JPS5810374B2 - Amin no Seihou - Google Patents

Amin no Seihou

Info

Publication number
JPS5810374B2
JPS5810374B2 JP49121011A JP12101174A JPS5810374B2 JP S5810374 B2 JPS5810374 B2 JP S5810374B2 JP 49121011 A JP49121011 A JP 49121011A JP 12101174 A JP12101174 A JP 12101174A JP S5810374 B2 JPS5810374 B2 JP S5810374B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen
iron oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49121011A
Other languages
Japanese (ja)
Other versions
JPS5148602A (en
Inventor
塩見康
小野悟
松為周信
新居田貞夫
西村健二
利光達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP49121011A priority Critical patent/JPS5810374B2/en
Publication of JPS5148602A publication Critical patent/JPS5148602A/ja
Publication of JPS5810374B2 publication Critical patent/JPS5810374B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 この発明はニトリルを液相水素添加させてアミンを製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing amines by liquid phase hydrogenation of nitriles.

従来、アミンを工業的に製造する際にニトリルを液体ア
ンモニアおよび水素の存在下、固定床用触媒を用いて水
素添加する方法が行なわれていたが、触媒の失活や破砕
、粉化が生じゃすいことが工業上、大きな問題とされて
いた。
Conventionally, when producing amines industrially, nitrile was hydrogenated using a fixed bed catalyst in the presence of liquid ammonia and hydrogen, but this method resulted in deactivation, crushing, and powdering of the catalyst. Scratching was considered to be a major problem in industry.

すなわち、アルミナ、シリカ、軽石などの担体上に活性
金属を担持させた触媒は、通常、多くの有機化合物の水
素添加に対して広い範囲の反応条件下において破砕、粉
化を生じることが少なく、すぐれた機械的強度を有して
いるにもかかわらず、ニトリルの液相水素添加にこの触
媒を適用した場合には必ずしも安定とはいえず、しばし
ば反応物質や媒体の作用により、触媒の変質が起り、触
媒の破砕、粉化が生じていた。
In other words, catalysts in which active metals are supported on carriers such as alumina, silica, and pumice are generally less prone to crushing and pulverization under a wide range of reaction conditions for hydrogenation of many organic compounds. Despite having excellent mechanical strength, this catalyst is not always stable when applied to liquid-phase hydrogenation of nitriles, and the catalyst often undergoes deterioration due to the effects of reactants and media. The catalyst was crushed and powdered.

そのために流通型反応器の部分的な閉塞による反応流体
の偏流と反応率の低下、さらには反応器、導管などの全
面的な閉塞による差圧の増大などを生じ、短期間で運転
を停止しなければならないという欠点があった。
As a result, partial blockage of the flow-through reactor causes uneven flow of the reaction fluid and a drop in reaction rate, and furthermore, complete blockage of the reactor, conduits, etc. causes an increase in differential pressure, resulting in the operation being shut down in a short period of time. There was a drawback that it had to be done.

また、酸化コバルト、酸化ニッケルから調製された触媒
は長期間連続して活性を維持することができず、急速に
触媒の失活が生じるので、しばしば反応を中断して触媒
の再活性化処理を行なう必要があり、特に工業的な連続
運転の妨げとなっていた。
In addition, catalysts prepared from cobalt oxide and nickel oxide cannot maintain their activity continuously for a long period of time, and the catalyst deactivates rapidly, so the reaction is often interrupted and the catalyst is reactivated. In particular, this was a hindrance to continuous industrial operation.

さらに、酸化鉄から調製された触媒はそれ自体すぐれた
機械的強度を有しており、容易に破砕、粉化が生じない
物質であるにもかかわらず、これを触媒としてニトリル
の水素添加に使用する際、それに先立ち、活性化するた
めに水素還元処理を行なうと著しい機械的強度の低下が
生じ、長期間連続運転することができなかった。
Furthermore, although the catalyst prepared from iron oxide itself has excellent mechanical strength and is not easily crushed or powdered, it is used as a catalyst for the hydrogenation of nitrile. When carrying out hydrogen reduction treatment for activation prior to this, a significant decrease in mechanical strength occurred, making it impossible to operate continuously for a long period of time.

