JPS5810646A - Relative concentration measuring device for solution - Google Patents

Relative concentration measuring device for solution

Info

Publication number
JPS5810646A
JPS5810646A JP56109107A JP10910781A JPS5810646A JP S5810646 A JPS5810646 A JP S5810646A JP 56109107 A JP56109107 A JP 56109107A JP 10910781 A JP10910781 A JP 10910781A JP S5810646 A JPS5810646 A JP S5810646A
Authority
JP
Japan
Prior art keywords
solution
measurement
electrode
concentration
solutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56109107A
Other languages
Japanese (ja)
Inventor
Tadayoshi Nakagawa
中川 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORU ENG KK
Original Assignee
MORU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORU ENG KK filed Critical MORU ENG KK
Priority to JP56109107A priority Critical patent/JPS5810646A/en
Publication of JPS5810646A publication Critical patent/JPS5810646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To make it possible to measure a wide range of solution concentration by seeking relative difference of potentials of the solutions that constitute a pair of half batteries. CONSTITUTION:A solution B to be inspected is poured into a measurement tank 10, and a measurement electrode A is immersed in this solution B to form a half battery on one side. Further, a reference solution B' is filled in a reference tank 20, and a reference electrode A' is immersed in the reference solution B' to form a half battery on the other side. This reference tank 20 is immersed in the solution B to be inspected, and the potential difference between the two half batteries is measured with a potential measurement device D. This potential difference is generated in accordance with the temperature difference between the reference solution B' and the solution to be inspected.

Description

【発明の詳細な説明】 本発明は、溶液の濃度差を電位差として検知するように
した相対濃度の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring relative concentration in which a difference in concentration of a solution is detected as a difference in potential.

従来、エツチングやメッキ等の表面処理の工程において
は、酸やアルカリの濃厚溶液が使用されており、これら
溶液の管理の良し悪しが、製品の歩留りや品質を左右す
る大きな要素となっている。
Conventionally, concentrated acid or alkali solutions have been used in surface treatment processes such as etching and plating, and how well these solutions are managed is a major factor that influences product yield and quality.

そのため、表面処理液の濃度の測定は大切な作業で4j
p、PH測定法、比重測定法、電導度測定法など、種々
の方法が一使用されている。
Therefore, measuring the concentration of the surface treatment liquid is an important task.
Various methods are used, such as p, PH measurement, specific gravity measurement, and conductivity measurement.

しかしながら、PH測定法においては、測定しうる溶液
濃度の範囲は、1規定以下が好ましく、実際上の精度を
考えると、0.1規定以下において実用性があると言わ
ねばならない。従って、表面処理作業現場で00,1〜
10規定、あるいは12〜36規定の濃厚溶液にPH測
定法を適用するのは、測定誤差が大きく良い方法とは言
えない。
However, in the PH measurement method, the measurable solution concentration range is preferably 1N or less, and considering practical accuracy, it must be said that 0.1N or less is practical. Therefore, at the surface treatment work site,
Applying the pH measurement method to a concentrated solution of 10N or 12 to 36N is not a good method because of large measurement errors.

また、比重測定法においては、上記の難点はないが、測
定に時間を要する。:ことから、常に変化を続ける溶液
濃度を測るには、作業性が悪く、時間的なずれを生じる
という問題がある。
Furthermore, although the specific gravity measurement method does not have the above-mentioned difficulties, it takes time to measure. Therefore, there are problems in measuring the constantly changing concentration of a solution, such as poor workability and time lag.

さらに、上述の2つの方法は共に、溶液濃度の絶対値を
求める方法でアシ、酸あるいはアルカリ溶液が、複数の
溶液の混合されたもの、あるいは数多くの不純物を含ん
だものである場合には、測定が困難であるか、あるいは
測定をすることはできない。
Furthermore, both of the above two methods are methods for determining the absolute value of the solution concentration, and when the reed, acid, or alkaline solution is a mixture of multiple solutions or contains many impurities, Difficult or impossible to measure.

本発明は、上述したような絶対値測定方法とは異なる相
対的な溶液濃度の測定方法を提供するものである。
The present invention provides a method for measuring relative solution concentration, which is different from the above-mentioned absolute value measuring method.

