JPS58104622A - Twin-shaft type continuous kneader with vent - Google Patents

Twin-shaft type continuous kneader with vent

Info

Publication number
JPS58104622A
JPS58104622A JP56203005A JP20300581A JPS58104622A JP S58104622 A JPS58104622 A JP S58104622A JP 56203005 A JP56203005 A JP 56203005A JP 20300581 A JP20300581 A JP 20300581A JP S58104622 A JPS58104622 A JP S58104622A
Authority
JP
Japan
Prior art keywords
section
kneading
rotor
chamber
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56203005A
Other languages
Japanese (ja)
Inventor
Futashi Fukui
二志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56203005A priority Critical patent/JPS58104622A/en
Publication of JPS58104622A publication Critical patent/JPS58104622A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/465Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft each shaft comprising rotor parts of the Banbury type in addition to screw parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PURPOSE:To provide the titled kneader capable of increasing a kneading time to a material to be kneaded to carry out sufficient kneading by enlarging an L/D ratio and enhancing the supply force of the material by compensating the lowering of the rotary speed of a rotor with the increase of the L/D ratio by engagement in a feed part. CONSTITUTION:A feed part 5 is formed into a large diameter compared to other parts and supply flights 51 are mutually engaged in said feed part 5. In a first kneading part 6, a rotor 4 has a non-circular cross area and forms an outwardly protruded kneading blade 61 suitable for imparting shearing and stirring actions between the rotor 4 and the inner wall of a chamber 1 and between mutual spaces of the rotor 4. In addition, from the initial end part to the intermediate part of the kneading part 6 in an axial direction, the kneading blade 61 is continued to a sending blade part 62 in such a manner that twist with an appropriate lead angle is formed toward a direction gone away from the rotary direction of the rotor and, from this part to the terminal end thereof, a return blade part is formed so as to provide twist with a lead angle in an opposed direction. Therefore, stirring action is increased with the interference of the material and the generation of pressure.

Description

【発明の詳細な説明】 この発明は合成樹脂等の高分子材料の混線に用いるベン
ト付二軸連続式混線機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vented two-shaft continuous crosstalk machine used for crosswiring polymeric materials such as synthetic resins.

従来、この種の二軸連続式混線機は一般に、チャンバー
内に並列配置された回転自在な二軸のロータにそれぞれ
材料供給口側から順にスクリュー形状のフィード部と、
断面オーバル形等の混練翼を備えた混線部と、ディスチ
ャージ部とを配設し、チャンバーの材料供給口から縁続
的に供給された被混線材料を、上記フィード部によって
混練部に送給し、混練部において溶融混練した後、チャ
ンバーの排出口から連続的に排出させるようにしている
。混練部は通常混練翼が被混線材料を前方に送る方向に
捩れをもった送り翼部と、逆に材料を戻す方向に捩れを
もった戻し翼部とを具備し、フィード部の前方に一定範
囲にわたり設けられている。
Conventionally, this kind of two-shaft continuous mixer generally has two rotatable rotors arranged in parallel in a chamber, each having a screw-shaped feed section in order from the material supply port side,
A mixing section equipped with kneading blades having an oval cross-sectional shape, etc., and a discharge section are arranged, and the material to be mixed, which is sequentially supplied from the material supply port of the chamber, is fed to the kneading section by the feed section. After melting and kneading in the kneading section, the mixture is continuously discharged from the discharge port of the chamber. The kneading section usually has a feed section in which the kneading blades are twisted in the direction of feeding the material to be mixed forward, and a return wing section in which the kneading blades are twisted in the direction of returning the material. It is provided over a range of areas.

この構成では混練する材料によっては混線時間が不足し
、充分な混練がなされないため、ロータのL/D (直
径に対する長さの比)を大きくし、混練部を軸方向に2
個所に設置する構造も採用されている。この構造では混
練部での被混線材料の圧力の低下を防止しかつ急激な発
熱線の増大による材料の熱劣化を防止するために混練部
間に絞り部を設けている。さらに混線中の桐材に含まれ
る揮発成分を除去し、これによって製品に気泡が残るこ
とを防止するためにベント孔を設けてここから真空ポン
プによって脱気することも行なわれているが、この装置
によりパウダ状の材料を混練すると絞り部より未混練パ
ウダを真空系へ吸込み、また脱気部でベントアップする
という問題がある。
With this configuration, depending on the material to be kneaded, the mixing time may be insufficient and sufficient kneading may not be achieved. Therefore, the L/D (ratio of length to diameter) of the rotor is increased, and the kneading section is moved in the axial direction.
A structure that can be installed at a specific location has also been adopted. In this structure, a constricted part is provided between the kneading parts in order to prevent a drop in the pressure of the material to be mixed in the kneading part and to prevent thermal deterioration of the material due to a sudden increase in the number of heating wires. Furthermore, in order to remove the volatile components contained in the paulownia wood in the crosstalk and prevent air bubbles from remaining in the product, a vent hole is provided and the air is degassed from there using a vacuum pump. When powdered materials are kneaded by the device, there is a problem that the unkneaded powder is sucked into the vacuum system through the constriction section and vented up at the degassing section.