この発明の目的は、ニトリルを液相水素添加するに際し
、長期間連続的に使用しても触媒の失活や破砕、粉化を
生じない活性と耐久性のすぐれた固定床用触媒を提供す
ることにある。
The purpose of this invention is to provide a fixed bed catalyst with excellent activity and durability that does not cause catalyst deactivation, crushing, or powdering even when used continuously for a long period of time when nitrile is subjected to liquid phase hydrogenation. There is a particular thing.

また、この発明の他の目的は、触媒の破砕、粉化により
生じる反応器や導管などの閉塞を防止し、長期間安定し
た連続運転を維持することにある。
Another object of the present invention is to prevent clogging of reactors, conduits, etc. caused by crushing and powdering of the catalyst, and to maintain stable continuous operation for a long period of time.

この発明者らは、酸化鉄を触媒として用いて、このよう
な目的を達成するために種々検討した結果、この発明に
到達した。
The inventors conducted various studies to achieve the above object using iron oxide as a catalyst, and as a result, they arrived at the present invention.

すなわち、この発明は、CO/CO2の容量比が1/2
50〜1である一酸化炭素と二酸化炭素との混合ガス雰
囲気中で、酸化鉄を560℃以上で加熱処理し、130
0℃以上で焼結または溶融して調製された固定床用触媒
を200〜600℃で水素還元処理により活性化し、ニ
トリルをアンモニアおよび水素の存在下、液相水素添加
に用いることを特徴とするアミンの製法に関するもので
ある。
That is, in this invention, the capacity ratio of CO/CO2 is 1/2.
Iron oxide is heat-treated at 560°C or higher in a mixed gas atmosphere of carbon monoxide and carbon dioxide with a molecular weight of 130°C to 130°C.
A fixed bed catalyst prepared by sintering or melting at 0°C or higher is activated by hydrogen reduction treatment at 200 to 600°C, and nitrile is used for liquid phase hydrogenation in the presence of ammonia and hydrogen. This paper relates to a method for producing amines.

この発明の方法では触媒原料として任意の酸化鉄、例え
ば、三二酸化鉄、四三酸化鉄などが使用できる。
In the method of this invention, any iron oxide such as iron sesquioxide, triiron tetroxide, etc. can be used as the catalyst raw material.

このような酸化鉄は、例えば、鉄塩溶液から水酸化鉄を
沈殿させた後、焼成しても、また鉄の有機塩やシアン錯
塩な熱分解しても得ることができるが、一般的には金属
鉄を酸素気流中で酸化溶融することによって得ることが
できる。
Such iron oxide can be obtained, for example, by precipitating iron hydroxide from an iron salt solution and then calcining it, or by thermally decomposing iron organic salts or cyanide complex salts, but generally can be obtained by oxidizing and melting metallic iron in an oxygen stream.

さらに、この酸化鉄に対して非溶融性、非還元性の助触
媒成分を添加してもよく、このような助触媒成分として
は、例えば、酸化アルミニウム、酸化トリウム、酸化ウ
ラン、酸化ジルコニウム、などがあげられる。
Furthermore, a non-fusible, non-reducible co-catalyst component may be added to the iron oxide, such as aluminum oxide, thorium oxide, uranium oxide, zirconium oxide, etc. can be given.

これらの助触媒成分は酸化鉄に粉末状にして混合しても
よ(、また可溶性塩の形にしておいて溶液またはゲルと
して加えてもよい。
These promoter components may be mixed with the iron oxide in powder form (or may be in the form of soluble salts and added as a solution or gel).

これらの助触媒成分を使用する場合、その使用割合は酸
化鉄に対して約10重量%までが適当である。
When these co-catalyst components are used, their proportions are suitably up to about 10% by weight based on the iron oxide.

