JPS58106660A - Collating device for seal impression - Google Patents
Collating device for seal impressionInfo
- Publication number
- JPS58106660A JPS58106660A JP56205112A JP20511281A JPS58106660A JP S58106660 A JPS58106660 A JP S58106660A JP 56205112 A JP56205112 A JP 56205112A JP 20511281 A JP20511281 A JP 20511281A JP S58106660 A JPS58106660 A JP S58106660A
- Authority
- JP
- Japan
- Prior art keywords
- seal imprint
- seal
- pattern
- external
- matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は機械により印影の一致又は不一致を判定する印
影照合機に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a seal imprint collation machine that mechanically determines whether seal imprints match or do not match.
(背景技術)
従来の印影照合装置を第1図に示す。第1図は、被検印
影を読取部1にて読み取った被照合印影パターン2を位
置整合部3にて移動および回転させ、照合比較部4にて
登録印影パターン5との一致度を調べ、一致判定部6に
て判定を行ない、必要に応じて結果を位置整合部3にフ
ィード・バンクして一致度が向上する方向に移動および
回転を施した後、再び照合比較部4にて一致度を調べ、
このような工程を繰り返し、一致度の最大値から被検印
影の真偽を判定する装置である。従って、この装置の場
合、判定結果が得られるまでには非常に多くの回数の「
位置整合」と「照合比較」を繰り返さなければならない
。ところで、「照合比較」は一般にパターン全域にわた
って走査を行ない、逐一相対応するメツシュ上のドツト
の一致・不一致を調べるわけであるから、かなりの処理
時間を必要とする。それ故「照合比較」を多数回行なう
ということは、照合に要する時間がとても長いとい°う
欠点につながる。ところで現在人手により行なわれてい
る印鑑照合の手順は■形■太ぎさ■書体■字(ばり■字
画の順であるといわれており、■■の照合段階では主と
して印影パターンの外形特徴のみを利用しており、内部
特徴は無視していると言うことができる。(Background Art) A conventional seal imprint verification device is shown in FIG. FIG. 1 shows a seal imprint pattern 2 to be verified read by a reading unit 1, moved and rotated by a position matching unit 3, and a matching degree with a registered seal imprint pattern 5 is checked by a verification comparison unit 4. The match determination unit 6 makes a determination, and if necessary, the results are fed and banked to the position matching unit 3 to move and rotate in a direction that improves the match, and then the matching comparison unit 4 checks the match again. Investigate
This device repeats these steps and determines the authenticity of the seal impression based on the maximum value of the degree of coincidence. Therefore, with this device, it takes a very large number of times to obtain a judgment result.
``Position matching'' and ``Verification comparison'' must be repeated. By the way, since "verification and comparison" generally involves scanning the entire pattern and examining whether dots on the mesh correspond to each other one by one, it requires a considerable amount of processing time. Therefore, performing "verification comparison" many times leads to the drawback that the time required for verification is very long. By the way, the procedure for checking seals that is currently performed manually is said to be in the following order: ■Shape ■Thickness ■Typeface ■Character (burr) Stroke, and the verification stage of ■■ mainly uses only the external features of the seal imprint pattern. Therefore, it can be said that internal features are ignored.
しかるに、従来の印影照合機は、℃・がなる場合でも外
形特徴と内部特徴を合せたパターン全体を常に照合して
いることになるから無駄が多いわけである。すなわち、
登録印影パターンが角型であり被照合印影パターンが丸
型であるなど、形が異なる場合には、いちいち全パター
ンのマツチングをとるまでもなく、「不一致」という結
論を出して差し支えないにもかかわらず、−律に全パタ
ーンのマツチングをとって照合時間を長びかせていると
いう欠点があった。However, conventional seal imprint matching machines are wasteful because they always match the entire pattern, which is a combination of external features and internal features, even when °C. That is,
If the registered seal imprint pattern is square and the matched seal imprint pattern is round, if the shapes are different, it is not necessary to match all the patterns one by one, and it is safe to conclude that there is a "mismatch." First, it has the disadvantage that all patterns must be matched, which increases the matching time.
