JPS58105016A - Measuring device for liquid quantity in enclosed container - Google Patents

Measuring device for liquid quantity in enclosed container

Info

Publication number
JPS58105016A
JPS58105016A JP20599181A JP20599181A JPS58105016A JP S58105016 A JPS58105016 A JP S58105016A JP 20599181 A JP20599181 A JP 20599181A JP 20599181 A JP20599181 A JP 20599181A JP S58105016 A JPS58105016 A JP S58105016A
Authority
JP
Japan
Prior art keywords
speaker
container
liquid
volume
resonating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20599181A
Other languages
Japanese (ja)
Inventor
Yoshiaki Anami
義明 阿南
Norihiro Ueno
上野 宣博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP20599181A priority Critical patent/JPS58105016A/en
Publication of JPS58105016A publication Critical patent/JPS58105016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To perform a direct detection of a liquid quantity in an enclosure container, by utilizing a phenomenon in which a resonance frequency of a speaker fluctuates on a size of a space capacity in the enclosure container. CONSTITUTION:A speaker 3 is mounted to an opening in an upper wall or an upper side wall of an enclosure container 2 such as fuel tanks, in which liquid 1 at the inside is enclosed from the outside, so that it is positioned facing the inside of the container, and a resonance system consists of the speaker 3 and the enclosure container 2 or more concretely a space 4 in the enclosure container 2. A digital counter 6 is connected to the next stage of a resonating circuit 5 resonating in conformity with the resonating frequency of the speaker 3 to count the resonating frequency. The resonating frequency is converted into a capacity Vc of the space 4 in the container 2 by a computing part 9 consisting of a microcomputer connected to a next step of a latch circuit 8 to further find a liquid quantity VF.

Description

【発明の詳細な説明】 本発明は、密閉容器をこ収納した液体の液量を検出する
液量計測装置番こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid amount measuring device for detecting the amount of liquid contained in a closed container.

従来より、容器内の液面レベルを検出する液面検出装置
は種々公知である。
Conventionally, various liquid level detection devices for detecting the liquid level in a container are known.

従来公知の液面検出装置、とくに液体を容器内に密閉し
た密閉容器の液面検出装置は、液面レベルに追従して変
動するフロートを設け、このフロートの変位を何んらか
の方法によって検出する方式を採用しているが、かかる
方式の液面検出装置は、例えば、自動車の7ユーエルタ
ンクのように、大きな液面変動を伴なう場合には、70
−トも液面変動に追従するため、検出値が液面変動にし
たがって変動し、正確な液面、或いは液量を検出するこ
とができないといった欠点があった。
Conventionally known liquid level detection devices, particularly liquid level detection devices for sealed containers in which liquid is sealed inside, are equipped with a float that changes to follow the liquid level, and the displacement of this float is measured by some method. However, this type of liquid level detection device can be used in cases where there are large fluctuations in the liquid level, such as in the case of a 7-well tank in an automobile.
Since the detection value also follows the liquid level fluctuation, the detection value fluctuates according to the liquid level fluctuation, and there is a drawback that the accurate liquid level or liquid amount cannot be detected.

また、上記の如きフロートを用いずに、液面位置を超音
波の反射時間の長短および反射波強度の大小により検出
するようにした液面検出装置が提案されている(実開昭
55−81732号公報参照)。しかしながら、かかる
方式においても、上記の諸量部ら超音波の反射時間や反
射波強度は、液面レベルの変動番こ直接に影響され、し
たがって、液面レベル変動の影響なしに、容器内の液量
を正確に検出することができない欠点がある。
Furthermore, a liquid level detection device has been proposed that detects the liquid level position based on the length of the ultrasonic reflection time and the magnitude of the reflected wave intensity, without using the above-mentioned float (Utility Model Application No. 55-81732). (see publication). However, even in such a method, the reflection time and reflected wave intensity of the ultrasonic waves are directly affected by the fluctuations in the liquid level, and therefore the There is a drawback that the liquid volume cannot be detected accurately.

本発明は、かかる従来の問題を解消すべくなされたもの
であって、密閉容器内の空間、即し、密閉容器壁と液面
によって画成される空間の容積は、液面レベルの変動に
無関係に、密閉容器内の液量によって正確に決定される
こと薔こ着目し、この内部空間の容積を共振現象を利用
して検出することにより、液量を直接に計測することが
できる密閉容器の液量計測装置を提供することを目的と
じている。
The present invention has been made to solve this conventional problem. Regardless, we focused on the fact that the amount of liquid in the sealed container is accurately determined, and by detecting the volume of this internal space using a resonance phenomenon, we developed a sealed container that can directly measure the amount of liquid. The purpose is to provide a liquid volume measuring device.