この発明の方法で使用される固定床用触媒は、一酸化炭
素と二酸化炭素との混合ガス雰囲気中で、酸化鉄を56
0℃以上で加熱処理し、1300℃以上で焼結または溶
融した後、冷却して酸化鉄塊を得、これを破砕、整粒し
て、200〜600℃で水素還元処理することによって
調製される。
The fixed bed catalyst used in the method of this invention is capable of converting iron oxide to 56% in a mixed gas atmosphere of carbon monoxide and carbon dioxide.
It is prepared by heating at 0°C or higher, sintering or melting at 1300°C or higher, cooling to obtain an iron oxide ingot, crushing and sizing it, and subjecting it to hydrogen reduction treatment at 200 to 600°C. Ru.

一酸化炭素と二酸化炭素との混合ガスの CO/CO2の容量比は1/250〜1の範囲が適当で
あり、特に1/10以下の範囲が好ましい。
The CO/CO2 volume ratio of the mixed gas of carbon monoxide and carbon dioxide is suitably in the range of 1/250 to 1, particularly preferably in the range of 1/10 or less.

また、この混合ガスは窒素、ヘリウム、アルゴンなどの
不活性ガスで希釈してもよい。
Further, this mixed gas may be diluted with an inert gas such as nitrogen, helium, or argon.

酸化鉄はこのような混合ガス雰囲気中において1300
℃ないし酸化鉄の融点の温度範囲で焼結または溶融され
るが、560℃からこの温度に到達するまでの昇温過程
、およびこの温度から560℃まで冷却される降温過程
においても、一酸化炭素と二酸化炭素との混合ガス雰囲
気中で一定期間加熱処理されることが重要である。
Iron oxide has a concentration of 1300 in such a mixed gas atmosphere.
℃ to the melting point of iron oxide, but even during the heating process from 560℃ to reach this temperature and the cooling process from this temperature to 560℃, carbon monoxide It is important that the heat treatment be carried out for a certain period of time in a mixed gas atmosphere of carbon dioxide and carbon dioxide.

なお、前記の昇温過程および降温過程の全期間中、前記
のような混合ガス雰囲気に保持する必要はな(、その期
間の一部分を、空気、窒素、二酸化炭素などの雰囲気に
保持しても差支えない。
It should be noted that it is not necessary to maintain the mixed gas atmosphere as described above during the entire period of the heating process and cooling process (although it is possible to hold the gas mixture in an atmosphere of air, nitrogen, carbon dioxide, etc. for part of the period). No problem.

なお、昇温速度および降温速度は一定に保つ必要はなく
、原料酸化鉄や混合ガス雰囲気の組成によってもこれら
の最適速度は異なってくるので一義的には定められない
Note that it is not necessary to keep the temperature increase rate and the temperature decrease rate constant, and these optimum rates cannot be determined uniquely because they vary depending on the raw material iron oxide and the composition of the mixed gas atmosphere.

重要なのは酸化鉄と混合ガスが反応するに充分な時間、
560℃以上の温度に保持することであり、実用的には
昇温速度および降温速度は10℃/h以上、好ましくは
50〜500’C/hが適当である。
The important thing is to provide enough time for the iron oxide and mixed gas to react.
The temperature is to be maintained at 560° C. or higher, and in practical terms, the appropriate heating rate and cooling rate are 10° C./h or higher, preferably 50 to 500° C./h.

また焼結および溶融時間は通常、5h以上が適当である
Further, the sintering and melting time is usually 5 hours or more.

このようにして得た酸化鉄塊をクラッシャーにより破砕
し、ふるい分けして次の水素還元処理が充分に行なわれ
るような適当な粒度のものに整粒して触媒を調製する。
A catalyst is prepared by crushing the thus obtained iron oxide lump using a crusher, sieving it, and sifting it to an appropriate particle size that will allow the subsequent hydrogen reduction treatment to be carried out satisfactorily.

次に、ここで調製された触媒を、水素添加反応に先立ち
、水素を主成分とするガス中で200〜600℃、好ま
しくは350〜500℃で処理して、酸化鉄の大部分が
元素鉄になるまで還元して活性化する。
Next, prior to the hydrogenation reaction, the catalyst prepared here is treated at 200 to 600°C, preferably 350 to 500°C, in a gas containing hydrogen as the main component, so that most of the iron oxide is made of elemental iron. It is reduced and activated until it becomes .