(発明の課題)
本発明の目的は、これらの欠点を除去することにあり、
登録印影パターンと被照合印影パターンとからそれぞれ
外形形状などの外形特徴を中心と輪郭点との間の距離の
極太値及び極小値の数として抽出し、外形特徴が不一致
の場合には、両印影パターンの「位置整合」や「照合比
較」を行なわずに「一致判定」を行なうようにしたもの
であり以下詳細に説明する。(Problems to be solved by the invention) The purpose of the present invention is to eliminate these drawbacks,
External features such as external shape are extracted from the registered seal imprint pattern and the matched seal imprint pattern as the number of thickest values and minimum values of the distance between the center and the contour point, and if the external features do not match, both seal impressions are extracted. This method performs "coincidence determination" without performing "positional matching" or "verification comparison" of patterns, and will be described in detail below.
(発明の構成及び作用)
第2図は本発明の第1の実施例であって、被検印影を読
取部1にて読み取った被照合印影パターン2から外形形
状などの外形特徴を、特徴抽出部争
7にて抽出する、一方あらかじめ登録されている ゛登
録印影パターン5かも外形形状などの外形特徴を特徴抽
出部8にて抽出し、上記抽出結果を特徴比較部9におい
て比較し、外形形状などの外形特徴が明らかに異なる場
合には、位置整合部3および照合比較部4の動作を停止
させ、一致判定部6を経由して「不一致」という判定を
下し、外形特徴の相異が明白でない場合には、従来例と
同様被照合印影パターン2を位置整合部3にて移動およ
び回転させ、照合比較部4にて登録印影パターン5との
一致度を調べ、一致判定部6にて判定を行ない、必要に
応じて結果を位置整合部3にフィード・バックして一致
度が向上する方向に移動および回転を施した後、再び照
合比較部4にて一致度を調べ、このような工程を繰り返
し、一致度の最大値から被検印影の真偽を判定する。特
徴抽出部7および8について説明する。なお特徴抽出部
7と特徴抽出部8とは同一であるので、特徴抽出部7の
みについて述べる。(Structure and operation of the invention) FIG. 2 shows a first embodiment of the present invention, in which external features such as external shape are extracted from a verified seal imprint pattern 2 obtained by reading a test seal imprint with a reading unit 1. The feature extraction section 8 extracts external features such as the registered seal imprint pattern 5 and the external shape, and the feature comparison section 9 compares the above extraction results to determine the external shape. If the external shape features are clearly different, the operations of the position matching section 3 and the matching comparison section 4 are stopped, and a judgment of "mismatch" is made via the matching determination section 6, and the difference in the external shape features is confirmed. If it is not clear, the position matching unit 3 moves and rotates the seal imprint pattern 2 to be compared, as in the conventional example, the matching comparison unit 4 checks the degree of matching with the registered seal imprint pattern 5, and the match determining unit 6 After the judgment is made and the results are fed back to the position matching section 3 as necessary to perform movement and rotation in a direction that improves the degree of coincidence, the degree of coincidence is checked again in the comparison and comparison section 4. The process is repeated and the authenticity of the seal imprint to be tested is determined based on the maximum value of the degree of coincidence. The feature extraction units 7 and 8 will be explained. Note that since the feature extractor 7 and the feature extractor 8 are the same, only the feature extractor 7 will be described.
特徴抽出部7は、中心検出機能と外形特徴検出機能とに
大別される。中心検出は、バタンの外周を輪郭追跡し、
追跡した輪郭点座標の重心を算出する公知の方法で行な
われる。外形特徴検出は、上記中心検出で得られたバタ
ン外周輪郭点と中心点との距離を各バタン外周輪郭点に
ついて算出し、その距離の変化の極太及び極小点の数を
検出する事により行なわれる。The feature extraction unit 7 is roughly divided into a center detection function and an external shape feature detection function. Center detection involves tracing the contour of the outer circumference of the baton.
