JPS58103638A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS58103638A
JPS58103638A JP20313281A JP20313281A JPS58103638A JP S58103638 A JPS58103638 A JP S58103638A JP 20313281 A JP20313281 A JP 20313281A JP 20313281 A JP20313281 A JP 20313281A JP S58103638 A JPS58103638 A JP S58103638A
Authority
JP
Japan
Prior art keywords
film
pressure
pressure sensor
voids
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20313281A
Other languages
Japanese (ja)
Other versions
JPH022523B2 (en
Inventor
Kenichi Nakamura
謙一 中村
Kakichi Teramoto
嘉吉 寺本
Naohiro Murayama
村山 直広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP20313281A priority Critical patent/JPS58103638A/en
Publication of JPS58103638A publication Critical patent/JPS58103638A/en
Publication of JPH022523B2 publication Critical patent/JPH022523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0005Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in capacitance

Abstract

PURPOSE:To obtain a sensor which has excellent durability and good reproducibility and permits measurement of high pressure by providing electrodes on both surfaces of a film which is proeuced by dispersing fine particles of high dielectric inorg. materials in a polymer material and cold stretching or rolling the material and has voids of porosities in a specific range. CONSTITUTION:A film produced by dispersing high dielectric inorg. materials which are ferrodielectric ceramics such as barium titanate, lead titanate, lead zirconate of average particle sizes ranging 0.01-50mu in a fluorovinylidene resin so as to occupy about 5-50% volume ratio in the formed film is uniaxially or biaxially cold stretched or rolled to form a film having voids of about 1- 99.9vol% voids. Electrodes are provided on both surrfces of such film, whereby a pressure sensor which detects the change in electrostatic capacity according to pressure is obtained. Thus the sensor which permits measurement >=1,000kg/cm<2> pressure, of optional sizes and has excellent durability is obtained.

Description

【発明の詳細な説明】 この発明は、圧力センサーに関するものであり、更に詳
細には、特に圧力の変化によって電気容量が便化するこ
とを利用した圧力センサーに関するものである・ 高分子物質と高鰐電性無4!!!吻微粒子からなる成形
物、例えばポリ弗化ビニリデンとチタン鍍バリウム粉末
からなるシートを冷延伸した場合、鋳電率が未他伸物と
敬ぺ小さくなる。この原因は、冷延伸により、無慎物倣
粒子と高分子物質との界面においてボイドが生成し、か
かるボイドの存在により鋳電率が低下するものと考えら
ねる。かかる冷延伸成形物に圧力を加えると、ボイドが
1時的に押しつぶされ、成形物の酵電率が増大する。し
かも、圧力と電気容量とはその成形物に固有な一定の関
係があり、例えば図2および図3Jこ示す如き関係が緒
められる。特に図3から知られるように、適切な延伸を
施した場合には、1000#重/d以上という大きな圧
力をも測定することが可能繰り返し使用が可能である・
− この発明に係る圧力センサーの圧力検知部は高分子物質
と高誘電性無機物微粒子からなっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure sensor, and more particularly, to a pressure sensor that utilizes the fact that electrical capacitance decreases due to changes in pressure. Waniden sexless 4! ! ! When a molded product made of fine particles such as a sheet made of polyvinylidene fluoride and titanium-plated barium powder is cold stretched, the castability is lower than that of other stretched products. The reason for this is thought to be that voids are generated at the interface between the imitation particles and the polymeric material due to cold stretching, and the presence of such voids reduces the castability. When pressure is applied to such a cold-stretched product, the voids are temporarily crushed and the fermentation rate of the product increases. Furthermore, there is a certain relationship between pressure and electric capacity that is unique to the molded product, such as the relationship shown in FIGS. 2 and 3J. In particular, as can be seen from Figure 3, when appropriate stretching is applied, it is possible to measure pressures as large as 1000 #wt/d or more, and repeated use is possible.
- The pressure sensing portion of the pressure sensor according to the present invention is made of a polymeric substance and highly dielectric inorganic particles.