この還元処理にあたり、実質的に水分が存在しないこと
が望ましく、従って、大量の水素を流通させながら行な
うのが有利である。
It is desirable that substantially no moisture be present in this reduction treatment, and therefore it is advantageous to carry out the reduction treatment while circulating a large amount of hydrogen.

またこの水素還元処理は常圧下においても充分に進行す
るが、加圧下においてさらに加速させることもできる。
Although this hydrogen reduction treatment proceeds satisfactorily under normal pressure, it can also be further accelerated under increased pressure.

このようにして調製し、活性化された触媒は、液体アン
モニアおよび水素の存在下、過酷な水素添加反応条件下
においてもすぐれた耐久性を有しており、回分式、連続
式反応器のいずれの場合にも使用できるが、その特性を
生かすため、固定床用触媒として流通型の連続式反応器
に使用するのが特に有利である。
The catalyst prepared and activated in this way has excellent durability even under harsh hydrogenation reaction conditions in the presence of liquid ammonia and hydrogen, and can be used in both batch and continuous reactors. However, in order to take advantage of its characteristics, it is particularly advantageous to use it as a fixed bed catalyst in a flow-through type continuous reactor.

この発明の方法は、このような固定床用触媒を用いてア
ンモニアおよび水素の存在下、ニトリルを液相水素添加
してアミンを製造する。
The method of the present invention uses such a fixed bed catalyst to produce an amine by carrying out liquid phase hydrogenation of a nitrile in the presence of ammonia and hydrogen.

このニトリルとしては従来水素添加によってアミンに変
換しうろことが知られたものであればいずれでも使用す
ることができる。
As the nitrile, any nitrile known to be capable of being converted into an amine by hydrogenation can be used.

好ましいニトリルとしては。例えば、アジポニトリル、
α・ω−ジシアノデカン、β−アニリノプロピオニトリ
ル、N−β−シアノエチルシクロヘキシルアミン、ε−
アミノカプロニトリル、バレロニトリル、セパコニトリ
ル、ステアロニトリルなどの脂肪族ニトリルや、ベンゾ
ニトリル、インフタロニトリル、テレフタロニトリルな
どの芳香族ニトリルをあげることができる。
Preferred nitriles include: For example, adiponitrile,
α・ω-Dicyanodecane, β-anilinopropionitrile, N-β-cyanoethylcyclohexylamine, ε-
Examples include aliphatic nitriles such as aminocapronitrile, valeronitrile, sepaconitrile, and stearonitrile, and aromatic nitriles such as benzonitrile, inphthalonitrile, and terephthalonitrile.

水素添加の反応温度は60〜200℃、特に80〜17
0℃が好ましく、また反応圧力は100kg/crrr
G以上、特に200〜300kg/crAGが好ましい
The reaction temperature for hydrogenation is 60-200°C, especially 80-17°C.
The temperature is preferably 0°C, and the reaction pressure is 100kg/crrr.
G or more, especially 200 to 300 kg/crAG is preferable.

一般にニトリルの水素添加は反応温度を高めることによ
って反応速度は向上するが、二級アミンなどの望ましく
ない副生成物が急激に増加してアミンの選択率が低下し
、また触媒の破砕、粉化も生じやすくなるが、この発明
の方法により調製された固定床用触媒を使用した場合、
高温下においてもこのような副生成物の生成は僅少であ
り、また触媒の破砕、粉化もほとんど認められなかった
In general, the reaction rate of nitrile hydrogenation is improved by increasing the reaction temperature, but undesirable by-products such as secondary amines increase rapidly, reducing amine selectivity, and catalyst crushing and powdering. However, when using the fixed bed catalyst prepared by the method of this invention,
Even at high temperatures, the formation of such by-products was minimal, and hardly any crushing or pulverization of the catalyst was observed.

さらにこの触媒は活性が非常に高く、反応温度を例えば
100℃以下のような低温に保持しても、工業的に充分
な反応速度でニトリルの水素添加を行なうことができ、
より一層、副生成物の低下、触媒の破砕、粉化の低下を
はかることができる。
Furthermore, this catalyst has a very high activity and can hydrogenate nitrile at an industrially sufficient reaction rate even if the reaction temperature is maintained at a low temperature such as 100°C or less.
It is possible to further reduce by-products, crushing of the catalyst, and pulverization.

