JPS58106136A - Regulating device of fuel injection quantity in diesel engine - Google Patents

Regulating device of fuel injection quantity in diesel engine

Info

Publication number
JPS58106136A
JPS58106136A JP20512381A JP20512381A JPS58106136A JP S58106136 A JPS58106136 A JP S58106136A JP 20512381 A JP20512381 A JP 20512381A JP 20512381 A JP20512381 A JP 20512381A JP S58106136 A JPS58106136 A JP S58106136A
Authority
JP
Japan
Prior art keywords
negative pressure
fuel injection
amount
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20512381A
Other languages
Japanese (ja)
Inventor
Michio Kawagoe
川越 道男
Masaaki Tanaka
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20512381A priority Critical patent/JPS58106136A/en
Publication of JPS58106136A publication Critical patent/JPS58106136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

PURPOSE:To simultaneously further easily perform altitude compensation and supercharged pressure correction of a supercharger, by providing a negative pressure control valve, which generates negative pressure in accordance with an intake air quantity, and negative pressure controller operating an injection quantity regulating member in accordance with said negative pressure. CONSTITUTION:A driving shaft 2 of a fuel injection pump 1 is driven by a Diesel engine 3. An injection quantity regulating lever 41 is operated by a negative presure responsive controller 55, and a level of negative pressure is controlled by a solenoid opening and closing valve 61 and arithmetic device 63. The arithmetic device 63 receives output signals of an intake air quantity 64, temperature detector 65 and speed detector 67. In this way, altitude compensation and correction of supercharged pressure of a supercharger can be simultaneously further easily performed.

Description

【発明の詳細な説明】 本発明は、ディーゼル機関の燃料噴射量調整装置、特に
高地における空気量の減少や過給機付き機関における空
気量の増加などを考慮した燃料噴射量調整装置に関する
。− ディーゼル機関では、高負荷域におけるスモーク濃度を
一定値以下に抑えるために、最大噴射量の設定を噴射ポ
ンプの全負荷スクリュで行なっている。また高度補償装
置付き噴射ポンプでは、大気圧に応動するベローズによ
り全負荷ストッパを動かし、ターボ過給機付きディーゼ
ル機関では、過給圧に応動するダイヤプラムを介して全
負荷ストッパを動かして、それぞれ最大噴射量をきめて
いるが、回転数の変動には機械的ガバナにより対処して
おり、回転数によっては要求噴射量と合わないことがあ
った。また高度補償とターボ過給機付き機関の過給圧補
正とを同時に行なうには、装置が犬がかりになるきらい
があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection amount adjustment device for a diesel engine, and particularly to a fuel injection amount adjustment device that takes into account a decrease in air amount at high altitudes and an increase in air amount in a supercharged engine. - In diesel engines, the maximum injection amount is set by the injection pump's full-load screw in order to keep the smoke concentration below a certain value in the high-load range. In injection pumps with altitude compensation, the full-load stop is moved by a bellows that responds to atmospheric pressure, and in diesel engines with a turbocharger, the full-load stop is moved via a diaphragm that responds to boost pressure. Although a maximum injection amount is determined, fluctuations in rotational speed are handled by a mechanical governor, and depending on the rotational speed, the required injection amount may not match. In addition, the system tends to be too complicated to perform altitude compensation and boost pressure correction for a turbocharged engine at the same time.

本発明の目的は、各回転数における要求噴射量が各回転
数に応じて得られ、また高度補償と過給機の過給圧補正
とを同時にかつ簡単に行なえるようにすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a required injection amount at each rotation speed in accordance with each rotation speed, and to simultaneously and easily perform altitude compensation and supercharging pressure correction of a supercharger.