この発明に使用できる高分子物質としては、高誘電性無
機物微粒子を分散させた後、成形加工によりホイドを生
成させるものであれば特に限定されるものではない・し
かしながら、成形加工性を21鳳すれは、熱可塑性樹脂
を用いるのが好tしい0そのうちで智#電率の大きい弗
化ビニリデン系@廁を用いるが特に好ましい。かかる弗
化ビニリデン糸側脂としては、ポリ弗化ビニリデンホモ
ポー以上、好ましくは約50モルチ以上を含有し、こね
と共重合可能なコモノマー、例えは弗化ビニル、三弗化
エチレン、三弗化塩化エチレン、四弗化エチレン、六弗
化プロピレンなどのフッ素含有コモノマーとのコボ′リ
マーを含むものである。
The polymer material that can be used in this invention is not particularly limited as long as it can form a hoid through molding after dispersing highly dielectric inorganic fine particles. It is preferable to use a thermoplastic resin, and among these, it is particularly preferable to use a vinylidene fluoride type resin having a high electrical coefficient. Such vinylidene fluoride thread side fat contains polyvinylidene fluoride homopolymer or more, preferably about 50 mole or more, and comonomers copolymerizable with dough, such as vinyl fluoride, trifluoroethylene, trifluoride, etc. These include co-remers with fluorine-containing comonomers such as ethylene chloride, ethylene tetrafluoride, and propylene hexafluoride.

また、かかる高分子物質とともに、この発明に係る圧力
センサーの圧力検知部を構成する高誘電性無機物微粒子
としては、強酵電体セラミックスなど、たとえばチタン
酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛等のペ
ロブスカイト型結晶構造をもつ強篩電体磁器の微粒子を
用いるのが特に好ましい。この他、強酵電体磁器像粒子
以外の鰐電体微粒子、例えは酸化チタン糸の鋳電体も好
ましい◎使用する高誘電性無機物頷粒子の平均粒住は、
成形物中に形成させるボイドの生成法にも依存するが、
一般には約0.01ないし50ミクロンの範囲が好まし
く、約α5ないし5ミクロンの範囲がより好ましい−0 前述した高分子物質と高誘電性無機物像粒子との混合な
らびに成形方法は公知方法番と従って行なうことができ
、成形後の形状にしてもフィルム状であわば任意の形状
に成形すtIFiよい・なお、成形するに幽っでは、そ
の成形物中にボイドを生成させる。・このボイドを生成
させる方法をしては、冷延伸が好會しいが、こねに限ら
れるものでなく、例えば圧延による方法あるいは発泡に
よる方法など公知の方法を採用することができる。冷延
伸あるいは圧延する場合の温廖は、軟化点以下、好まし
くは軟化点より約20C以上低い温変である。
In addition to such polymeric substances, highly dielectric inorganic fine particles constituting the pressure sensing portion of the pressure sensor according to the present invention include strongly fermented electric ceramics, for example, barium titanate, lead titanate, lead zirconate titanate, etc. It is particularly preferable to use fine particles of strong sieve electric porcelain having a perovskite crystal structure. In addition, crocodile electric fine particles other than strongly fermented electric ceramic image particles, for example cast electric bodies of titanium oxide thread, are also preferable.◎The average particle size of the highly dielectric inorganic particles used is:
It depends on the method of creating voids in the molded product, but
In general, the range of about 0.01 to 50 microns is preferred, and the range of about α5 to 5 microns is more preferred. It is also possible to form the film into an arbitrary shape after molding.However, if the molding is too slow, voids will be generated in the molded product. - Although cold stretching is preferable as a method for generating these voids, it is not limited to kneading, and any known method such as rolling or foaming may be used. The temperature during cold stretching or rolling is a temperature change below the softening point, preferably about 20C or more below the softening point.

tた、延伸は一軸方向でも、二軸方向でもよい。Additionally, the stretching may be done in a uniaxial or biaxial direction.

tた、ボイドとしては、高分子物質と高誘電性無情物像
粒子との界面番こ生ずる限り、独立気孔であっても連続
気孔であっても良い。そのゲイ下の雪は、成形フィルム
中において、約1ないし999容量−の任意の空孔率で
あって良いが、好腋しくは約5谷1%以上、より好腋し
くは約10答量饅以上である。
In addition, the voids may be independent pores or continuous pores as long as the interface between the polymer material and the highly dielectric image particles is maintained. The snow under the gap may have any porosity in the formed film from about 1 to 999 volumes, preferably about 5% or more, more preferably about 10% porosity. It's more than a rice cake.