ニトリル、液体アンモニアおよび水素の割合は広い範囲
にわたって変えることができるが、通常、ニトリル1モ
ルに対して、液体アンモニア10〜100モル、水素2
0〜80モルを使用するのが適当である。
The proportions of nitrile, liquid ammonia and hydrogen can vary over a wide range, but typically 1 mole of nitrile: 10-100 moles of liquid ammonia, 2 moles of hydrogen.
It is appropriate to use 0 to 80 mol.

過剰の液体アンモニアは反応生成物と分離した後、循環
使用することができ、また場合によっては反応生成物の
一部を液体アンモニアとともに反応器に循環してもよい
Excess liquid ammonia can be recycled after being separated from the reaction product, and in some cases, a part of the reaction product may be recycled to the reactor together with the liquid ammonia.

液体アンモニアの使用量が過大であると反応速度の低下
、アンモニア循環量の増加をまねき、一方、過小である
とアミンの選択率が低下する。
If the amount of liquid ammonia used is too large, the reaction rate will be reduced and the amount of ammonia circulated will be increased, while if it is too small, the amine selectivity will be reduced.

なお場合によっては液体アンモニア、水素を適当な不活
性ガスで希釈して使用してもよい。
In some cases, liquid ammonia or hydrogen may be used after being diluted with a suitable inert gas.

この発明の方法に従ってニトリルの液相水素添加を行な
ったところ、固定床用触媒はほとんど失活および破砕、
粉化を生じることなく、長期間にわfつて安定な連続運
転を行なうことができる。
When liquid phase hydrogenation of nitriles was carried out according to the method of this invention, the fixed bed catalyst was mostly deactivated and crushed.
Stable continuous operation can be performed for a long period of time without causing powdering.

次に、この発明の実施例および比較例を示す。Next, examples and comparative examples of the present invention will be shown.

なお、部はいずれも重量部を表わすものとする。Note that all parts represent parts by weight.

実施例1〜3、および比較例1および2 実質的に四三酸化鉄からなる酸化鉄粉末97部とγ−ア
ルミナ粉末3部とを捕潰機で充分混和した後、アルミナ
製るつぼに詰め込み、電気炉に装入し、昇温速度200
℃/hで1400℃まで昇温してこの温度に5時間保持
して焼結後、降温速度200℃/hで室温まで放冷した
Examples 1 to 3 and Comparative Examples 1 and 2 After thoroughly mixing 97 parts of iron oxide powder consisting essentially of triiron tetroxide and 3 parts of γ-alumina powder using a crusher, the mixture was packed into an alumina crucible, Charge the electric furnace and heat up at a rate of 200.
The temperature was raised to 1400° C. at a rate of 1400° C./h, held at this temperature for 5 hours for sintering, and then allowed to cool to room temperature at a cooling rate of 200° C./h.

電気炉内の温度が560℃以上に保持されている期間中
、電気炉内の雰囲気が容量比CO/C02<lに保たれ
るように一酸化炭素と二酸化炭素との混合ガスを流通さ
せた。
During the period when the temperature inside the electric furnace was maintained at 560°C or higher, a mixed gas of carbon monoxide and carbon dioxide was circulated so that the atmosphere inside the electric furnace was maintained at a volume ratio of CO/CO2<l. .

得られた酸化鉄塊をクラッシャーで破砕し、8〜14メ
ツシユのものをふるい分けして触媒を調製した。
The obtained iron oxide lump was crushed with a crusher, and 8 to 14 mesh pieces were sieved to prepare a catalyst.

得られた触媒5部をステンレス製耐圧管中に封入し、窒
素で置換後、水素を470℃、6.5 kg /cr;
tGで48部流通させて活性化した。
Five parts of the obtained catalyst were sealed in a stainless steel pressure tube, and after purging with nitrogen, hydrogen was heated at 470°C and 6.5 kg/cr;
It was activated by passing 48 copies of tG.