この目的を達するため本発明によれば、吸入空気量ある
いはこれに関係する機関作動パラメータに応じた負圧を
発生し、この負圧により、回転数に応じた操作に重畳し
て噴射量調整部材を操作する。この装置の具体的構成と
して、空気量を検出する装置と、空気量信号に応じて燃
料量を代表する出力電気信号を発生する演算器と、この
出力電気信号に応じて負圧の大きさを制御する負圧制御
弁と、この負圧に応じて噴射量調整部材を操作する負圧
応動操作器とが設けられる。
In order to achieve this objective, according to the present invention, a negative pressure is generated according to the intake air amount or engine operating parameters related thereto, and this negative pressure is used to control the injection amount adjusting member by superimposing the operation according to the rotation speed. operate. The specific configuration of this device includes a device that detects the amount of air, a computing unit that generates an output electric signal representing the amount of fuel according to the air amount signal, and a device that detects the magnitude of negative pressure according to the output electric signal. A negative pressure control valve to be controlled and a negative pressure responsive operating device to operate an injection amount adjusting member according to this negative pressure are provided.

本発明の実施例を図面について説明すると、第1図にお
いて1は燃料噴射ポンプで、その駆動軸2はディーゼル
機関3により駆動されて、この軸上(艷ある歯車4とか
み合う歯車5を介して遠心力ガバナ6の遠心おもり7を
回転させて、摺動スリーブ8を回転数に応じて軸線方向
に右方へ移動させると共に、軸端に位置するプランジャ
操作環9の円周上に分布された複数のローラ10上を、
機関3のシリンダ数と同じ数のカム山をもつ正面カム1
1を一体に回転させながら軸方向に往復移動させる。カ
ム11はばね12によりローラ10へ押付けられている
。カム110反対側端面にはポンププランジャ17が押
圧され、駆動軸2したがってカム1101回転ごとに、
プランジャ17は1回の回転運動およびカム山の数と同
じ回数の軸方向往復運動を行なう。プランジャ17は機
関のシリンダ数と同数の吸入縦溝19および1つの分配
縦溝2oとを周囲にもち、この分配縦溝20に連通する
中心軸孔21は端面に開口し、またカム11に近い所で
ハウジング空間13へ開口するスピルポート22へ連通
している。プランジャ17がはまるポンプシリンダ23
は1つの吸入孔24および機関のシリンダ数と同数の分
配孔25をもっている。さらにプランジャ17上にはス
ピル環26がスピルポート22を閉じたり開いたりでき
るように、軸方向移動可能にはまっている。吸入孔24
は吸入通路31を介してハウジング空間]3へ通じてい
る。
An embodiment of the present invention will be explained with reference to the drawings. In Fig. 1, 1 is a fuel injection pump, the drive shaft 2 of which is driven by a diesel engine 3, and the drive shaft 2 is driven by a diesel engine 3. By rotating the centrifugal weight 7 of the centrifugal force governor 6, the sliding sleeve 8 is moved to the right in the axial direction according to the rotation speed, and the sliding sleeve 8 is distributed on the circumference of the plunger operating ring 9 located at the end of the shaft. on a plurality of rollers 10,
Front cam 1 with the same number of cam ridges as the number of cylinders in engine 3
1 is rotated together and reciprocated in the axial direction. The cam 11 is pressed against the roller 10 by a spring 12. A pump plunger 17 is pressed against the opposite end surface of the cam 110, and every rotation of the drive shaft 2 and therefore the cam 110,
The plunger 17 performs one rotational movement and the same number of axial reciprocating movements as the number of cam ridges. The plunger 17 has the same number of suction vertical grooves 19 as the number of engine cylinders and one distribution vertical groove 2o around its periphery, and a central shaft hole 21 communicating with the distribution vertical groove 20 is open at the end surface and is close to the cam 11. It communicates with a spill port 22 that opens into the housing space 13. Pump cylinder 23 into which plunger 17 fits
has one suction hole 24 and as many distribution holes 25 as there are cylinders of the engine. Further, a spill ring 26 is fitted on the plunger 17 so as to be movable in the axial direction so as to close and open the spill port 22. Suction hole 24
communicates with the housing space ] 3 via a suction passage 31 .