この発明はこのような二軸連続式混練機における欠点の
解決のためになされたものであり、パウダ状の材料を真
空脱気下で混練する際に絞り部より未混練パウダを真空
系へ吸込まず、かつ脱気部でベントアップしない構造を
提供するものである。
This invention was made to solve the drawbacks of such two-screw continuous kneading machines, and when kneading powder-like materials under vacuum degassing, unkneaded powder is sucked into the vacuum system from a constriction part. First, it provides a structure that does not cause vent-up in the degassing section.

すなわち、この発明は、二軸・連続式混線機であ〜って
第1混線部と第2混線部との間に絞り部を有し、かつ脱
気孔を有する装置において、上記絞り部の圧力降下を次
式におけるΔPの値で10〜35Kgf/cII、好ま
しくは15〜50Kgf/cd  の範囲に制御できる
ように絞り部の材料通路を設定したものである。
That is, the present invention provides a device that is a two-shaft continuous crosstalk machine, which has a constriction section between a first crosstalk section and a second crosstalk section, and has a deaeration hole, in which the pressure of the constriction section is reduced. The material passage in the constriction section is set so that the drop can be controlled within the range of 10 to 35 Kgf/cII, preferably 15 to 50 Kgf/cd, based on the value of ΔP in the following equation.

但し、 η、 :tツブ部のみかけの粘度(Kgf−Sec/d
)η2 :連通部のみかけの粘度 (Kgf−see/
1)Ql:チップ部の流量(7/s+1c)Ql:連通
部の流量(CIIl/覆) L :円形断面部の長さく側) Wl:チップ部の周方向長さくσ) W2:連通部の高さく c−) tl:チップ部の間隙(C) t2:連通部の間隙(σ) 以下、この発明の実施例を図面によって説明する。第1
〜4図において、1はチャンバー、2はこのチャンバー
1の一端部に設けた材料供給口、3はチャンバー1の他
端側の材料排出口を構成する吐出オリフィスである。チ
ャンバー1は実質上円筒状で相互に連結された平行な2
つの室を形成し、両者に共通する吐出オリフィス6を設
けている。材料供給口2には、被混線材料を受入れて前
記室内に加圧下に詰込むようにした受入手段(図示省略
)が設けられている。4はチャンバー1内に並列配置さ
れた二軸のロータで、その端部においてチャンバー1に
回転自在に支持され、図示しないモータ、減速機および
ギア等により、通常互いに逆向きに同期回転するように
構成されている。
However, η, : Apparent viscosity of the t-tube part (Kgf-Sec/d
) η2 : Apparent viscosity of the communicating part (Kgf-see/
1) Ql: Flow rate of the tip part (7/s+1c) Ql: Flow rate of the communicating part (CIIl/cover) L: Longest side of the circular cross section) Wl: Circumferential length of the tip part σ) W2: Flow rate of the communicating part Height c-) tl: Gap between tip portions (C) t2: Gap between communication portions (σ) Examples of the present invention will be described below with reference to the drawings. 1st
In Figures 1 to 4, 1 is a chamber, 2 is a material supply port provided at one end of the chamber 1, and 3 is a discharge orifice constituting a material discharge port at the other end of the chamber 1. The chamber 1 is substantially cylindrical and has interconnected parallel parallel chambers 2
Two chambers are formed, and a discharge orifice 6 common to both chambers is provided. The material supply port 2 is provided with receiving means (not shown) that receives the material to be mixed and stuffs it into the chamber under pressure. Reference numeral 4 denotes a two-axis rotor arranged in parallel in the chamber 1. The rotor 4 is rotatably supported by the chamber 1 at its end, and is normally rotated synchronously in opposite directions by a motor, reducer, gear, etc. (not shown). It is configured.

上記両ロータ4にはそれぞれ材料供給口2側から順に、
フライト間の溝深さを一定とした供給フライト51を有
するスクリュー形状の第1フィード部5と、第1混線部
6と、後述するチャンバー1の可動壁72と共に絞り機
構7を構成する円形断面部71と、第2フィード部8と
、第2混線部9と、ディスチャージ部10とを配設して
いる。
In both the rotors 4, from the material supply port 2 side,
A screw-shaped first feed section 5 having a supply flight 51 with a constant groove depth between flights, a first crosstalk section 6, and a circular cross-sectional section that constitutes a throttle mechanism 7 together with a movable wall 72 of the chamber 1 to be described later. 71, a second feed section 8, a second crosstalk section 9, and a discharge section 10 are provided.