This is performed using a known method of calculating the center of gravity of the traced contour point coordinates. External shape feature detection is performed by calculating the distance between the center point and the outer contour point of the baton obtained in the above center detection for each of the outer contour points of the baton, and detecting the number of extremely thick and minimum points where the distance changes. .
第3図は、印影バタン外形特徴検出の例である。FIG. 3 is an example of detecting the external shape feature of a stamp stamp.
第3図の(イ)の場合は円形印影の例で極太及び極小点
数は0である。(ロ)の場合は楕円印影の例で極太及び
極小点はP、 、 P2. P3. P4の各点で検出
さ牙1極太及び極小点数は4となる。(ハ)の場合は正
方形印影の例で、P、、 P2. P3. P4. P
、、 P6. P、、 P、の8点で極太及び極小点が
検出される。In the case of (a) in FIG. 3, it is an example of a circular seal impression, and the number of extremely thick and minimum points is 0. In the case of (b), it is an example of an elliptical seal impression, and the thickest and smallest points are P, , P2. P3. The number of the thickest and smallest fangs detected at each point of P4 is 4. Case (c) is an example of a square seal impression, P,, P2. P3. P4. P
,, P6. Extremely thick and minimal points are detected at eight points P, , P,.
このようにして、特徴抽出部7および特徴抽出部8で検
出された極太及び極小点の数を特徴比較部9で比較し、
極太・極小点の数が一致すれは、位置整合部3及び照合
比較部4を動作させ一致判定部6にて一致度を判定する
。又、特徴抽出部7および8の極大、極小点の検出数が
不一致のとき、一致判定部6で直接「不一致」と判定を
下す。In this way, the number of extremely thick and minimum points detected by the feature extraction unit 7 and the feature extraction unit 8 is compared by the feature comparison unit 9,
If the numbers of extremely thick and extremely small points match, the position matching unit 3 and matching comparison unit 4 are operated, and the matching determination unit 6 determines the degree of coincidence. Further, when the detected numbers of maximum and minimum points by the feature extraction units 7 and 8 do not match, the match determination unit 6 directly determines that there is a "mismatch".
次に、極太・極小点検出について説明する。輪郭追跡に
より順次得られた輪郭点をP、 、 P2・・・Pnと
し、そのXY座標の位置をそれぞれ(X8.Y、)。Next, extremely thick and extremely small point detection will be explained. Let the contour points sequentially obtained by contour tracking be P, , P2...Pn, and their XY coordinate positions are (X8.Y,), respectively.
(X2. Y2)・(Xn、Y、)とし、各輪郭点P1
.■)2・、。(X2. Y2)・(Xn, Y,), and each contour point P1
.. ■) 2..
Pnの重心点をPo、重心点座標を(Xo、Yo)とす
ると、各輪郭点から重心点までの距離りは、LK−(X
K−Xo)2+(YK−Y(+)可 (K−1,2
・・n)で求めら第1る。上式で得られた距離の中で最
大の11N、LMを匈える点PMから極大、極小点検出
を開始する。If the center of gravity of Pn is Po and the coordinates of the center of gravity are (Xo, Yo), the distance from each contour point to the center of gravity is LK-(X
K-Xo)2+(YK-Y(+) possible (K-1,2
...n). Detection of the maximum and minimum points is started from the point PM where 11N, LM, which is the maximum among the distances obtained by the above formula, extends.