従って、本発明によれば、酸あるいはアルカリ溶液、イ
オン溶液などにおいて、特に濃厚溶液の測定に効果を発
揮することができる。
Therefore, the present invention can be particularly effective in measuring concentrated solutions, such as acid or alkaline solutions and ionic solutions.

さらに、本発明によれば、溶液が純粋なものでなく、そ
の他多くの種類の溶液との混合、あるいは不純物を含ん
だものであっても、濃度差を検出することができる。
Further, according to the present invention, a concentration difference can be detected even if the solution is not pure, but is mixed with many other types of solutions, or contains impurities.

加えて、本発明は、例えばエツチング作業、メッキ作業
における連続的に濃度変化を生ずるような溶液の測定に
おいても、充分かつ迅速に目的を果すことができる測定
方法であるといえる。
In addition, the present invention can be said to be a measuring method that can satisfactorily and quickly accomplish its purpose, even in the measurement of solutions whose concentration changes continuously, such as in etching or plating operations.

本発明を説明する前に、説明で使用する用語及び溶液に
生じる電位について説明する。
Before explaining the present invention, the terms used in the explanation and the potential generated in the solution will be explained.

第1図に示すように、槽(1)内の電解質溶液(2)に
、電極(8)(4)を浸漬した場合、電極(a>(4)
が同種金属であれば、これら電極間の電位差(Ea)は
零である。
As shown in Figure 1, when the electrodes (8) and (4) are immersed in the electrolyte solution (2) in the tank (1),
If they are the same kind of metal, the potential difference (Ea) between these electrodes is zero.

しかし、電極(8)(4)が異種金属であれば、Ea=
α(αは数値で単位はmV)という電極電位差を生ずる
However, if the electrodes (8) and (4) are different metals, Ea=
An electrode potential difference of α (α is a numerical value in mV) is generated.

また、電極(8)(4)間を隔膜(5)で分け、それぞ
れの側に、異種の溶液、あるいは同種でも、濃度の異な
る溶液を入れた場合には、液弁電位あるいは濃淡電位が
生ずることは公知である。
In addition, when the electrodes (8) and (4) are separated by a diaphragm (5) and different types of solutions or solutions of the same type but with different concentrations are placed on each side, a liquid valve potential or a concentration potential is generated. This is well known.

この溶液に電極を挿入して、電位を発生させるようにし
たものを半電池といい、第1図示のものは、隔膜によっ
て1対の半電池を構成している。
A device in which an electrode is inserted into this solution to generate a potential is called a half-cell, and the one shown in the first diagram constitutes a pair of half-cells by a diaphragm.

また、本発明と類似する手段として「水溶液用基準電極
」がある。これは、PHをはじめ、溶存するイオン種の
活量や濃度を知るために利用され、ておシ、水素電極、
銀−塩化銀電極、カロメル電極、水銀−酸化第二水銀電
極などが知られている。
Further, there is an "aqueous solution reference electrode" as a means similar to the present invention. This is used to determine the activity and concentration of dissolved ionic species, including pH.
A silver-silver chloride electrode, a calomel electrode, a mercury-mercuric oxide electrode, and the like are known.

しかしながら、いずれも製作及び取扱いが容易でなく、
かつ電位の表示がきわめて不安定であって、あくまで実
験的なものであり、実用的なものとしては認められてい
ない。
However, both are difficult to manufacture and handle;
In addition, the potential display is extremely unstable, and it is only an experimental method and has not been accepted as a practical method.

例えば、水素電極においては、白金電極に吸着されるよ
うな物質が溶液中に存在する場合は使用できない。また
、水銀−酸化第2水銀電極におい茸十 ても、Hg  と強い錯形成をするイオンを含んでいる
溶液では使用できない。
For example, a hydrogen electrode cannot be used if a substance that would be adsorbed to a platinum electrode is present in the solution. Furthermore, even if a mercury-mercuric oxide electrode is used, it cannot be used in a solution containing ions that form a strong complex with Hg.