上記フィード部5は他部に比べて大任に形成し、かつ供
給フライト51を相互に噛合させている。
The feed section 5 is formed larger than other sections, and the supply flights 51 are meshed with each other.

図例では供給フライト51を5条スクリューとし1も、
ロータ形状に即し第1フィード部5に対応1する個所は
他の部分に比べて内径を大きくしている。
In the illustrated example, the supply flight 51 is a five-thread screw, and 1 is also
In accordance with the rotor shape, a portion corresponding to the first feed portion 5 has a larger inner diameter than other portions.

第1混練部6ではロータ4を非円形断面形状として、チ
ャンバー1の内壁との間およびロータ4相互間での剪断
、攪拌作用をもたせるのに適当なているが、三方に混練
翼が突出した断面オーバル形等の形状を採用してもよい
。また軸方向には混線部乙の始端部から中間部までは混
練翼61が回転方向から遠ざかる向き、すなわち材料を
前方に送る方向に適当なリード角の捩れをもって連続し
く以下、この部分を送り翼部62という)、ここから混
練部6の終端までは反対方向すなわち混練翼61が材料
を戻す方向に適当なリード角の捩れをもって連続する(
以下、この部分を戻し翼部65という)ように形成する
。この場合、戻し翼部63の長さと捩れ率とは、前記室
内に被混線材料が含有されているときに翼61によって
材料に加えられる軸方向の力は材料を吐出オリフィス6
を通して押出すには不十分であるようにし、これによっ
て前記室内、を通る被混線材料の軸方向における全体と
しての:道程は材料が前記受入手段によ1:“・′、。
In the first kneading section 6, the rotor 4 has a non-circular cross-sectional shape, which is suitable for providing shearing and stirring action between the rotor 4 and the inner wall of the chamber 1 and between the rotors 4, but the kneading blades protrude from three sides. A shape such as an oval cross section may also be adopted. In addition, in the axial direction, from the starting end to the middle part of the mixed line part B, the kneading blades 61 are continuously twisted at an appropriate lead angle in the direction of moving away from the rotating direction, that is, in the direction of feeding the material forward. From here to the end of the kneading section 6, the kneading blades 61 continue in the opposite direction, that is, in the direction in which the material is returned, with a twist of an appropriate lead angle (
Hereinafter, this portion is formed as a return wing portion 65). In this case, the length and torsion rate of the return vanes 63 are such that when the chamber contains a material to be mixed, the axial force applied to the material by the vanes 61 causes the material to flow through the discharge orifice 6.
The total axial travel of the material to be mixed through said chamber is such that the material is not sufficiently extruded through said receiving means.

って受入れられる割・、合によって決まるようにしであ
る。そして、送り翼部62と戻し翼部63との間での材
料の干渉および圧力発生等に伴い、剪断、攪拌、分散等
の作用が高められるように構成している。
It depends on how well it is accepted. The structure is such that shearing, stirring, dispersion, and other effects are enhanced due to material interference and pressure generation between the sending blade section 62 and the returning blade section 63.

また、前記円形断面部71は第1混練部6の終端に位置
し、これに対向して円形断面部71の上下外方にあたる
チャンバー1に可動壁72を設け、この可動壁72と円
形断面部71とによって絞り機構7を構成している。可
動壁72はエアシリンダ等の駆動手段76によってチャ
ンバー1の半径方向に移動し、その先端部と円形断面部
71の外周面との間隙を変化させる。
Further, the circular cross-section section 71 is located at the end of the first kneading section 6, and a movable wall 72 is provided in the chamber 1 facing above and below the circular cross-section section 71, and the movable wall 72 and the circular cross-section section 71 constitutes the aperture mechanism 7. The movable wall 72 is moved in the radial direction of the chamber 1 by a driving means 76 such as an air cylinder, and the gap between its tip and the outer circumferential surface of the circular cross-section section 71 is changed.

円形断面部71の他方の側に位置する第2フィード部8
は、第1フィード部5と同様のスクリュー形状に形成さ
れている。またこの部分のチャ/バー1には脱気孔11
を設け、かつこの脱気孔11には図示しない真空装置を
接続し、これによって混線中の材料に含まれる揮発成分
の脱気を行なうようにしている。
A second feed section 8 located on the other side of the circular cross-section section 71
is formed in the same screw shape as the first feed section 5. Also, in this part of the chamber/bar 1 there is a deaeration hole 11.
A vacuum device (not shown) is connected to this degassing hole 11, and volatile components contained in the material being cross-wired are degassed by this.

