the set temperature, the exhaust gas will flow to bypass 4, and if it is higher, it will flow only to preheating furnace 3. Adjust.

前述したように設定値は必ずしも定値である必要はなく
、たとえば予熱炉内の特定位置の炉壁温度であってもよ
い。
As mentioned above, the set value does not necessarily have to be a fixed value, and may be, for example, the furnace wall temperature at a specific position within the preheating furnace.

また、籾袋後連装のため電気炉を停止するまでは、第2
図から明らかなように、正常運転では排出ガスの温度が
予熱炉の温度以下になることはないので、連装後電気炉
1を再スタートした後に前記自動切替弁9を作動させて
もよい。
In addition, until the electric furnace is stopped for reloading after paddy bags, the second
As is clear from the figure, in normal operation, the temperature of the exhaust gas does not fall below the temperature of the preheating furnace, so the automatic switching valve 9 may be operated after the electric furnace 1 is restarted after being connected.

制御様式としてはいわゆるオンオフ方式でじゅうぶんで
、弁としては三方バターフライ弁、作動方法としては流
体シリンダーとラックピニオン型伝動機構を用いると安
価である。
The so-called on-off control method is sufficient, the valve is a three-way butterfly valve, and the operating method is a fluid cylinder and rack-and-pinion type transmission mechanism, which is inexpensive.

第3図に示した工程図は1基の予熱炉を用いた場合であ
って、電気炉は運転中で予熱炉が休止した場合に、高温
の排出ガスが冷却器5に送られるので、冷却器の能力を
小にすることはできない。
The process diagram shown in Figure 3 shows the case where one preheating furnace is used, and when the electric furnace is in operation and the preheating furnace is stopped, high-temperature exhaust gas is sent to the cooler 5, so it is cooled. You cannot reduce the capacity of a vessel.

よって本発明では、並列複数の予熱炉を用いるのであっ
て、次にその実施例を示す。
Therefore, in the present invention, a plurality of preheating furnaces are used in parallel, and an example thereof will be shown below.

第4図は連装1回で、籾袋スクラップ、連装スクラップ
の両者を予熱する場合を例示した工程図で、電気炉1基
に対し2基の予熱炉を使用する。
FIG. 4 is a process diagram illustrating the case where both the paddy bag scrap and the continuous scrap are preheated in one continuous loading process, in which two preheating furnaces are used for one electric furnace.

予熱炉3と3′はほぼ同量のスクラップを電気炉1の全
運転時間にわたり処理するが、3は電気炉1の籾袋用に
用い、籾袋時にスクラップの排出、装入を行うのに対し
A3′は連装用に用い、連装時に排出装入を行う。
The preheating furnaces 3 and 3' process approximately the same amount of scrap during the entire operating time of the electric furnace 1, but the preheating furnace 3 is used for paddy bagging in the electric furnace 1, and is used for discharging and charging scrap at the time of paddy bagging. On the other hand, A3' is used for continuous loading, and is discharged and charged during continuous loading.

制御弁11.12は、温度検出器10による検出温度が
設定温度より低い場合に全閉し、高い場合は全閉し、3
方切替制御弁9は、制御弁11.12の両者が全閉した
場合にバイパス4に排出ガスを流し、予熱炉3,3′の
うちいずれか、または両者に排出ガスが流れている場合
は閉まっているように作られている。
The control valves 11 and 12 are fully closed when the temperature detected by the temperature detector 10 is lower than the set temperature, and are fully closed when the temperature is higher than the set temperature.
The two-way switching control valve 9 allows exhaust gas to flow through the bypass 4 when both control valves 11 and 12 are fully closed, and when exhaust gas is flowing through either or both of the preheating furnaces 3 and 3'. It's made to look like it's closed.

第3図の実施例と同様に、制御弁11,12はオンオフ
型式のものでじゅうぶんで、流体シリンダーにより作動
するバターフライ弁が通常用いられる。
As with the embodiment of FIG. 3, the control valves 11, 12 may be of the on-off type, and butterfly valves operated by fluid cylinders are commonly used.