本発明は、1対の半電池を構成する溶液の相対的な電位
差を求めるだけで、絶対値の測定を求めることなく、こ
れまでの測定方法の不具合を解消し、しかも、広範囲の
溶液濃度の測定を可能としたものである。
The present invention solves the problems of conventional measurement methods by simply determining the relative potential difference between solutions constituting a pair of half-cells without determining the absolute value. This made measurement possible.

以下本発明を、第2図及び第3図に基づいて詳細に説明
する。
The present invention will be explained in detail below with reference to FIGS. 2 and 3.

第2図に不す叫は測定用槽で、こ置槽叫内に、測定すべ
き被検液(均が入れられ、かつこの溶液(均中に、測定
電極(A)を浸漬することにより、一方の半電池が構成
されている。
Figure 2 shows a measurement tank, in which a sample solution to be measured is placed, and the measurement electrode (A) is immersed in this solution. , one half-cell is configured.

に)は、参照用槽で、この底面には隔離膜(qが装着さ
れ、槽−内は参照液(病で満されている、この参照液(
B)と被検液中)との関係については、後で説明する。
2) is a reference tank, and an isolation membrane (q) is attached to the bottom of this tank, and the inside of the tank is filled with a reference solution.
The relationship between B) and those in the test liquid will be explained later.

参照液(iKは、参照電極(AJが浸漬されており、こ
の参照用槽−は被検液(均に浸漬されて、他方の半電池
を構成しているO この半電池及び前記半電池間の電位差を測定するために
、両生電池に、電位測定の手段となる電位測定器(Dが
接続されている。
The reference liquid (iK is the reference electrode (AJ) is immersed in it, and this reference tank is the test liquid (uniformly immersed, forming the other half cell). In order to measure the potential difference, a potential measuring device (D), which is a means of potential measurement, is connected to the amphibious battery.

以上のように構成された測定手段に対し、例えば、エツ
チング浴の酸濃度を測定する場合について説明する。
A case will be described in which, for example, the acid concentration of an etching bath is measured using the measuring means configured as described above.

エツチング浴から、最初に抽出された所望の濃度の溶液
を参照液(廊として参照用槽(財)に入れておく。
A solution of a desired concentration, which is first extracted from the etching bath, is placed in a reference tank as a reference solution.

被検液(Blは、エツチング作業を開始した後、所定の
時間の経過後毎にエツチング浴から取り出される溶液で
、これは、時間の経過とともに酸濃度は低下し、しだい
に濃度が低下するにつれて、溶液の能力は劣化する。
The test solution (Bl) is a solution that is taken out from the etching bath every predetermined period of time after starting the etching process. , the capacity of the solution deteriorates.

この場合、参照液(病と被検液(目間において溶出する
金属イオン、不純物酸溶液の混合など、数多くの電位変
化要素は相対的に電極に作用することとなり、溶液の濃
度差に相当する電位差のみを、電位測定器(口が検知で
きる。
In this case, many potential change factors, such as the reference solution (disease) and the test solution (metal ions eluted between the eyes, a mixture of impurity acid solutions, etc.), will act relatively on the electrode, and the difference will correspond to the concentration difference between the solutions. Only the potential difference can be detected by a potential measuring device (mouth).

しかも、この電位差は比例しており、濃度比の関数とし
て検出することができる。
Moreover, this potential difference is proportional and can be detected as a function of concentration ratio.

したがって、上記エツチング浴の場合には、予め使用限
界における濃度差を計測しておくことにより、時間的な
濃度の変化を検出した結果を見て、エツチング液交換の
時期を正確に決定することができる。
Therefore, in the case of the above etching bath, by measuring the concentration difference at the limit of use in advance, it is possible to accurately determine when to replace the etching solution by looking at the results of detecting changes in concentration over time. can.

上述したのは、エツチング浴に使用される混合溶液の場
合であるが、本発明方法は、酸、アルカリ、イオン、い
ずれかを含む溶液の測定において、同じようにその濃度
比の測定に使用できる。
Although the above is a case of a mixed solution used in an etching bath, the method of the present invention can be similarly used to measure the concentration ratio of solutions containing acids, alkalis, and ions. .