まずPM点までの距離の値−を最小値として初期設定し
、次の輪郭点PM刊の距離の値LM+1と最小値を比較
し、最小値>LM+1のとき、新たに最小値=LM刊と
する。この様にして、各輪郭点の距離を順次比較して行
き、最小値を更新する。この最lJS値更新の間に、最
小値からTHLだけ距離の値が増加する点が出現したと
き、即ち、輪郭点PR10点の距離LR1がLRI≧最
小値+T HLとなる点において、最小値を与えた点P
RIが極小点となる。次に、この極小点が決定された点
PR1での距離の値LRIを新たに、最大値と初期設定
し、前記極小点検出と同様に順次最大値を更新していく
。この最大値更新の間に距離の値が最大値よりTHL以
上、少ない点が出現したとき、即ち輪郭点PR2の点の
距離LR2カLR≦最大値−THL となる点におい
て、最大値を与えた点PR2が極太点となる。次にこの
PR20点で最小値を新たにLR2と決め、上記と同様
に極小点検出を行う。以下極太点検出、極小点検出を順
次くり返してゆき、検出点が”+1の点に達したとき、
Plの点に移り、点PMで極点検出を終了する。ここで
、THLは入力バタンの雑音などによる、輪郭点と重心
との距離の変動値より大きく選ぶ必要がある。First, initialize the distance value - to the PM point as the minimum value, compare the minimum value with the next contour point PM distance value LM+1, and when the minimum value > LM+1, the new minimum value = LM value. do. In this way, the distances of each contour point are compared in sequence and the minimum value is updated. During this maximum lJS value update, when a point appears whose distance value increases by THL from the minimum value, that is, at a point where the distance LR1 of the contour points PR10 satisfies LRI≧minimum value + THL, the minimum value is given point P
RI becomes the minimum point. Next, the distance value LRI at the point PR1 where the minimum point was determined is newly initialized as the maximum value, and the maximum value is sequentially updated in the same manner as the minimum point detection. During this maximum value update, when a point appears whose distance value is THL or more less than the maximum value, that is, the maximum value is given at a point where the distance LR2K of the contour point PR2 LR≦maximum value - THL. Point PR2 is a very thick point. Next, the minimum value is newly determined as LR2 at this PR20 point, and minimum point detection is performed in the same manner as above. The detection of the thickest point and the smallest point are repeated sequentially, and when the detection point reaches "+1",
Moving to point Pl, the pole detection ends at point PM. Here, THL needs to be selected to be larger than the fluctuation value of the distance between the contour point and the center of gravity due to noise of input bangs, etc.
以上説明したように、第一の実施例では、特徴抽出部に
おいて登録印影バタンと被照合印影バタンそれぞれの輪
郭バタンかもそれぞれの中心を求め両印影パタンの外形
特徴を検出して、特徴比較部において粗い一致度判定を
行なうので、照合に要する時間が大幅に短縮されろとい
う利点がある。As explained above, in the first embodiment, the feature extracting section finds the center of each contour of the registered seal imprint pattern and the matching seal imprint pattern, detects the external shape features of both seal imprint patterns, and the feature comparing section Since a rough matching degree judgment is performed, there is an advantage that the time required for matching can be significantly shortened.
第一の実施例では、印影バタンの外形特徴を検出する方
法について説明したが、フローチャート等のテンプレー
トで書かれた図形に対しても本発明は同様に適用できる
。すなわち第4図に示す如(、正多角形においても極太
、極小点数を検出することにより、図形の区別が可能で
ある。In the first embodiment, a method for detecting the external shape characteristics of a seal stamp button has been described, but the present invention can be similarly applied to figures written in templates such as flowcharts. That is, as shown in FIG. 4, even in regular polygons, shapes can be distinguished by detecting the number of extremely thick and minimum points.
第4図(イ)では円形で極点数O1第4図(ロ)では正
三角形で極点数6、第4図(ハ)では正方形で極点数8
、第4図に)ではひし形で極点数8、第4図(羽では正
六角形で極点数12となる。ここで第4図(ハ)のの正
方形と第4図に)のひし形では極点数が8で同数である
が、極太値を取る点の中心までの距離を比較することに
より区別できる。すなわち第4図←→では、P2= P
4= P6= P8であるが、第4図に)では、1)3
=))7がっP、 = P5でP3>PI という関
係から区別できることとなる。さらに、極太点又は極小
点の位置と中心の位置との関係から、円形のものを除い
て図形の傾斜角度をも検出することができる。例として
第4図(ロ)の場合で考えると、合点P1の位置の水平
方向の位置をX7、垂直方向の位置をY、とし、中心点
の位置の水平方向の位置をX。、垂直方向の位置をY。Figure 4 (a) is a circle with 0 poles, Figure 4 (b) is an equilateral triangle with 6 poles, and Figure 4 (c) is a square with 8 poles.