なお、スクリュー溝に溶融樹脂が張シっき、スクリュー
の輸送能力が低下すると脱気孔11よりベントアップし
、溶融樹脂を真空系へ吸込んだシ、脱気孔を閉塞したり
するが、スクリューを互いに噛合させるとフライトが相
手スクリューの溝の溶融樹脂をかき取る効果が発揮され
る結果、第2混線部9への輸送能力が増大し、脱気孔1
1からベントアップや閉塞が生じるのを防上することが
できる。
Note that if the screw groove is filled with molten resin and the transport capacity of the screw is reduced, it will vent up through the deaeration hole 11 and suck the molten resin into the vacuum system, blocking the deaeration hole. When meshed, the flight exhibits the effect of scraping off the molten resin in the groove of the mating screw, increasing the transport capacity to the second crosstalk section 9 and increasing the amount of molten resin in the degassing hole 1.
1, it is possible to prevent vent-up and blockage from occurring.

第2混線部9は、第1混線部6と同様に混練翼91を備
え1組の送り翼部92と戻し翼部96とで構成されてい
る。ディスチャージ部10は第2混線部9の前方のロー
タ4終端附近に位置し、ストレートな翼を有している。
The second mixing section 9, like the first mixing section 6, includes a kneading blade 91 and a pair of a sending blade section 92 and a return blade section 96. The discharge section 10 is located near the end of the rotor 4 in front of the second crosstalk section 9, and has straight blades.

また、吐出オリフィス6はその一側壁61を開閉動可能
とし、その開閉操作によりオリフィス6の開口槍を絞り
調節することによって混練された材料の排出喰および排
出抵抗を調節できるようにしている。
Further, one side wall 61 of the discharge orifice 6 can be opened and closed, and by opening and closing the opening and closing operation, the opening spear of the orifice 6 is adjusted, thereby adjusting the discharge rate and discharge resistance of the kneaded material.

第5図は絞り機構7の他の例を゛示し、可動壁72の先
端部74が円形断面部71.71間に入り込み、流路を
最も絞った際には上下の先端部74が互いに当接して二
軸間が遮断されるようにしている。
FIG. 5 shows another example of the throttle mechanism 7, in which the tip 74 of the movable wall 72 enters between the circular cross-sections 71 and 71, and when the flow path is most narrowed, the upper and lower tips 74 touch each other. The two shafts are in contact with each other so that the two shafts are isolated.

第6図は絞り機構7のさらに別の例を示し、二軸に形成
した円形断面部75に互いに喰違いに配置し、これによ
って材料の流路の円環形状が一方は縮小し、他方は拡大
するようにしてこの部分で材料の流動抵抗が増大するよ
うにしている。
FIG. 6 shows yet another example of the throttling mechanism 7, which is arranged in a circular cross section 75 formed on two axes so as to be offset from each other, so that the annular shape of the material flow path is reduced on one side and The flow resistance of the material is increased in this portion by enlarging it.

第7図は絞り機構7の各部形状寸法を概念的に示したも
のであり、円形断面部71は軸方向にLの長さを有し、
また周囲には可動壁72との間にチップ部間隙t1およ
び2軸の連通部S(斜線部)が形成されている。なお、
第6図の構造のばあいはLを円形断面部の寸法として両
円形断面部75の反対側の面間の寸法をとる。t2およ
び馬は連通部Sの幅および高さ、Qlはチップ間隙t1
を通過する流量、Q2は連通部Sを通過する流量、Dl
は円形断面部71の外径、η1およびη!はそれぞれチ
ップ部間隙t1および連通部Sを通る材料のみかけの粘
度(Kgf−sec/cII)を示す。省だチップ部の
周方向の寸法W1は W+  =(71−(Dl+ t+)−W2)X2で示
される。
FIG. 7 conceptually shows the shapes and dimensions of each part of the diaphragm mechanism 7, in which the circular cross-sectional part 71 has a length L in the axial direction,
Further, a tip gap t1 and a biaxial communication portion S (shaded portion) are formed around the movable wall 72. In addition,
In the case of the structure shown in FIG. 6, L is the dimension of the circular cross section, and the dimension between the opposite surfaces of both circular cross sections 75 is taken. t2 and horse are the width and height of the communication part S, and Ql is the tip gap t1
The flow rate passing through the communication section S, Q2 is the flow rate passing through the communication part S, Dl
are the outer diameter of the circular cross section 71, η1 and η! represent the apparent viscosity (Kgf-sec/cII) of the material passing through the tip gap t1 and the communication portion S, respectively. The circumferential dimension W1 of the omitted chip portion is expressed as W+=(71-(Dl+t+)-W2)X2.