駆動軸2により駆動されて回転しながらカム11とロー
ラ10との共同作用により軸方向運動する・プランジャ
17が左方へ移動する際、その1つの吸入縦溝19と吸
入孔24とが一致して、プランジャ17のさらに左方へ
の移動につれて、図示しない燃料供給ポンプにより機関
回転数に比例した圧力に加圧゛されてハウジング空間1
3内に存在する燃料は、吸入通路31を通って吸入孔2
4へ入り、吸入縦溝19を通ってプランジャ端面の圧力
室32へ流入する。カム11シたがってプランジャ17
が左端位置から回転しながら右方へ移動しはじめると、
圧力室32へ中心軸孔21を介して通じている分配縦溝
20が1つの分配孔25に一致しており、スピルポート
22がスピル環26により閉じられているので、圧力室
32内の燃料はプランジャ17に押されて、中心軸孔2
1、縦溝20および分配孔25から送出弁33を押し開
いて、噴射ノズル34へ達し、これからその属するシリ
ンダ35へ噴射される。プランジャ17の右方移動につ
れてスピルポート22がスピル環26から外れて開くと
、圧力室32内の高圧燃料は今や中心軸孔21からスピ
ルポート22を通ってハウジング空間13へ戻り、これ
によって燃料噴射が終了する。すなわちこのスピル環2
6により、燃料噴射の終了したがって燃料噴射量が制御
される。
While being driven by the drive shaft 2 and rotating, it moves in the axial direction due to the joint action of the cam 11 and the roller 10. When the plunger 17 moves to the left, one suction vertical groove 19 and the suction hole 24 coincide with each other. As the plunger 17 moves further to the left, the housing space 1 is pressurized by a fuel supply pump (not shown) to a pressure proportional to the engine speed.
3 passes through the suction passage 31 and enters the suction hole 2.
4 and flows into the pressure chamber 32 on the end face of the plunger through the suction longitudinal groove 19. Cam 11 and plunger 17
begins to rotate and move to the right from the left end position,
Since the distribution longitudinal groove 20 communicating with the pressure chamber 32 via the central shaft hole 21 coincides with one distribution hole 25 and the spill port 22 is closed by the spill ring 26, the fuel in the pressure chamber 32 is is pushed by the plunger 17 and the center shaft hole 2
1. Push open the delivery valve 33 from the vertical groove 20 and the distribution hole 25 to reach the injection nozzle 34, from which it is injected into the cylinder 35 to which it belongs. When the spill port 22 opens out of the spill ring 26 as the plunger 17 moves to the right, the high pressure fuel in the pressure chamber 32 now returns from the central shaft hole 21 through the spill port 22 to the housing space 13, thereby causing fuel injection. ends. In other words, this spill ring 2
6 controls the end of fuel injection and therefore the fuel injection amount.

機関回転数に応じてスピル環26を操作して燃料噴射量
を変化させるため、固定軸40のまわりに揺動可能な後
述する噴射量調整レバー41の一方の腕に支点42を介
して揺動可能に支持される回転数応動双腕レバー43は
、一端でスピル環26へ係合し、他端で遠心がバナ6の
摺動スリーブ8に係合しており、機関したがってガバナ
6の回転数が高くなると、遠心おもり7が外方へ開いて
摺動スリーブ8を右方へ押し、回転数応動−レバー43
を時計まわりに揺動させて、スピル環26を左方へ移動
させて、スビ・ルポート22を早く開き、燃料噴射量を
少なくする。
In order to change the fuel injection amount by operating the spill ring 26 according to the engine speed, one arm of an injection amount adjustment lever 41, which will be described later and can swing around a fixed shaft 40, is provided with a swinging mechanism via a fulcrum 42. A speed-dependent double-armed lever 43, which can be supported, engages at one end in the spill ring 26 and at the other end in the sliding sleeve 8 of the vane 6, and the rotational speed of the engine and therefore of the governor 6 is becomes higher, the centrifugal weight 7 opens outward and pushes the sliding sleeve 8 to the right, and the rotation speed-dependent lever 43
is swung clockwise to move the spill ring 26 to the left, opening the spill port 22 earlier and reducing the fuel injection amount.