連装1回の場合において、予熱炉の数をさらに増し、複
数の回分にわたって予熱するなどの他の変形が考えられ
、さらに連装回数が2回以上になると、予熱炉の数、各
回に装入するスクラップを予熱するか否かなどにより種
種の組合せができるが、それらの変形のすべてに対し、
各予熱炉でそれぞれ決められた設定温度が前記検出温度
より高い場合、制御弁を全閉し、全予熱炉に排出ガスが
流れぬ場合にのみバイパスに排出ガスを流す運転方式は
適用可能である。
In the case of one continuous loading, other modifications can be considered, such as increasing the number of preheating furnaces and preheating over multiple times. Furthermore, if the number of consecutive loadings becomes two or more times, the number of preheating furnaces and charging for each time may be considered. Various combinations are possible depending on whether or not the scrap is preheated, but for all of these variations,
If the set temperature determined for each preheating furnace is higher than the detected temperature, an operation method can be applied in which the control valve is fully closed and exhaust gas is allowed to flow through the bypass only when no exhaust gas flows to any of the preheating furnaces. .

すべての予熱炉に排出ガスが流れない場合は前記検出温
度が低い場合で検出温度が低いと排出ガスの生成量も少
ないので、バイパス4は排出ガス流に対する断面積を大
きくとる必要なく、バイパス4のみに排出ガスが流れる
場合でも、冷却器5およびそれより下流の詰機器に大き
な負荷を与えることはない。
If the exhaust gas does not flow to all the preheating furnaces, the detected temperature is low, and if the detected temperature is low, the amount of exhaust gas produced is small. Even if the exhaust gas flows only through the cooler 5, it does not place a large load on the cooler 5 and the downstream packing equipment.

予熱炉を並列に使用すると一般に圧損失を減らすことが
でき、予熱炉を複数回分にわたり使用すればエネルギー
回収量が増す。
Using preheating furnaces in parallel generally reduces pressure loss, and using multiple preheating furnaces increases energy recovery.

本発明は上記のような構成の設備になっているからすで
に説明したように低温の排出ガスにより予熱炉が冷却さ
れることがなく熱エネルギー効率が高い。
Since the present invention is equipped with the above-mentioned configuration, the preheating furnace is not cooled by low-temperature exhaust gas as described above, resulting in high thermal energy efficiency.

またバイパスを使用するのは排出ガスの時間あたり発生
量が少ない場合であるから設備費も嵩まない。
Furthermore, since the bypass is used when the amount of exhaust gas generated per hour is small, the equipment cost does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の予熱炉付製鋼用電気炉設備の1例の工程
図で、第2図は排出ガス温度の経時変化を例示した関係
図、第3図は予熱炉1基の場合の工程図、第4図は予熱
炉2基の場合の本発明の実施例の工程図である。 1・・・・・・電気炉、2・・・・・・電気炉出口導管
、3,3′・・・・・・予熱炉、4・・・・・・バイパ
ス、5・・・・・・冷却器、6・・・・・・除塵器、1
・・・・・・排風機、8・・・・・・スタック、9・・
・・・・自動切替弁、10・・・・・・温度検出器、1
1,12・・・・・・制御弁。
Figure 1 is a process diagram of an example of conventional electric furnace equipment for steelmaking with a preheating furnace, Figure 2 is a relationship diagram illustrating changes in exhaust gas temperature over time, and Figure 3 is a process diagram for the case of one preheating furnace. 4 are process diagrams of an embodiment of the present invention in the case of two preheating furnaces. 1... Electric furnace, 2... Electric furnace outlet conduit, 3, 3'... Preheating furnace, 4... Bypass, 5...・Cooler, 6... Dust remover, 1
...Exhaust fan, 8...Stack, 9...
... Automatic switching valve, 10 ... Temperature detector, 1
1, 12... Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 原料金属を電気炉で溶融する際に発生する排出ガス
をそのまま、または空気を補給して燃焼した後、この排
出ガスにより次回または次回以後の回に電気炉で溶融す
る原料金属を予熱する並列複数基の予熱炉を持ち、前記
各予熱炉ごとに、該予熱炉に流入すべき排出ガスの温度
が、当該炉について予め決められた設定温度より高い場
合に開き、低い場合に閉まる自動制御弁で流量調節され
、全予熱炉の自動調節弁が閉まった場合に、バイパスに
通じる弁が開き、排出ガスがバイパスを流れるようにな
った予熱炉付電気炉設備。
1. A parallel method in which the exhaust gas generated when raw metal is melted in an electric furnace is burned as is or with air added, and then the exhaust gas is used to preheat the raw material metal to be melted in the electric furnace next time or in subsequent times. An automatic control valve having a plurality of preheating furnaces, and for each of the preheating furnaces, opens when the temperature of the exhaust gas that should flow into the preheating furnace is higher than a preset temperature for the furnace, and closes when the temperature is lower than a preset temperature for the furnace. Electric furnace equipment with a preheating furnace where the flow rate is adjusted by the preheating furnace, and when the automatic control valves of all preheating furnaces are closed, the valve leading to the bypass opens and the exhaust gas flows through the bypass.
JP55107410A 1980-08-04 1980-08-04 Electric furnace equipment with preheating furnace Expired JPS5810674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55107410A JPS5810674B2 (en) 1980-08-04 1980-08-04 Electric furnace equipment with preheating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55107410A JPS5810674B2 (en) 1980-08-04 1980-08-04 Electric furnace equipment with preheating furnace