以下、より具体的に図示の実施例について本発明を説明
する。
Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments.

図面に示すように、本発明においては、内部に液体1を
外部に対して密閉した状態で収容する、例えば7ユーエ
ルタンク等の密閉容器2の土壁又は上部側壁に設けた取
付開口部に、スピーカ3を器内に向けて取付け、このス
ピーカ3と密閉容器2より具体的には密閉容器2内の空
間4と番こよって一つの共振系を構成する。
As shown in the drawings, in the present invention, a mounting opening provided in a soil wall or an upper side wall of a closed container 2, such as a 7-well tank, which stores a liquid 1 inside in a sealed state from the outside, includes: A speaker 3 is mounted facing the inside of the container, and the speaker 3 and the closed container 2, more specifically, the space 4 inside the closed container 2, constitute one resonant system.

このスピーカ3に対しては、スピーカ3の共振周波数で
共振するそれ自体は公知の構成を有する負性抵抗発振回
路からなる共振回路5を接続し、スピーカ3の共振周波
数に同調して共振する共振回路5の次段にはディジタル
カウンタ6を接続して、その共振周波数を計数する。
A resonant circuit 5 consisting of a negative resistance oscillation circuit having a known configuration that resonates at the resonant frequency of the speaker 3 is connected to the speaker 3, and a resonant circuit 5 that resonates in tune with the resonant frequency of the speaker 3 is connected. A digital counter 6 is connected to the next stage of the circuit 5 to count its resonance frequency.

このディジタルカウンタ6は、タイマ9によってカウン
ト時間が制御され、カウント時間ごとに共振回路5から
出力されるパルス数を計数し、その計数値はタイマ7に
よってラッチタイミングが制御されるラッチ回路8によ
ってラッチタイミングごとにラッチされる。ラッチ回路
8にラッチされた計数値、換言すれば共振周波数は、ラ
ッチ回路8の次段に接続したマイクロコンピュータより
なる演算部9によって、上記容器2内の空間4の容積V
cに変換され、さらに液量vpを求めたうえで、液量表
示部10に液量指示信号を出力し、液量表示部10は指
示された液量VFを表示する。
This digital counter 6 has a count time controlled by a timer 9, counts the number of pulses output from the resonant circuit 5 for each count time, and the counted value is latched by a latch circuit 8 whose latch timing is controlled by a timer 7. Latched at each timing. The count value latched in the latch circuit 8, in other words, the resonant frequency, is determined by the calculation unit 9, which is a microcomputer connected to the next stage of the latch circuit 8, and calculates the volume V of the space 4 in the container 2.
After determining the liquid volume vp, a liquid volume instruction signal is output to the liquid volume display unit 10, and the liquid volume display unit 10 displays the instructed liquid volume VF.

上記の構成において、スピーカ3の共振周波数focと
空間4の容積vcとの間の関係は、以下の如くに求める
ことができる。
In the above configuration, the relationship between the resonant frequency foc of the speaker 3 and the volume vc of the space 4 can be determined as follows.

一般に、実効質量m、弾性定数にの単振動系を考えると
、その振動方程式は、周知の如く、で与えられ、この式
の一般解は、 y=Asin(ω【+θ)    ・・・・・・・・・
  (2)ると、ω=2πf であるから、 で与えられる。
In general, when considering a simple harmonic system with effective mass m and elastic constant, its vibration equation is given by, as is well known, and the general solution to this equation is y=A sin (ω [+θ)...・・・・・・
(2) Then, since ω=2πf, it is given by.

いま、上記のスピーカ3と密閉容器2の内部空間4とで
構成する振動系では、音響工学等の分野で汎用されてい
るように、弾性係数kに相当するステイフネスSという
量を導入することにより、上記単振動と同様に、スピー
カ3の共振周波数focを求めることができる。
Now, in the vibration system composed of the above-mentioned speaker 3 and the internal space 4 of the sealed container 2, by introducing a quantity called stiffness S corresponding to the elastic modulus k, as commonly used in the field of acoustic engineering, etc. , the resonant frequency foc of the speaker 3 can be found in the same way as the simple harmonic motion.