さらにポンプハウジングに回転可能に支持される軸45
は、図示しない加速ペダルに連結される加速レバー46
へ上端の中心で結合され、その下端の偏心ピン47に一
端をかけられた引張りばね48の他端は、支点42のま
わりに揺動可能に支持された加速応動レバー49の自由
端に取付けられている。このレバー49とレバー43と
の間には圧縮ばね50が設けられている。加速レバー4
6を図の位置へ回して、偏心ピン47を最も左方の位置
へもたらすと、引張りばね48を介して加速応動レバー
49シたがってばね50を介して回転数応動レバー43
が支点42のまわりに反時計まわりに揺動されて、スピ
ル環26を右方へ移動させることにより燃料噴射量を最
大にする。
Furthermore, a shaft 45 rotatably supported in the pump housing
is an acceleration lever 46 connected to an acceleration pedal (not shown)
The other end of the tension spring 48, which is coupled at the center of its upper end and has one end hooked to an eccentric pin 47 at its lower end, is attached to the free end of an acceleration responsive lever 49 that is swingably supported around a fulcrum 42. ing. A compression spring 50 is provided between the levers 49 and 43. Acceleration lever 4
6 to the position shown in the figure to bring the eccentric pin 47 to the leftmost position, the acceleration responsive lever 49 is activated via the tension spring 48 and the rotational speed responsive lever 43 is activated via the spring 50.
is swung counterclockwise around the fulcrum 42 to move the spill ring 26 to the right, thereby maximizing the fuel injection amount.

さて第1図は特定回転数における噴射量に対応するレバ
ー43 、49の位置を示しているが、噴射量調整レバ
ー41を固定軸40のまわりに揺動させることにより、
スピル環26の位置したがって噴射量をさらに変化する
ことができる。
Now, FIG. 1 shows the positions of the levers 43 and 49 corresponding to the injection amount at a specific rotation speed, but by swinging the injection amount adjustment lever 41 around the fixed shaft 40,
According to the position of the spill ring 26, the injection amount can be further varied.

この噴射量調整レバー41を負圧で操作するため、負圧
応動操伍器としてのダイヤフラム操作器55が設けられ
、そのダイヤフラム56はレバー41の他方の腕へ連結
されて、ダイヤフラムと操作器ケースとにより区画され
る負圧室57は、絞り58および定圧弁59を介して負
圧源60例えば真空ポンプへ接続されている。□絞り5
8とダイヤフラム操作器55との間には、負圧の大きさ
を制御する負圧制御弁として電流パルスにより動作する
電磁開閉弁61の一方のポートが接続され、その他方の
ポートは絞り62を介して大気へ通じている。この電磁
開閉弁61を制御する演算器63は、吸入空気量検出器
64と温度検出器65および回転検出器67の電気出力
信号を制御入力として受ける。この場合空気量検出器6
4として吸気管内の絶対圧力を検出する圧力センサが用
いられ、温度検出器65として吸気温度センサが用いら
れる。
In order to operate this injection amount adjustment lever 41 with negative pressure, a diaphragm operator 55 is provided as a negative pressure responsive operator, and the diaphragm 56 is connected to the other arm of the lever 41, and the diaphragm and the operator case are connected to each other. The negative pressure chamber 57 defined by the negative pressure chamber 57 is connected to a negative pressure source 60 such as a vacuum pump via a throttle 58 and a constant pressure valve 59. □Aperture 5
8 and the diaphragm operating device 55, one port of an electromagnetic on-off valve 61 operated by current pulses as a negative pressure control valve for controlling the magnitude of negative pressure is connected, and the other port is connected to a throttle 62. It leads to the atmosphere through A computing unit 63 that controls the electromagnetic on-off valve 61 receives electrical output signals from an intake air amount detector 64, a temperature detector 65, and a rotation detector 67 as control inputs. In this case, the air amount detector 6
A pressure sensor that detects the absolute pressure within the intake pipe is used as the temperature sensor 65, and an intake air temperature sensor is used as the temperature detector 65.