Publications (2)

Publication Number Publication Date
JPS5731782A JPS5731782A (en) 1982-02-20
JPS5810674B2 true JPS5810674B2 (en) 1983-02-26

Family

ID=14458435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55107410A Expired JPS5810674B2 (en) 1980-08-04 1980-08-04 Electric furnace equipment with preheating furnace

Country Status (1)

Country Link
JP (1) JPS5810674B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327961U (en) * 1989-07-24 1991-03-20
JPH0327959U (en) * 1989-07-24 1991-03-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322449A (en) * 1992-05-26 1993-12-07 Nippon Steel Corp Preheating control method in compound melting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526255B2 (en) * 1976-09-16 1980-07-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653280Y2 (en) * 1978-08-02 1981-12-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526255B2 (en) * 1976-09-16 1980-07-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327961U (en) * 1989-07-24 1991-03-20
JPH0327959U (en) * 1989-07-24 1991-03-20

Also Published As

Publication number Publication date
JPS5731782A (en) 1982-02-20

Similar Documents

Publication Publication Date Title
US4021192A (en) Furnace system for and method of melting and preheating metal
US4628869A (en) Variable temperature waste heat recovery system
US4655436A (en) Method and apparatus for recovering and reusing energy from a melting furnace
JPS5810674B2 (en) Electric furnace equipment with preheating furnace
FR2370856A1 (en) LOW PRESSURE TURBINE TEMPERATURE CONTROL SYSTEM OF POWER PLANTS
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
CN210127253U (en) Load-adjustable heating medium type double-preheating heat exchanger for blast furnace hot blast stove
US4069660A (en) Chemical reaction furnace system
US4877013A (en) Hot blast stove installation
CN208398636U (en) Exchange system suitable for recuperative heater
CN118258229A (en) Flue gas waste heat recovery system and method
CN221923961U (en) Preheating system
JPH01169292A (en) Waste heat recovering method
KR960024204A (en) Air preheating method for combustion of heating furnace using regenerative heat exchanger
JP2567013B2 (en) Exhaust heat utilization system
US3631920A (en) Changeover-type regenerative heat-exchange apparatus
JPS62158806A (en) Control device for top temperature of blast furnace having dry dust collector
JP2812159B2 (en) Operating method of heating furnace
KR20050005628A (en) system for reducing corrosion of a pipe in a regenerative combustion system
JPS6053781A (en) Heat recovery device for exhaust gas from industrial furnace
JPS6350628A (en) Controlling method for generated steam quantity
JPS6460703A (en) Heat exchanger control device for generating plant
JPS62255718A (en) Control of steam type air preheater
US3170510A (en) Magnetohydrodynamic installation with high temperature heat exchanger
JPS6138397A (en) Heat accumulating device