即し、系全体のステイフネスSは、スピーカ3の固有の
ステイフネスSoと、上記内部空間4のエア(蒸発気体
を含む)のスティフネスScとの和で与えられる。
That is, the stiffness S of the entire system is given by the sum of the inherent stiffness So of the speaker 3 and the stiffness Sc of the air (including evaporated gas) in the internal space 4.

k = S = S o + S c        
−−−−−−−−−f41このステイ7ネスScは、こ
の振動系の実効半径(具体的には、スピーカ3の半径と
等価)aと、上記エアの容積Vcとの関数として、 の関係がある(但し、aは比例定数、に−αa4)いま
、(4)式と(3)式とを用い、また、上記エアの質量
は、スピーカ3の実効質量m。に比して無視できるので
、スピーカ3の共振周波数focは、次式で求まる。
k = S = S o + S c
-------------f41 This stay 7ness Sc is expressed as a function of the effective radius a of this vibration system (specifically, equivalent to the radius of the speaker 3) and the air volume Vc. There is a relationship (where a is a proportional constant, -αa4) Now, using equations (4) and (3), the mass of the air is the effective mass m of the speaker 3. Since it can be ignored compared to foc, the resonant frequency foc of the speaker 3 can be found by the following equation.

ところで、スピーカ3単体の共振周波数f。は、vcを
無限大としたことに相当するがら、第5式の関係を用い
ると、Sc −+oとなるがら、で求まり、(7)式と
(6)式とを用いると、スピーカ3の実際の共振周波数
focとスピーカ3単体の共振周波数foとの間には、
次の関係がある。
By the way, the resonance frequency f of the speaker 3 alone. is equivalent to setting vc to infinity, but using the relationship of the fifth equation, it becomes Sc −+o, which can be found as Sc −+o, and using equations (7) and (6), the Between the actual resonant frequency foc and the resonant frequency fo of the speaker 3 alone,
There is the following relationship.

したがって、密閉容器2の内部空間4の容積vcは、 で求まり、液量VFは、密閉容器2の容積をVとして、 V、−V−V、         ・・・・・・・・・
・・・ (10)で求めることかできる。
Therefore, the volume vc of the internal space 4 of the sealed container 2 is determined as follows, and the liquid volume VF is as follows, where the volume of the sealed container 2 is V, V, -V-V, ......
... It can be found by (10).

」二記(9)式において、So 、 fo 、 Kは既
知であるから、実際の共振周波数focを検出すれば、
(9)式によって内部空間Vcを求めることができ、(
10)式番こより密閉容器2内の液量VFを算出するこ
とができる。
In Equation 2 (9), So, fo, and K are known, so if the actual resonance frequency foc is detected,
The internal space Vc can be determined by equation (9), and (
10) The liquid volume VF in the sealed container 2 can be calculated from the formula number.

即し、演算部9においては、ラッチ回路8にラッチされ
た共振周波数focを読み込んで、式(9)および(1
0)により液量VFを求めるようにすればよい。
That is, in the calculation unit 9, the resonant frequency foc latched by the latch circuit 8 is read, and equations (9) and (1) are calculated.
0) may be used to find the liquid volume VF.

なお、上記スピーカ3の設計醗こ当っては、foc≧2
0KHz  となるように考慮し、また第8式の関係を
見れば明らかなように、スピーカ3単体のステイ7ネス
Soと、内部空間4内のエアのステイフネスSc (こ
れは、第5式の関係から明らかなように、スピーカ3の
実効振動半径3に関係する。)との比S c /S o
 と、スピーカ3単体の共振周波数fOとの間(こ適当
なバランスを取ることが必要な分解能を得るうえで好ま
しい。
In addition, when designing the speaker 3, foc≧2
0KHz, and as is clear from the relationship in Equation 8, the stay 7ness So of the speaker 3 alone and the stiffness Sc of the air in the internal space 4 (this is the relationship in Equation 5). As is clear from the above, the ratio S c /S o is related to the effective vibration radius 3 of the speaker 3.
and the resonant frequency fO of the single speaker 3 (it is preferable to maintain an appropriate balance in order to obtain the necessary resolution).

以上の構成とすれば、密閉容器2内の液体3の液面レベ
ルが、振動等により傾斜したとしても、内部空間4の容
積Vcは不変であるから、共振周波数focも変動する
ことがなく、また、内部の液量が液体の消費によって実
際に減少したときには、これか内部空間4の容積Vcの
増大をもたらして、スピーカ3の共振周波数focを変
化させ、この変化から、その時点での容積Vcおよび、
したがって液量VFを直しに求めることができ、この液
量VFを表示することができるのである。
With the above configuration, even if the level of the liquid 3 in the closed container 2 is tilted due to vibration or the like, the volume Vc of the internal space 4 remains unchanged, so the resonant frequency foc will not change. Further, when the internal liquid volume actually decreases due to liquid consumption, this causes an increase in the volume Vc of the internal space 4, changing the resonance frequency foc of the speaker 3, and from this change, the volume at that point Vc and
Therefore, the fluid volume VF can be directly determined and this fluid volume VF can be displayed.