なお機関回転検出器67として、歯車の歯数を検出する
電磁ピックアップが用いられる。
Note that as the engine rotation detector 67, an electromagnetic pickup that detects the number of teeth of a gear is used.

さて圧力センサ64により検出される吸気管内の絶対圧
力と回転数から演算器63において吸入空気量を演算し
、吸気温度センサ65により検出される吸気温度でこの
空気量を補正し、空気量と燃料量との関係を示す第2図
の線図から、検出された空気量に対してスモークレベル
を一定値以下に保つために必要な燃料量を算出する。
Now, the amount of intake air is calculated in the calculator 63 from the absolute pressure in the intake pipe and the rotational speed detected by the pressure sensor 64, and this air amount is corrected by the intake air temperature detected by the intake air temperature sensor 65. The amount of fuel required to keep the smoke level below a certain value with respect to the detected air amount is calculated from the diagram in FIG. 2 showing the relationship with the amount of air.

そしてあらかじめ求められている燃料量−負圧の関係(
第3図)から負圧を求め、やはりあらかじめ求められて
いる電磁開閉弁61の負圧デユーティ比の関係(第4図
)から、開閉弁61の付勢に必要な電流パルスのデユー
ティ比を求め、このデユーティ比の電流パルスを開閉弁
61へ与える。電磁開閉弁61はこのデユーティ比に従
った開度で負圧源60からの負圧を絞り62を介して大
気へ逃がし、このデユーティ比によって定まる負圧をダ
イヤフラム操作器55の負圧室57へ与え、この負圧に
応じて噴射量調整レバー41を介して燃料噴射ポンプ1
の燃料噴射量を定める。
And the relationship between fuel amount and negative pressure determined in advance (
(Fig. 3), and from the relationship of the negative pressure duty ratio of the electromagnetic on-off valve 61 (Fig. 4), which is also determined in advance, find the duty ratio of the current pulse required to energize the on-off valve 61. , gives a current pulse of this duty ratio to the on-off valve 61. The electromagnetic on-off valve 61 releases the negative pressure from the negative pressure source 60 to the atmosphere through the throttle 62 at an opening degree according to this duty ratio, and sends the negative pressure determined by this duty ratio to the negative pressure chamber 57 of the diaphragm operating device 55. the fuel injection pump 1 via the injection amount adjustment lever 41 according to this negative pressure.
determine the fuel injection amount.

第5図は別の実施例を示し、ダイヤフラム操作器55は
負圧制御弁としての電磁開閉弁61′と定圧弁59とを
介して負圧源60へ接続されると共に、絞り66を介し
て大気へ通じている。
FIG. 5 shows another embodiment, in which a diaphragm operating device 55 is connected to a negative pressure source 60 via an electromagnetic on-off valve 61' as a negative pressure control valve and a constant pressure valve 59, and is connected to a negative pressure source 60 through a throttle 66. It leads to the atmosphere.

また第6図の実施例においては、負圧制御弁としての電
磁開閉弁の代りに電磁切換え弁61“が用いられ、負圧
操作器55はこの切換え弁61#と絞り58および定圧
弁59を介して負圧源60へ接続されるか、あるいは大
気へ接続される。
In the embodiment shown in FIG. 6, an electromagnetic switching valve 61'' is used instead of the electromagnetic on-off valve as the negative pressure control valve, and the negative pressure operating device 55 controls the switching valve 61#, the throttle 58, and the constant pressure valve 59. via to a negative pressure source 60 or to the atmosphere.

以上の実施例では、電流パルスのデユーティ比により負
圧制御弁61 、61’ 、 61“を開閉または切換
えていたが、直流電流の大きさに応じて大気への負圧の
ブリードにより負圧の大きさを制御することもできる。
In the above embodiment, the negative pressure control valves 61, 61', and 61'' were opened, closed, or switched depending on the duty ratio of the current pulse, but the negative pressure was bleed to the atmosphere depending on the magnitude of the DC current. You can also control the size.