この構成において次式で示される圧力降下ΔPの値を1
0〜35 Kg f /(・d1好ましくは15〜50
Kgf/crA  に制御できるように各部の寸法を設
定する。なお、t、、t2の寸法の調整は可動壁72を
上下動させることによって行なうが、未混練)ζラダが
通過しやすい連通部Sを小さくしたいばあいには第5図
に示す構成が好ましい。
In this configuration, the value of pressure drop ΔP shown by the following equation is 1
0~35 Kg f/(・d1 preferably 15~50
The dimensions of each part are set so that it can be controlled to Kgf/crA. Note that the dimensions of t, t2 are adjusted by moving the movable wall 72 up and down, but the configuration shown in FIG. 5 is preferable when it is desired to make the communication section S smaller through which the unmixed ζ ladder can easily pass. .

つぎに上記装置の作用を説明する。図示しないフィーダ
等により連続定量的に供給された被混線材料は、まずロ
ータ4始端側のフィード部5により軸方向前方に向けて
送られる。なお、フィード部5は供給フライト51が互
いに噛合しているために、ロータ4を一般の旧来機に比
較して低い回転速度で回転させても充分大きなフィード
力が発揮される。また嵩比重の小さな材料、粘着しやす
い材料、スリツ!ニブし易い材料なども確実に送給され
ることとなる□計 上記フィード部5から送られた被混線材料は、   □
第1混線部6において、剪断、攪拌、分散等の作用を受
けて可塑化溶融し、かつ混練され、ついで絞り機構7を
通過し、第2フィード部8を通して第2混練部9に送ら
れる。
Next, the operation of the above device will be explained. The material to be mixed, which is continuously and quantitatively supplied by a feeder (not shown) or the like, is first sent forward in the axial direction by the feed section 5 on the starting end side of the rotor 4. In addition, since the supply flights 51 of the feed section 5 are in mesh with each other, a sufficiently large feed force is exerted even when the rotor 4 is rotated at a lower rotational speed than a general conventional machine. Also, materials with low bulk specific gravity, materials that are easily sticky, and slits! Materials that are easy to nib are also reliably fed.The mixed materials sent from the feed section 5 are
In the first mixing section 6 , the material is plasticized, melted, and kneaded by shearing, stirring, dispersion, etc., and then passes through a squeezing mechanism 7 and sent to a second kneading section 9 through a second feed section 8 .

上記絞り機構7の流路寸法は、前述のように所定の範囲
に設定されているために、第1混練部6および第2混線
部9における材料の圧力は適正にコントロールされ、か
つ剪断発熱による温度上昇も適正に制御されて両温線部
における材料の温度は平均化され、練りむらも防がれる
。また絞り機構7と排出端側のオリフィス5とにおいて
それぞれ溶融した材料によるマテリアルシールがなされ
ることによりその間においてチャンバー1内の気密性が
得たれ、脱気孔11からの真空脱気がなされる。この際
、パウダ状の材料を用いると未混練パウダが真空系へ引
かれるおそれがあるが、上記のように絞り機構における
流動抵抗を所定の値に設定しておくことにより第1混線
部で練り込ませ、パウダの真空系への吸込みを防止する
ことができる。
Since the flow path dimensions of the throttling mechanism 7 are set within a predetermined range as described above, the pressure of the material in the first kneading section 6 and the second mixing section 9 can be properly controlled, and the heat generated by shearing can be controlled appropriately. The temperature rise is also properly controlled, the temperature of the material at both temperature lines is averaged, and uneven kneading is also prevented. Further, material sealing is performed by the molten material in the throttle mechanism 7 and the orifice 5 on the discharge end side, so that airtightness is obtained in the chamber 1 between them, and vacuum degassing is performed from the degassing hole 11. At this time, if a powder-like material is used, there is a risk that the unmixed powder will be drawn into the vacuum system, but by setting the flow resistance in the squeezing mechanism to a predetermined value as described above, the unmixed powder will be mixed in the first mixing section. This prevents powder from being sucked into the vacuum system.