以上の説明から明らかなように、本発明は、密閉容器内
の空間の容積の大小によってスピーカの共振周波数が変
動する現象を利用して、密閉容器内の液量を直接に検出
するようにした密閉容器の液量計測装置を提供するもの
である。
As is clear from the above description, the present invention directly detects the amount of liquid in a sealed container by utilizing the phenomenon in which the resonant frequency of a speaker changes depending on the volume of the space inside the sealed container. The present invention provides a liquid volume measuring device for a closed container.

本発明によれば、液面レベルではなく、液量を直接に測
定することができるので、振動等による液面の変動の影
響を受けることがなく、しかも非接触で常に安定した計
測を行なうことができ、さらに必要に応じて液量のディ
ジタル表示を可能とすることができるといった利点を得
ることができる。
According to the present invention, since it is possible to directly measure the liquid volume rather than the liquid level, it is not affected by fluctuations in the liquid level due to vibrations, etc., and moreover, it is possible to always perform stable measurement without contact. It is also possible to obtain the advantage that the liquid amount can be displayed digitally if necessary.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例にかかる密閉容器の液量計測装
置のブロック説明図である。 1・・・密閉容器、3・・・スピーカ、5・・・共振回
路、6・・・ディジタルカウンタ、9・・・演算部。
The drawing is a block diagram illustrating a liquid amount measuring device for a closed container according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Airtight container, 3... Speaker, 5... Resonance circuit, 6... Digital counter, 9... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] (1)密閉容器に内蔵された液体の量を、密閉容器の上
部に取付けたスピーカが容器内部の気体と共振する周波
数の高低により、検出することを特徴とする密閉容器の
液量計測装置。
(1) A liquid amount measuring device for a closed container, which detects the amount of liquid contained in the closed container by determining the frequency of a speaker attached to the top of the container that resonates with the gas inside the container.
JP20599181A 1981-12-17 1981-12-17 Measuring device for liquid quantity in enclosed container Pending JPS58105016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20599181A JPS58105016A (en) 1981-12-17 1981-12-17 Measuring device for liquid quantity in enclosed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20599181A JPS58105016A (en) 1981-12-17 1981-12-17 Measuring device for liquid quantity in enclosed container

Publications (1)

Publication Number Publication Date
JPS58105016A true JPS58105016A (en) 1983-06-22

Family

ID=16516089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20599181A Pending JPS58105016A (en) 1981-12-17 1981-12-17 Measuring device for liquid quantity in enclosed container

Country Status (1)

Country Link
JP (1) JPS58105016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125024A (en) * 1984-07-13 1986-02-03 Shimada Phys & Chem Ind Co Ltd Measuring method of liquid level

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536302B2 (en) * 1972-12-29 1980-09-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536302B2 (en) * 1972-12-29 1980-09-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125024A (en) * 1984-07-13 1986-02-03 Shimada Phys & Chem Ind Co Ltd Measuring method of liquid level

Similar Documents

Publication Publication Date Title
US4811595A (en) System for monitoring fluent material within a container
US2990543A (en) Sensing the presence or absence of material
US4991433A (en) Phase track system for monitoring fluid material within a container
US4312235A (en) Sensor and meter for measuring the mass flow of a fluid stream
US5670709A (en) Transducer for the measurement of attributes of flowable media
CA1185353A (en) Sonic pressure volume measuring device
US4535627A (en) Method of and apparatus for determining the level of liquid in a vessel
JPS6010148A (en) Device and method of measuring density of fluid
US4349881A (en) Vibration instruments
JP2768893B2 (en) Resonant type test equipment
US5074148A (en) Resonance frequency liquid level sensor
US3523446A (en) Device for density determination
US6079266A (en) Fluid-level measurement by dynamic excitation of a pressure- and fluid-load-sensitive diaphragm
JPS58105016A (en) Measuring device for liquid quantity in enclosed container
Virnig et al. On three-dimensional nonlinear subharmonic resonant surface waves in a fluid: Part II—Experiment
US4811592A (en) Specific gravity detector
US4411161A (en) Mass flowmeter or the like
JPS5999332A (en) Fluid characteristics measuring apparatus
JP3256608B2 (en) Ultrasonic water level measurement method and device
JPS6125024A (en) Measuring method of liquid level
JP2975804B2 (en) Sound velocity measuring device
SU1758457A1 (en) Method of monitoring pressure while filling fluid-tight vessels
SU1767352A1 (en) Device for determining fluid level
JPH0331207B2 (en)
JPS57100309A (en) Flow rate detecting element