このようにして調製し、活性化された触媒を0.51容
量の回転攪拌式オートクレーブに空気に触れないように
して移し、アジポニトリル20部、液体アンモニア13
0部を仕込んで密封し、水素を圧入して140℃、25
0〜290 kg/cvlGで水素の吸収がな(なるま
で水素を追加しながら水素添加反応を行なった。
The thus prepared and activated catalyst was transferred to a 0.51 volume rotary stirred autoclave without coming into contact with air, containing 20 parts of adiponitrile and 13 parts of liquid ammonia.
Pour 0 parts, seal, and pressurize hydrogen at 140℃, 25℃.
The hydrogenation reaction was carried out while adding hydrogen until no hydrogen was absorbed at 0 to 290 kg/cvlG.

反応終了後、アンモニアを気化放出し、オートクレーブ
から残存内容物をとり出し、触媒をろ別し、メタノール
洗浄後、触媒強度および粉化率を測定した。
After the reaction was completed, ammonia was vaporized and released, the remaining contents were taken out from the autoclave, the catalyst was filtered off, and after washing with methanol, the catalyst strength and powdering rate were measured.

一方、反応生成物はガスクロ分析により、ヘキサメチレ
ンジアミン、副生ずるヘキサメチレンイミンの収率をそ
れぞれ測定した。
On the other hand, the reaction products were analyzed by gas chromatography to measure the yields of hexamethylenediamine and by-produced hexamethyleneimine.

なお比較のために一酸化炭素と二酸化炭素との混合ガス
のかわりに、空気、二酸化炭素をそれぞれ用いたものの
触媒強度、収率をあわせて示した。
For comparison, the catalyst strength and yield are also shown when air and carbon dioxide were used instead of the mixed gas of carbon monoxide and carbon dioxide.

これらの結果をまとめて次表に示す。These results are summarized in the table below.

実施例 4 実施例1において、1400℃までの昇温期間および1
400℃以下への降温期間中、電気炉内に二酸化炭素を
流通し、1400℃の定温保持期間中のみ電気炉内の雰
囲気が容量比CO/C02=1/19に保たれるように
一酸化炭素と二酸化炭。
Example 4 In Example 1, the heating period up to 1400°C and 1
During the period of temperature drop to below 400℃, carbon dioxide is circulated in the electric furnace, and only during the constant temperature holding period of 1400℃, monoxide is maintained so that the atmosphere inside the electric furnace is maintained at a volume ratio of CO/CO2 = 1/19. carbon and carbon dioxide.

素との混合ガスを流通させたほかは、実施例1と同様に
して8〜14メツシユの触媒を調製し、活性化して、ア
ジポニトリルの水素添加反応を行なった。
Catalysts of 8 to 14 meshes were prepared in the same manner as in Example 1, except that a mixed gas with elementary gas was passed through, and activated to perform a hydrogenation reaction of adiponitrile.

反応後の触媒強度は6kgであり、触媒の粉化はほとん
ど認められなかった。
The strength of the catalyst after the reaction was 6 kg, and almost no powdering of the catalyst was observed.

反応時間70M。でヘキサメチレンジアミンの収率99
.5%であった。
Reaction time 70M. The yield of hexamethylene diamine was 99
.. It was 5%.

また、同様に昇温期間および降温期間中、窒素を流通さ
せたところ、前記とほぼ同じ触媒強度およびヘキサメチ
レンジアミン収率を得た。
Furthermore, when nitrogen was similarly passed during the temperature rising period and the temperature falling period, substantially the same catalyst strength and hexamethylene diamine yield as above were obtained.

実施例 5 実質的に四三酸化鉄からなる酸化鉄粉末97部とγ−ア
ルミナ粉末3部とを充分混合した後、るつぼに充填した
Example 5 97 parts of iron oxide powder consisting essentially of triiron tetroxide and 3 parts of γ-alumina powder were thoroughly mixed and then filled into a crucible.