第7図はこのようなブリードによる負圧を制御する負圧
制御弁を示し、電磁石コイル71の固定磁心72に対向
する可動磁心73には中空ブリード基片74が結合され
、ダイヤフラム75により弁ケースに支持されると共に
、このダイヤフラム75により弁ケース内に大気へ通ず
る大気室76と負圧取出し室77とが形成されている。
FIG. 7 shows a negative pressure control valve that controls the negative pressure caused by such bleed. A hollow bleed base piece 74 is connected to a movable magnetic core 73 facing a fixed magnetic core 72 of an electromagnetic coil 71, and a diaphragm 75 connects the valve case. The diaphragm 75 forms an atmospheric chamber 76 communicating with the atmosphere and a negative pressure extraction chamber 77 within the valve case.

ブリード基片74の内部空間は穴78を介して大気室へ
通じている。電磁石コイル71へ供給される直流電流の
大きさに応じて、可動磁心73の吸引力が変り、したが
ってブリード基片74を移動させようとする力が変るが
、その力につりあう負圧が負圧取出し室77に発生する
ように構成されているので、負圧取出し室77には、例
えば第8図に示すように、電流に比例した大きさの負圧
が生じ、この負圧がダイヤフラム操作器55へ導かれる
。この場合演算器63は、直流電流に比例して第3図に
示す負圧を生ずるような演算機能をもっていればよい。
The internal space of the bleed base piece 74 communicates with the atmospheric chamber via the hole 78. Depending on the magnitude of the DC current supplied to the electromagnetic coil 71, the attractive force of the movable magnetic core 73 changes, and therefore the force that tries to move the bleed base piece 74 changes, but the negative pressure that balances that force is negative pressure. As shown in FIG. 8, for example, as shown in FIG. 8, a negative pressure proportional to the current is generated in the extraction chamber 77, and this negative pressure 55. In this case, the computing unit 63 only needs to have a computing function that generates the negative pressure shown in FIG. 3 in proportion to the direct current.

さらに空気量検出の後演算器63により演算された要求
燃料量に正しく対応する噴射量調整レバー41の位置を
確実に得るために、ダイヤフラム操作器55のダイヤフ
ラム56にかかる負圧を検出する負圧センサまたはこの
ダイヤフラム56の移動量を検出する位置センサを設け
、この負圧センサまたは位置センサの出力を、演算器6
3にあらかじめ記憶させである空気量に対応して燃料量
を代表する負圧値または位置値と比較して、センサ出力
が記憶値に等しくなぁよ°うフィードバック制御を行な
うことも可能であ°る。この場合電磁開閉弁61 、6
1’または電磁切5え弁61“を用いる実施例において
定圧弁59は不要になる。
Furthermore, in order to ensure that the position of the injection amount adjustment lever 41 correctly corresponds to the required fuel amount calculated by the calculator 63 after detecting the air amount, the negative pressure applied to the diaphragm 56 of the diaphragm operating device 55 is detected. A sensor or a position sensor for detecting the amount of movement of this diaphragm 56 is provided, and the output of this negative pressure sensor or position sensor is sent to a computing unit 6.
It is also possible to perform feedback control so that the sensor output is equal to the memorized value by comparing it with a negative pressure value or a position value representative of the amount of fuel corresponding to the amount of air stored in advance in step 3. Ru. In this case, the electromagnetic on-off valves 61, 6
1' or an embodiment using an electromagnetic switching valve 61'', the constant pressure valve 59 is not required.

なお空気量を求めるために、吸気通路にある弁の変位を
電気信号に変換し、これを空気温度あるいは大気圧で補
正するか、大気圧と吸気管圧力を検出してこれを吸、気
温塵で補正することによって、空気量に関係する機関作
動パラメータとしての出力信号を演算器63から得るこ
とができる。
In order to determine the amount of air, either the displacement of the valve in the intake passage is converted into an electrical signal and this is corrected using air temperature or atmospheric pressure, or the atmospheric pressure and intake pipe pressure are detected and used to calculate the air temperature and dust. By correcting this, an output signal as an engine operating parameter related to the air amount can be obtained from the calculator 63.