, Figure 4) has a rhombus with 8 poles, and Figure 4 (a feather has a regular hexagon with 12 poles.Here, the square in Figure 4(C) and the rhombus in Figure 4) have 8 poles. are the same number, 8, but can be distinguished by comparing the distance to the center of the point that takes the thickest value. In other words, in Fig. 4 ←→, P2= P
4= P6= P8, but in Figure 4), 1) 3
=))7gacP, = P5, which can be distinguished from the relationship P3>PI. Furthermore, from the relationship between the position of the thickest point or the smallest point and the center position, it is also possible to detect the angle of inclination of the figures, except for circular ones. As an example, considering the case of FIG. 4 (b), the horizontal position of the point P1 is X7, the vertical position is Y, and the horizontal position of the center point is X. , the vertical position is Y.
とすると正三角形の頂点P1の水平方向からの傾き角度
θは、
(発明の効果)
本発明は、特徴抽出部にお(・て、印影バタンの外形特
徴を検出して、特徴比較部で粗い一致判定を行なってい
るので、照合に要する時間が短い印影照合機に利用する
ことができる。又、図形の外形識別が可能であるのでフ
ローチャート解読装置等にも利用することができる。Then, the inclination angle θ from the horizontal direction of the apex P1 of the equilateral triangle is: Since a match is determined, it can be used in a seal imprint matching machine that requires a short time for matching.Also, since it is possible to identify the external shape of a figure, it can be used in a flowchart deciphering device, etc.
第1図は従来の印影照合機のブロック・ダイヤグラム、
第2図は本発明による印影照合機の一実施例のブロック
・ダイヤグラム、第3図日)〜←Jは印影パターンの極
太、極小点検出の例、第4図(イ)〜住)は多角形図形
の極太、極小点検出の例である。
1・・・読取部、 2・・・被照合印影パターン、3
・・・位置整合部、 4・・・照合比較部、5・・・
登録印影パターン、 6・・・一致判定部、7・・・
特徴抽出部、 8・・・特徴抽出部、9・・・特徴比
較部。
特許出願人
沖電気工業株式会社
特許出願代理人
弁理士 山 本 恵 −Figure 1 is a block diagram of a conventional seal imprint verification machine.
Fig. 2 is a block diagram of an embodiment of the seal imprint collation machine according to the present invention, Fig. 3) to J are examples of detecting very thick and minimal points of a seal imprint pattern, and Fig. 4 (a) to d) are examples of detecting very thick and minimal points of a seal imprint pattern. This is an example of detecting extremely thick and minimum points of a rectangular figure. 1...Reading section, 2...Seal imprint pattern to be verified, 3
...Position matching section, 4...Verification comparison section, 5...
Registered seal imprint pattern, 6... Match determination section, 7...