このるつぼを一回り大きな他のるつぼ中に置き、内側の
るつぼを外気と接触ができるようにゆるく覆った後、そ
の上に炭素粒を入れて外部るつぼを満した。
This crucible was placed in another slightly larger crucible, the inner crucible was loosely covered to allow contact with the outside air, and carbon grains were placed on top to fill the outer crucible.

このるつぼを電気炉に装入し、空気雰囲気中で焼結した
This crucible was placed in an electric furnace and sintered in an air atmosphere.

なお反応条件は実施例1と同様にした。The reaction conditions were the same as in Example 1.

この触媒(8〜14メツシユ)をアジポニトリルの水素
添加反応に用いたところ、反応後の触媒強度は8kgで
あり触媒の粉化はほとんど認められなかった。
When this catalyst (8 to 14 meshes) was used in a hydrogenation reaction of adiponitrile, the strength of the catalyst after the reaction was 8 kg, and almost no pulverization of the catalyst was observed.

反応時間90順でのへキサメチレンジアミンの収率は9
8.8%であった。
The yield of hexamethylene diamine in order of reaction time 90 is 9
It was 8.8%.

実施例 6 実質的に四三酸化鉄からなる酸化鉄粉末97部とγ−ア
ルミナ粉末3部とを充分混合した後、るつぼに詰め、タ
ンマン炉に装入した。
Example 6 After thoroughly mixing 97 parts of iron oxide powder consisting essentially of triiron tetroxide and 3 parts of γ-alumina powder, the mixture was packed in a crucible and charged into a Tammann furnace.

炭素発熱体に通電して1500℃に5時間加熱した。Electricity was applied to the carbon heating element and the mixture was heated to 1500° C. for 5 hours.

加熱中発熱体は空気と接触して消耗し、炉から発生する
ガス中に一酸化炭素が含有されていた。
During heating, the heating element was consumed by contact with air, and the gas generated from the furnace contained carbon monoxide.

得られた触媒を4〜10メツシユに整粒し、470℃で
水素で処理して活性化した。
The obtained catalyst was sized into 4 to 10 meshes and activated by treatment with hydrogen at 470°C.

この触媒をアジポニトリルの水素添加反応に用いたとこ
ろ、反応後の触媒強度は12kgであり、触媒の粉化は
ほとんど認められなかった。
When this catalyst was used in a hydrogenation reaction of adiponitrile, the strength of the catalyst after the reaction was 12 kg, and almost no powdering of the catalyst was observed.

反応時間130a+mでのへキサメチレンジアミンの収
率は96.6%であった。
The yield of hexamethylenediamine at a reaction time of 130a+m was 96.6%.

実施例 7 実施例1において、1400℃までの昇温期間および1
400℃以下への降温期間中、電気炉内に窒素を流通し
、1400℃の定温保持期間中のみ電気炉内の雰囲気が
容量比Co/C02=1/19に保たれるように一酸化
炭素と二酸化炭素との混合ガスを流通させたほかは、実
施例1と同様にして8〜14メツシユの触媒を調製し、
活性化した。
Example 7 In Example 1, the heating period up to 1400°C and 1
During the temperature drop period to 400℃ or below, nitrogen is passed through the electric furnace, and carbon monoxide is supplied so that the atmosphere inside the electric furnace is maintained at the capacity ratio Co/C02 = 1/19 only during the constant temperature holding period of 1400℃. A catalyst of 8 to 14 meshes was prepared in the same manner as in Example 1, except that a mixed gas of carbon dioxide and carbon dioxide was passed through.
Activated.

この触媒5部を空気に触れないようにして回転攪拌式オ
ートクレーブに移し、ベンゾニトリル35部、液体アン
モニア130部を加え、水素で加圧して200〜250
kg/crttG、 140℃で140m反応させた
5 parts of this catalyst was transferred to a rotary stirring autoclave without coming into contact with air, 35 parts of benzonitrile and 130 parts of liquid ammonia were added, and the mixture was pressurized with hydrogen to a temperature of 200 to 250 parts.
kg/crttG, reacted at 140°C for 140m.