このようにして本発明によれば、燃料の噴射量を吸入空
気量に応じて調整するので、高地における空気量の減少
や過給機付き機関における空気量の増加を考慮して噴射
量調整が行なわれ、単一の機構55−63で高度補償と
過給圧補正を同時にかつ簡単に行なうことができる。こ
れにより高負荷域におけるスモーク濃度を所望の値以下
におさえることができるので、機関の運転性能を向上し
、有害な排気ガス成ばを低減することもできる。
In this way, according to the present invention, the fuel injection amount is adjusted according to the intake air amount, so the injection amount can be adjusted in consideration of a decrease in the amount of air at high altitudes or an increase in the amount of air in a supercharged engine. Altitude compensation and supercharging pressure correction can be performed simultaneously and easily using a single mechanism 55-63. As a result, the smoke concentration in the high load range can be suppressed to a desired value or less, thereby improving the operating performance of the engine and reducing the formation of harmful exhaust gases.

なお上述の実施例では、最大噴射量調整レノ(−41の
位置をダイヤフラム操作器55で設定していたが、第9
図の実施例では、この最大噴射量調整レバー41の位置
は全負荷スクリュ85で設定し、加速応動レバー49の
位置をダイヤフラム操作器55で設定している。すなわ
ち支点86のまわりに揺動可能に支持されるほぼL形の
し・(−87の一方の腕87aにはダイヤフラム操作器
55の夕゛イヤフラム56にあるビンが係合し、他方の
腕87bはストッパとして加速応動レノ(−49に係合
している。
In the above-mentioned embodiment, the maximum injection amount adjustment lever (-41 position) was set by the diaphragm operating device 55, but the 9th position
In the illustrated embodiment, the position of the maximum injection amount adjusting lever 41 is set by a full load screw 85, and the position of the acceleration responsive lever 49 is set by a diaphragm operating device 55. That is, one arm 87a of the approximately L-shaped arm 87, which is swingably supported around a fulcrum 86, is engaged with a bottle on the diaphragm 56 of the diaphragm operating device 55, and the other arm 87b is engaged with the acceleration response lever (-49) as a stopper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料噴射量調整装置の概略構成図
、第2図ないし第4図および第8図はその作用を説明す
るための線図、第5図および第6図はそれぞれ別の実施
例の要部の構成図、第7図は負圧制御弁の別の実施例の
縦断面図で、第9図はさらに別の実施例の概略構成図で
ある。 111.燃料噴射ポンプ、6・・・遠心ガバナ、17・
・・ポンププランジャ、22・・・スピルポート、26
・・・スピル環、41・・・最大噴射量調整レバー、4
3・・・回転数応動レバー、55・・・ダイヤフラム操
作器、60・・・負圧源、61 、61’・・・電磁開
閉弁、61#・・・電磁切換え弁、63・・・演算器、
64・・・圧力センサ、65・・・吸気温度センサ 特許出願人  トヨタ自動車工業株式会社第3図 燃料量 第416ζl 第8月 ・11シ  ンバ・ (111
FIG. 1 is a schematic diagram of the fuel injection amount adjusting device according to the present invention, FIGS. 2 to 4, and 8 are diagrams for explaining its operation, and FIGS. FIG. 7 is a longitudinal sectional view of another embodiment of the negative pressure control valve, and FIG. 9 is a schematic diagram of still another embodiment. 111. Fuel injection pump, 6...Centrifugal governor, 17.
... Pump plunger, 22 ... Spill port, 26
... Spill ring, 41 ... Maximum injection amount adjustment lever, 4
3... Rotation speed responsive lever, 55... Diaphragm operator, 60... Negative pressure source, 61, 61'... Solenoid on/off valve, 61#... Solenoid switching valve, 63... Calculation vessel,
64...Pressure sensor, 65...Intake air temperature sensor Patent applicant Toyota Motor Corporation Figure 3 Fuel quantity No. 416ζl August 11 Simba (111