Feature extraction unit, 8... Feature extraction unit, 9... Feature comparison unit. Patent applicant Oki Electric Industry Co., Ltd. Patent application agent Megumi Yamamoto −
Claims (1)
より読取られた被照合印影パターンの位置を登録印影パ
ターンに位置整合する位置整合部と、両印影パターンの
照合比較を行なう照合比較部と、その出力の照合結果に
従って両印影パターンの一致又は不一致の判定及び前記
位置整合部による位置整合の再調整を指示する一致判定
部とを有する印影照合機において、被照合印影パターン
及び登録印影パターンの外形の特徴を抽出する特徴抽出
部と両印影パターンの外形特徴を比較する特徴比較部と
がもうけられ、該特徴抽出4部は、印影パターンの中心
座標を輪郭の中心として求め、求められた中心と輪郭上
の各点との間の距離の極太値及び極小値の検出数により
外形の特徴を抽出し、前記特徴比較部は両印影パターン
の前記検出数が不一致のときは直ちに両印影パターンを
不一致と判定するごとく構成されることを特徴とする印
影照合機。a reading unit that reads the seal imprint to be verified using an electrical signal; a position matching unit that aligns the position of the seal imprint pattern to be verified read by the reading unit with the registered seal imprint pattern; and a verification comparison unit that performs a verification comparison between the two seal imprint patterns; In a seal imprint matching machine having a matching determination unit that determines whether the two seal imprint patterns match or do not match according to the output verification result and instructs the position matching unit to readjust the position matching, A feature extraction section that extracts the features of the seal imprint pattern and a feature comparison section that compares the external features of both seal imprint patterns are provided. Features of the external shape are extracted based on the detected number of extremely thick values and minimum values of the distance between each point on the outline, and when the detected numbers of both seal imprint patterns do not match, the feature comparison section immediately compares the two imprint patterns to be mismatched. A seal imprint verification machine characterized in that it is configured to determine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56205112A JPS605034B2 (en) | 1981-12-21 | 1981-12-21 | Seal imprint matching machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56205112A JPS605034B2 (en) | 1981-12-21 | 1981-12-21 | Seal imprint matching machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58106660A true JPS58106660A (en) | 1983-06-25 |
JPS605034B2 JPS605034B2 (en) | 1985-02-07 |
Family
ID=16501615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56205112A Expired JPS605034B2 (en) | 1981-12-21 | 1981-12-21 | Seal imprint matching machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS605034B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05274440A (en) * | 1992-03-25 | 1993-10-22 | Matsumura Electron:Kk | Deciding method by area and shape comparison of fingerprint recognizing and deciding device |
-
1981
- 1981-12-21 JP JP56205112A patent/JPS605034B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05274440A (en) * | 1992-03-25 | 1993-10-22 | Matsumura Electron:Kk | Deciding method by area and shape comparison of fingerprint recognizing and deciding device |
Also Published As
Publication number | Publication date |
---|---|
JPS605034B2 (en) | 1985-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Core-based structure matching algorithm of fingerprint verification | |
Soetedjo et al. | Fast and robust traffic sign detection | |
Huang et al. | Masked face recognition datasets and validation | |
EP2589026B1 (en) | Method and apparatus for detecting repetitive structures in 3d mesh models | |
CN109241901B (en) | A kind of detection and recognition methods to the three-dimensional point cloud with hole | |
CN104517091A (en) | Method and system for screening QR (quick response) code detected graphics | |
CN108319887A (en) | A kind of identity authentication method and system | |
Gachter et al. | Results on range image segmentation for service robots | |
CN102831388A (en) | Method and system for detecting real-time characteristic point based on expanded active shape model | |
JPS58106660A (en) | Collating device for seal impression | |
JP2005128628A (en) | Generation of template used for matching in pattern identification, and method, apparatus, and program for pattern identification using the template | |
JP4486351B2 (en) | Seal verification device, seal verification method and seal verification program | |
JPS58106661A (en) | Collating device for seal impression | |
JPS5962980A (en) | Collating method of seal impression | |
AU2021103943A4 (en) | Handwritten Signature Reconstruction | |
Liu et al. | Fingerprint singular points detection and direction estimation with a “t” shape model | |
JPS58191077A (en) | Seal image collating device | |
JPS58106662A (en) | Collating device for seal | |
JP2830459B2 (en) | Type identification method for electronic components | |
JP2921055B2 (en) | Pattern matching device and pattern matching method | |
JPS6255191B2 (en) | ||
JPS5957376A (en) | Method for automatic collation of seal | |
ming Dong et al. | A hybrid method for robot navigation based on MR code landmark | |
JPS58106659A (en) | Collating device for seal impression | |
Ohtsuka et al. | Singular candidate method: Improvement of extended relational graph method for reliable detection of fingerprint singularity |