特に本発明方法においては、参照液と被検液の相対的な
比であるから、強酸あるいは強アルカリ溶液の場合のよ
うな濃厚溶液においても、その濃度差を一層正確に測定
することが可能である。
In particular, in the method of the present invention, since it is a relative ratio between the reference solution and the test solution, it is possible to more accurately measure the concentration difference even in concentrated solutions such as strong acid or strong alkaline solutions. be.

また、被検液を絶対的な測定方法により、濃度を測定し
ておき、さらに、その濃度変化を本発明方法によって測
定するようにすれば、本発明方法で絶対値的測定法を行
うことも可能となる。
Furthermore, if the concentration of the test liquid is measured by an absolute measurement method and the change in concentration is further measured by the method of the present invention, the method of the present invention can also be used to perform an absolute value measurement method. It becomes possible.

測定電極としては、前述した基準電極を使用しないでも
よいことが本発明の特長であり、固体電極、例えばチタ
ン、タンタル、モリブデン等溶液に合った金属およびそ
れらの酸化物金属を使用することができる。
A feature of the present invention is that the reference electrode described above does not need to be used as the measurement electrode, and solid electrodes, such as metals suitable for the solution such as titanium, tantalum, and molybdenum, and metal oxides thereof can be used. .

参照電極は、測定電極と同質のものを使用する。The reference electrode used is of the same quality as the measurement electrode.

隔離膜には、フロロカーボン系隔膜、高分子多孔性膜な
ど溶液の性質に合わせて選択できる。
The separation membrane can be selected depending on the properties of the solution, such as a fluorocarbon membrane or a porous polymer membrane.

第3図に示すのは、測定電極(A)を、測定溶液(ト)
及び選択性透性膜(F)で半電池を構成し、参照液量)
も選択性透性膜(bを使用したものである。
Figure 3 shows how the measuring electrode (A) is connected to the measuring solution (T).
and selectively permeable membrane (F) to form a half cell, reference liquid volume)
Also uses a selectively permeable membrane (b).

測定溶液(目、被検液(E11参照液(Blの順に、濃
度を高くするように配液すれば、電位差(Eb)が極め
て鋭敏にあられれるため、溶液によってはこのような測
定方法を選ぶようにすればよい。
If you distribute the measurement solution (E11 reference solution (Bl) in the order of increasing concentration, the potential difference (Eb) will be very sharp, so depending on the solution, choose this measurement method. Just do it like this.

以上、詳細に説明したように、本発明の方法によれば、
酸あるいはアルカリの濃厚溶液、エツチング浴あるいは
メッキ浴の溶液、その他不純物を含む溶液、各種溶液の
混合液など、広範囲にわたり比較的容易に相対濃度を測
定することができる。
As explained above in detail, according to the method of the present invention,
Relative concentrations can be measured relatively easily over a wide range of solutions, such as concentrated acid or alkali solutions, solutions from etching baths or plating baths, solutions containing other impurities, and mixtures of various solutions.

さらに、電位として現われる信号を、電気的デバイスに
よる処理により、プロセス制御装置として、各種作業工
程に組込むことができるなどの大きな利点を有する。
Furthermore, it has great advantages such as the ability to incorporate signals appearing as potentials into various work processes as a process control device by processing them with electrical devices.

【図面の簡単な説明】 第1図は、半電池の構造を説明するための縦断面図、 第2図は、本発明の一実施例を示す縦断面図、第3図は
、他の実施例を示す縦断面図である0叫測定用槽   
  (財)参照用槽 ■)測定電極用槽   (A)測定電極(5)参照電極
     (B)被検液(均参照液      (q縛
)隔離膜(D電位測定器    (目測定溶液 第1図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a longitudinal cross-sectional view for explaining the structure of a half-cell, FIG. 2 is a vertical cross-sectional view showing one embodiment of the present invention, and FIG. 3 is a longitudinal cross-sectional view showing another embodiment of the present invention. A longitudinal cross-sectional view showing an example of a tank for measuring zero
Reference tank■) Measuring electrode tank (A) Measuring electrode (5) Reference electrode (B) Test liquid (equalized reference liquid (q-bound)) Isolation membrane (D Potential measuring device (Measurement solution Figure 1)

Claims (1)