Claims (1)

【特許請求の範囲】[Claims] 燃料の噴射終了時期を変える燃料調整部材を回転数に応
じて操作することにより燃料噴射量を調整するものにお
いて、吸入空気量あるいはこれに関係する機関作動パラ
メータに応じた負圧を発生し、この負圧により、回転数
に応じた操作に重畳して噴射完調゛整部材を操作するこ
とを特徴とする、ディーゼル機関の燃料噴射量調整装置
In a device that adjusts the amount of fuel injection by operating a fuel adjustment member that changes the end timing of fuel injection depending on the rotation speed, it generates negative pressure according to the amount of intake air or engine operating parameters related to this. A fuel injection amount adjustment device for a diesel engine, characterized in that a negative pressure is used to operate an injection adjustment member in addition to an operation according to the rotation speed.
JP20512381A 1981-12-21 1981-12-21 Regulating device of fuel injection quantity in diesel engine Pending JPS58106136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20512381A JPS58106136A (en) 1981-12-21 1981-12-21 Regulating device of fuel injection quantity in diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20512381A JPS58106136A (en) 1981-12-21 1981-12-21 Regulating device of fuel injection quantity in diesel engine

Publications (1)

Publication Number Publication Date
JPS58106136A true JPS58106136A (en) 1983-06-24

Family

ID=16501800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20512381A Pending JPS58106136A (en) 1981-12-21 1981-12-21 Regulating device of fuel injection quantity in diesel engine

Country Status (1)

Country Link
JP (1) JPS58106136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172837A (en) * 1984-09-19 1986-04-14 Mazda Motor Corp Control device of fuel injection quantity in diesel engine
FR2580334A1 (en) * 1985-04-15 1986-10-17 Ricardo Consulting Eng FUEL SUPPLY SYSTEM FOR INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER
JPH01178735A (en) * 1987-12-29 1989-07-14 Yanmar Diesel Engine Co Ltd Fuel injection quantity controller for diesel engine with supercharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172837A (en) * 1984-09-19 1986-04-14 Mazda Motor Corp Control device of fuel injection quantity in diesel engine
FR2580334A1 (en) * 1985-04-15 1986-10-17 Ricardo Consulting Eng FUEL SUPPLY SYSTEM FOR INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER
JPH01178735A (en) * 1987-12-29 1989-07-14 Yanmar Diesel Engine Co Ltd Fuel injection quantity controller for diesel engine with supercharger

Similar Documents

Publication Publication Date Title
US4495929A (en) Exhaust gas recirculation system for diesel engines
JPS6128028Y2 (en)
JPH041176B2 (en)
CA1113323A (en) Air/fuel ratio regulator
US4387693A (en) Exhaust gas recirculation control
JPS58106136A (en) Regulating device of fuel injection quantity in diesel engine
US4562810A (en) Fuel injection pump
US4161933A (en) Mixture control apparatus for internal combustion engines
JPH0214972B2 (en)
JPH0438901B2 (en)
JPS6321023B2 (en)
JPS6146201Y2 (en)
JPS6055696B2 (en) Diesel engine fuel injection system
JPS6146189Y2 (en)
JPS59192842A (en) Distributor type fuel injection pump for diesel engine
JPH057547B2 (en)
JPS63994Y2 (en)
JPH0255620B2 (en)
JPS6118216Y2 (en)
JPH0214537B2 (en)
JPS5872633A (en) Fuel supply device of engine
JP2594795Y2 (en) Flow control device for fuel injection pump
JPS632579Y2 (en)
JPH075230Y2 (en) Fuel injection timing control device for supercharged engine
JPH0727388Y2 (en) Start control system for vehicles equipped with a turbo engine