材料として低密度ポリエチレンとカーボンとの混合物を
用い、生産量を60Kg/h、円形断面部の外形D1を
49閑、長さLを0.7σに設定して絞り機構7の圧力
損失を種々変化させると、第8図に示すような特性が得
られた。同図において曲線83は圧力降下に対する真空
度の変化特性、曲線84はパウダ吸込率の変化特性、曲
線85は樹脂温度の変化特性をそれぞれ示す。これより
圧力降下ΔPを10Kgf/ぴ にするとパウダ吸込率
が急激に減少し、真空度が安定することが明らかである
。一方、圧力降下ΔPが35Kgf/−以上になると、
絞り機構での流動抵抗が大きすぎるために樹脂の温度が
゛急激に上昇することになり、その結果樹脂の劣化や充
填材の焼は等が生じることになるので圧力降下ΔPは3
5 Kg f / tJ以下になるようにすべきである
。従って、圧力降下は10〜35Kgf/mの範囲に設
定する必要がある。
Using a mixture of low-density polyethylene and carbon as the material, the production rate was set to 60 kg/h, the outer diameter D1 of the circular cross section was set to 49 mm, and the length L was set to 0.7σ, and the pressure loss of the throttle mechanism 7 was varied. As a result, characteristics as shown in FIG. 8 were obtained. In the figure, a curve 83 shows a change characteristic of the degree of vacuum with respect to pressure drop, a curve 84 shows a change characteristic of the powder suction rate, and a curve 85 shows a change characteristic of the resin temperature. It is clear from this that when the pressure drop ΔP is set to 10 Kgf/pi, the powder suction rate decreases rapidly and the degree of vacuum becomes stable. On the other hand, when the pressure drop ΔP becomes 35Kgf/- or more,
Because the flow resistance in the squeezing mechanism is too large, the temperature of the resin will rise rapidly, resulting in deterioration of the resin and burning of the filler, so the pressure drop ΔP is 3.
It should be less than 5 Kg f/tJ. Therefore, the pressure drop needs to be set in the range of 10 to 35 Kgf/m.

なお、カーボン分散度に及ぼす真空度の影響を見ると、
第9図に示すように真空度の上昇に比例して分散度が向
上する。真空度が向上すると、混線物中の空気が除かれ
て混練物のみかけの粘度が増大し、カーボン粒子に加わ
るせん断応力が増加するため分散度が向上すると考えら
れる。
In addition, looking at the effect of the degree of vacuum on the degree of carbon dispersion,
As shown in FIG. 9, the degree of dispersion increases in proportion to the increase in the degree of vacuum. It is thought that when the degree of vacuum increases, the air in the mixed material is removed, the apparent viscosity of the mixed material increases, and the shear stress applied to the carbon particles increases, thereby improving the degree of dispersion.