【特許請求の範囲】 測定すべき溶液と、この溶液に浸漬された電極とで一方
の半電池を形成することと、 上記測定すべき溶液と同質組成でかつ濃度の異なる参照
液と、この参照液に浸漬された電極と、この参照液を上
記溶液に隔膜材を介して接触させ他方の半電池を形成す
ることと、 これら両生電池間に生ずる電位差を検出することからな
る溶液の相対濃度測定方法。
[Claims] A solution to be measured and an electrode immersed in this solution form one half cell; a reference solution having the same composition as the solution to be measured and a different concentration; Relative concentration measurement of a solution, which consists of an electrode immersed in a solution, bringing this reference solution into contact with the above solution via a diaphragm material to form the other half cell, and detecting the potential difference generated between these two cells. Method.
JP56109107A 1981-07-13 1981-07-13 Relative concentration measuring device for solution Pending JPS5810646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109107A JPS5810646A (en) 1981-07-13 1981-07-13 Relative concentration measuring device for solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109107A JPS5810646A (en) 1981-07-13 1981-07-13 Relative concentration measuring device for solution

Publications (1)

Publication Number Publication Date
JPS5810646A true JPS5810646A (en) 1983-01-21

Family

ID=14501745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109107A Pending JPS5810646A (en) 1981-07-13 1981-07-13 Relative concentration measuring device for solution

Country Status (1)

Country Link
JP (1) JPS5810646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116252A (en) * 1985-10-31 1987-05-27 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Method and device for electrochemical analysis
JPH05319756A (en) * 1992-05-20 1993-12-03 Mitsubishi Electric Corp Door device for elevator hall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544984A (en) * 1978-09-27 1980-03-29 Mitsubishi Electric Corp Peak value calculating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544984A (en) * 1978-09-27 1980-03-29 Mitsubishi Electric Corp Peak value calculating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116252A (en) * 1985-10-31 1987-05-27 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Method and device for electrochemical analysis
JPH05319756A (en) * 1992-05-20 1993-12-03 Mitsubishi Electric Corp Door device for elevator hall

Similar Documents

Publication Publication Date Title
US3260656A (en) Method and apparatus for electrolytically determining a species in a fluid
US3431182A (en) Fluoride sensitive electrode and method of using same
KR100926476B1 (en) Reversible electrochemical sensors for polyions
Neihof et al. The A Quantitative Electrochemical Theory of the Electrolyte Permeability of Mosaic Membranes Composed of Selectively Anion-Permeable and Selectively Cation-Permeable Parts and its Experimental Verification. I. An Outline of the Theory and its Quantitative Test in Model Systems with Auxiliary Electrodes.
JPS62116252A (en) Method and device for electrochemical analysis
Whitnack et al. Application of anodic-stripping voltammetry to the determination of some trace elements in sea water
DE102011113941B4 (en) Electrochemical electrode
JPH01195358A (en) Electroanalysis
US3131348A (en) Coulometric titration coulometer
WO1982001772A1 (en) Reference electrode
McCloskey Direct amperometry of cyanide at extreme dilution
JPS5810646A (en) Relative concentration measuring device for solution
Migdalski et al. Nonclassical potentiometric indicator electrodes with dual sensitivity
JP2001281216A (en) Ion-selective electrode
Laitinen et al. Coulometric Titrations in Molten Lithium Chloride-Potassium Chloride Eutectic
Smart et al. Measuring chlorine dioxide with a rotating voltammetric membrane electrode
Armstrong et al. Exchange current determination and time-dependent effects for model liquid membrane ion-selective electrodes
Mitchell et al. The behaviour of mixtures of hydrogen peroxide and water. Part 2.—The determination of pH scales
Rudenok Double-Pole Electrode in New Devices and Processes for Direct Electrochemical Oxidation of Blood Inside the Blood Vessel
Pita Potentiometric determination of carbon dioxide partial pressure and pH in ultramicro volumes of biological fluids
US3278399A (en) Method of measuring silver ion concentration
Nozoye Exponential dilution flask
JP3633077B2 (en) pH sensor and ion water generator
SU855477A1 (en) Electrochemical cell for measuring electrode reaction rate
JPH0375552A (en) Enzyme electrode