反応終了後、アンモニアを気化放出して、残存内容物を
とり出し、触媒を沢別し、メタノール洗浄したところ、
触媒強度は6kgであり、触媒の粉化は全く認められな
かった。
After the reaction was completed, the ammonia was vaporized and the remaining contents were taken out, the catalyst was separated and washed with methanol.
The catalyst strength was 6 kg, and no powdering of the catalyst was observed.

一方、反応生成物をガスクロ分析したところ、べンジア
ミンの収率は98.4%、副生ジベンジルブミンの収率
は0.4%であった。
On the other hand, gas chromatography analysis of the reaction product revealed that the yield of benziamine was 98.4% and the yield of by-product dibenzylbumine was 0.4%.

Claims (1)

【特許請求の範囲】[Claims] 1 CO/CO2の容量比が1/250〜1である一酸
化炭素と二酸化炭素との混合ガス雰囲気中で、酸化鉄を
560℃以上で加熱処理し、1300℃以上で焼結また
は溶融して調製された固定床用触媒を200〜600℃
で水素還元処理により活性化し、アンモニアおよび水素
の存在下、ニトリルの液相水素添加に用いることを特徴
とするアミンの製法。
1 Iron oxide is heat treated at 560°C or higher and sintered or melted at 1300°C or higher in a mixed gas atmosphere of carbon monoxide and carbon dioxide with a CO/CO2 volume ratio of 1/250 to 1. The prepared fixed bed catalyst was heated to 200-600℃.
A method for producing an amine, which is activated by a hydrogen reduction treatment and used for liquid phase hydrogenation of a nitrile in the presence of ammonia and hydrogen.
JP49121011A 1974-10-22 1974-10-22 Amin no Seihou Expired JPS5810374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49121011A JPS5810374B2 (en) 1974-10-22 1974-10-22 Amin no Seihou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49121011A JPS5810374B2 (en) 1974-10-22 1974-10-22 Amin no Seihou

Publications (2)

Publication Number Publication Date
JPS5148602A JPS5148602A (en) 1976-04-26
JPS5810374B2 true JPS5810374B2 (en) 1983-02-25

Family

ID=14800577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49121011A Expired JPS5810374B2 (en) 1974-10-22 1974-10-22 Amin no Seihou

Country Status (1)

Country Link
JP (1) JPS5810374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829907A1 (en) * 1977-07-25 1979-02-08 Hoechst Ag METHOD FOR PRODUCING SECOND AMINE

Also Published As

Publication number Publication date
JPS5148602A (en) 1976-04-26

Similar Documents

Publication Publication Date Title
US5696048A (en) Cobalt catalysts
US3696153A (en) Hydrogenation of adiponitrile
JP5791628B2 (en) Method for producing higher ethanolamine
US3770658A (en) Ammonia synthesis catalyst
US4320030A (en) Process for making high activity transition metal catalysts
JP2009529419A (en) Composite oxide catalyst
US20070275849A1 (en) Catalyst For Gaseous Partial Oxidation Of Propylene And Method For Preparing The Same
CN102188981A (en) Preparation method of acrylonitrile fluidized bed catalyst
US3919155A (en) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia
US3929889A (en) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia
US3700605A (en) Catalysts
US6790996B2 (en) Supported cobalt catalysts for nitrile hydrogenations
JPH08127544A (en) Production of methane from carbon dioxide and hydrogen
JPS6214945A (en) Manufacture of catalyst and usage thereof
US3037023A (en) Process for preparation of piperazine
JPS5810374B2 (en) Amin no Seihou
US4035410A (en) Catalysts and processes for the preparation of unsaturated nitriles
US4057513A (en) Hydrogenation catalyst and process for preparing same
US5268509A (en) Process for the preparation of an iron catalyst and a process for the preparation of primary amines by the hydrogenation of nitriles using said iron catalyst
JPS62130208A (en) Production of finely divided metal powder
CN104136114A (en) Metal powderdous catalyst comprising a fe-alloy
JP2001276618A (en) Catalyst for oxidation or ammoxidation
US2284525A (en) Process for the hydrogenation of adiponitrile
US4141930A (en) Hydrogenation of glycolic acid
JP2005506187A (en) Compositions suitable as catalysts