以上説明したように、この発明はベント付二軸混練機に
おける特徴を生かすと共に、とくに両温線部間の絞り機
構における流動抵抗を所定の範囲に設定したものであり
、以下のような種々のすぐれた効果が発揮されるもので
ある。すなわち、L / Dを大きくしたことによって
従来装置では適用困難であった被混線材料に対しても混
線時間が増大して充分な混練が行なわれ、かつ、、L 
/ Dの増大に伴なうロータの回転速度の低下に対して
はフィード部の噛み合わせによって材料供給力を向上さ
せることにより処理能力を高めている。さらに絞り機構
での圧力降下を所定の範囲に設定することによって真空
脱気を良好に行なわせ、パウダ状材料を混練するばあい
でも未混練パウダを真空系へ吸込まないようにし、かつ
脱気部でのベントアップを防止し、安定した運転量に高
品質の製品が得られるようにしたものである。
As explained above, this invention takes advantage of the characteristics of the vented twin-screw kneader, and in particular sets the flow resistance in the throttling mechanism between the two hot wire sections to a predetermined range, and has the following various features. It has excellent effects. In other words, by increasing L/D, the mixing time increases and sufficient kneading is performed even for materials to be mixed, which were difficult to apply with conventional equipment.
In response to the decrease in rotor rotational speed due to an increase in /D, the throughput is increased by increasing the material supply force by meshing the feed sections. Furthermore, by setting the pressure drop in the throttling mechanism within a predetermined range, vacuum deaeration is performed well, and even when powder-like materials are kneaded, unmixed powder is not sucked into the vacuum system, and deaeration is prevented. This prevents vent-up in the parts and allows for stable operation and high-quality products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す混線機の縦断面図、第
2〜4図はそれぞれ第1図のi−I線、1−1線、+V
 −+V線断面図、第5図は絞り機構の他の例を示す横
断面形状線図、第6図はさらに別の例を示す水平断面形
状線図、第7図は絞り機構の各部寸法形状を示す斜視説
明図、第8図は絞り部の圧力降下と各種条件との関係図
、第9図は真空度とカーボン分散度との関係図である。 1・・チャンバー、2 ・材料供給口、6・・・吐出オ
リフィス、4 ロータ、5 ・フィードm、6−11゜
1混線部、7・・絞り機構、71・円形断面、72・・
・可動壁、9・・・第2混練部。 特許出願人  株式会社神戸製鋼所
FIG. 1 is a longitudinal cross-sectional view of a crosstalk machine showing an embodiment of the present invention, and FIGS. 2 to 4 are lines i-I, 1-1, and +V in FIG. 1, respectively.
-+V line sectional view, Figure 5 is a cross-sectional shape diagram showing another example of the aperture mechanism, Figure 6 is a horizontal cross-sectional shape diagram showing yet another example, and Figure 7 is the dimensions and shape of each part of the aperture mechanism. FIG. 8 is a diagram showing the relationship between the pressure drop at the throttle part and various conditions, and FIG. 9 is a diagram showing the relationship between the degree of vacuum and the degree of carbon dispersion. 1. Chamber, 2. Material supply port, 6. Discharge orifice, 4. Rotor, 5. Feed m, 6-11°1 cross section, 7. Throttle mechanism, 71. Circular cross section, 72..
- Movable wall, 9... second kneading section. Patent applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 1、一端に材料供給口、中間に脱気孔、他端に吐出オリ
フィスを有し、横方向に相互に連結され実質的に円筒状
で互いに平行な2つの室を形成するチャンバーと、チャ
ンバー内に2個のロータ軸を並列に噛合せて嵌装し、各
ロータ軸には一定深さの溝を形成した供給スクリュ一部
と、各々バンバリ一式の翼断面と実質的に同様な断面を
有し、その回転方向から遠ざかる向きに捩れた部分とそ
の反対方向に捩れた部分とを有する翼をもった第1混線
部と、ロータに設けた円形断面部とその外方におけるチ
ャンバーの一部に設けた半径方向に移動可能な可動壁と
によりこの可動壁と円形断面部との間隙を調節可能にし
た絞り部と、供給スクリュ一部と同形状のスクリューを
有し上記脱気孔が開口している脱気部と、第1混線部と
同形状の第2混線部と、バンバリ一式の翼断面と実質的
に同様な断面を有し、捩れのない翼を有し、上記吐出オ
リフィスが開口している排出部とからなり、前記各混練
部の翼における反対方向に捩れた部分の長さと捩れ率と
は前記室内に材料が含有されている時に上記翼によって
上記材料に加えられる軸線方向に向いた平均の力は材料
を上記オリフィスを通して押出すには不十分であるよう
に構成し、これによって上記室内を通る材料の軸線方向
における全体としての道程は材料が上記受入手段によっ
て受入れられる割合によって決るようにしてなる二軸連
続式混練機において、次式より計算される上記絞り部に
おける圧力降下JPを10〜35Kgf/i  の範囲
に制御できるように、可動壁と円形断面部との間隙、円
形断面部の長さおよび連通部の間隙と高さを設定したこ
とを特徴とするベント付二軸連続式混練機。 但し、 η1  :チップ部のみかけの粘度(、Kz f −s
ee/d )η2  :連通部のみかけの粘度  (−
f −see/cd)Q8:チップ部の流量(cd/e
l−)Q、:連通部の流量(cd/’MIC’)L :
円形断面部の長さく礪) Wにチップ部の周方向長さくCII+)W2:連通部の
高さく国) tl:チップ部の間隙(備) t2一連通部の間隙(傭) 2、上記圧力降下ΔPを15〜3 Q Kgf/cd 
 の範囲に制御できるように11;1.  L、  t
2.  W2を設定したことを特徴とする特許請求の範
囲第1項記載のベント付二軸連続式混練機。
[Claims] 1. Having a material supply port at one end, a degassing hole in the middle, and a discharge orifice at the other end, forming two chambers that are laterally interconnected and substantially cylindrical and parallel to each other. A chamber, two rotor shafts are fitted in the chamber in mesh with each other in parallel, and each rotor shaft has a part of a supply screw with a groove of a constant depth formed therein, and each rotor shaft has a blade cross section of a set of Banbari and substantially A first cross section having wings having a similar cross section and having a part twisted in a direction away from the rotation direction and a part twisted in the opposite direction; A movable wall that is movable in the radial direction provided in a part of the chamber, a constriction part that makes it possible to adjust the gap between the movable wall and the circular cross-sectional part, and a screw having the same shape as a part of the supply screw. a degassing part with open pores, a second crosstalk part having the same shape as the first crosstalk part, and a blade having a cross section substantially similar to that of a Banbari set and having no twist; and a discharge section with an open discharge orifice, and the length and torsion rate of the part twisted in opposite directions in the blades of each kneading section are the length and twist rate of the blade added to the material by the blade when the material is contained in the chamber. The average axial force applied is configured to be insufficient to force the material through the orifice, such that the overall axial travel of the material through the chamber is such that the average axial force exerted by the receiving means is insufficient to force the material through the orifice. In the twin-screw continuous kneading machine, which is determined by the accepted ratio, a movable wall and a circular cross-sectional part are used so that the pressure drop JP at the constriction part, which is calculated from the following formula, can be controlled within the range of 10 to 35 Kgf/i. A vented twin-screw continuous kneading machine characterized by setting the gap between the two screws, the length of the circular cross section, and the gap and height of the communicating section. However, η1: Apparent viscosity of the tip (, Kz f −s
ee/d) η2: Apparent viscosity of the communicating part (-
f-see/cd) Q8: Flow rate at the tip (cd/e
l-) Q,: Flow rate of communication part (cd/'MIC') L:
W is the circumferential length of the tip part CII+) W2 is the height of the communicating part) tl is the gap between the tip part (reserve) t2 is the gap of the continuous part (reserve) 2. The above pressure Decrease ΔP from 15 to 3 Q Kgf/cd
so that it can be controlled within the range of 11;1. L, t
2. The vented twin-screw continuous kneading machine according to claim 1, characterized in that W2 is set.
JP56203005A 1981-12-15 1981-12-15 Twin-shaft type continuous kneader with vent Pending JPS58104622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56203005A JPS58104622A (en) 1981-12-15 1981-12-15 Twin-shaft type continuous kneader with vent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56203005A JPS58104622A (en) 1981-12-15 1981-12-15 Twin-shaft type continuous kneader with vent

Publications (1)

Publication Number Publication Date
JPS58104622A true JPS58104622A (en) 1983-06-22

Family

ID=16466749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56203005A Pending JPS58104622A (en) 1981-12-15 1981-12-15 Twin-shaft type continuous kneader with vent

Country Status (1)

Country Link
JP (1) JPS58104622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807503A3 (en) * 1996-05-17 1998-10-07 TECHINT - Compagnia Tecnica Internazionale S.p.A. Method for continuously mixing polymer materials and associated machine with partially tangential and interpenetrating rotors
JP2017115109A (en) * 2015-12-25 2017-06-29 出光興産株式会社 Grease manufacturing apparatus, and method for manufacturing grease
EP3106278A4 (en) * 2014-02-13 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Continuous kneading device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807503A3 (en) * 1996-05-17 1998-10-07 TECHINT - Compagnia Tecnica Internazionale S.p.A. Method for continuously mixing polymer materials and associated machine with partially tangential and interpenetrating rotors
EP3106278A4 (en) * 2014-02-13 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Continuous kneading device
US10449498B2 (en) 2014-02-13 2019-10-22 Kobe Steel, Ltd. Continuous kneading device
JP2017115109A (en) * 2015-12-25 2017-06-29 出光興産株式会社 Grease manufacturing apparatus, and method for manufacturing grease

Similar Documents

Publication Publication Date Title
JP4768018B2 (en) Reverse rotation twin screw extruder
JP3816282B2 (en) Compound manufacturing method using biaxial continuous kneader
US6042260A (en) Method of carrying out continuous preparation processes on tightly meshing extruders rotating in the same sense
EP3218161B1 (en) Twin screw rotary head extruder, method of extruding random extruded products
EP2093037B1 (en) Kneading disc segment and twin-screw extruder
US4350657A (en) Low-energy extruder-pump system
JP3963042B2 (en) Continuous kneader and rotor of continuous kneader
JP3803457B2 (en) Biaxial continuous kneading extrusion equipment
CN102205619A (en) Exhaust-type differential double-screw extruder
JPS60202723A (en) Continuous type mixing and shearing roll mill
JPS5850533B2 (en) Two-screw continuous kneader
JP3905397B2 (en) Kneading device for rubber or rubber-based composition
US4776784A (en) Extruder
JPS58104622A (en) Twin-shaft type continuous kneader with vent
JP3812964B2 (en) Twin screw extruder
AU1955800A (en) Rotor for a mixer and mixer having the same
JPS59164124A (en) Continuous kneading and extruding device with gear pump
JP3530334B2 (en) Continuous kneader and rotor of continuous kneader
JP2001009830A (en) Continuous kneader, method for kneading, and rotor for continuous kneader
JP7421612B1 (en) Twin-screw continuous kneading extrusion device
JPH08108429A (en) Method and device for eliminating gel contained in polymer
KR830002006B1 (en) Continuous mixer
JPS59159328A (en) Screw discharging type kneader with bent
JPS58183210A (en) Continuous kneading extruder
JP2839479B2 (en) Kneading extruder and its material discharging method