なお、高誘電性無機物微粒子の量は、成形物中、好まし
くは約5ないし50容量−1より好tL<は約10ない
し40秤量−の範囲が用いられる。
The amount of the highly dielectric inorganic fine particles in the molded product is preferably in the range of about 5 to 50 volume -1, and more preferably tL< about 10 to 40 volume -1.

その高誘電性無機物が少なすき゛ると、ボイドの形成が
不十分であり、圧力センサーとして実用性に乏しくなる
。才た、その高−酵電性無様物の量が多すぎると、成形
性が悪く、キャスト法などの特殊な成形方法を用いなけ
わけならないという欠点が生ずる。
If the amount of the highly dielectric inorganic material is too small, void formation will be insufficient, resulting in poor practicality as a pressure sensor. However, if the amount of the highly fermentable and electrically inert substances is too large, moldability is poor, resulting in the disadvantage that a special molding method such as a casting method must be used.

前述したようにして成形されたフィルムの両面には11
L極が密着するように般けられる。これによって、圧力
を電気容量などの電気物性として計測することができる
。電極の形成方法としては、そのフィルム上に、例オげ
金属蒸着により設けてもよいし、金属箔を接着させるな
どの公知の手段を採用することができる。
11 on both sides of the film formed as described above.
It is spread so that the L pole is in close contact with it. This allows pressure to be measured as an electrical property such as capacitance. The electrodes may be formed on the film by, for example, metal vapor deposition, or by other known methods such as adhering metal foil.

前述したようにして作成されるこの発明に係る圧力セン
サー1才、圧力tたは圧力の変化を%#IK率、鋳W幕
の変化、電気容量、電:gA谷童の変化などの電気容量
に関連する物性櫨に変侠して検知するものである。具体
的には、例えはvI亀ツブリッジ用いてもよいし、また
は、高崗波発1振回路中にこの発明に係る圧力センサー
をあらかじめコンデンサーとして組み込み、その電気容
量に応じて発掘される共振周波数を測定するなどの方法
を用いることができる。
The pressure sensor according to the present invention is manufactured as described above, and the pressure t or the change in pressure is expressed as %#IK rate, change in cast W curtain, electric capacitance, electric capacitance such as change in electric capacity, electric capacity, etc. It is detected by changing the physical properties related to . Specifically, for example, a vI turtle bridge may be used, or the pressure sensor according to the present invention may be incorporated in advance as a capacitor in a high-frequency wave oscillation circuit, and a resonance frequency that is found according to the capacitance of the pressure sensor may be used. Methods such as measuring can be used.

以下、この発明を実施例により更に詳細ζζ貌明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 ポリ弗化ビニリデン(呉羽化学工業■製:f#J品名「
xF、11000J )と平均粒径t5〜2smのチタ
ン酸バリウム粉末(富士チタン工業■製:商品名1−B
T−204J )とを、成形後の体積分率が前者を77
1G、後者を23−となるように、180Cの熱ロール
により混練りした後、230Cの熱プレスによって膜厚
130ミクロンのシート状に成形した。このシートを1
60Cで6.5倍に一軸延伸して膜厚60ミクロンとし
、更に一軸延伸方向と直角方向に150Cで3倍に地伸
し、膜厚25ミクロンの二軸延伸フィルムを得た0この
一軸延伸フイルムの空孔率は21.9容を−であり、ま
た二〇&Il姑押フィルムの空孔率は397容重優であ
つたO 上記実施例に用いた未延伸シートと、−軸延伸フィルム
および二軸延伸フィルムの圧力と静電容薫との相関関係
を、それぞれ図1、図2および図3に示した。これらの
靜電容普は、LORメーター(横河−ヒューレットパツ
カード■製)を用いて、 I KHzにて素子電極面積
2.6 cdで測定したものである。そわぞれの素子の
圧力に対する相関関係が線形性を有する範囲の圧力に対
する容量費化率を下表に示す。
Example Polyvinylidene fluoride (manufactured by Kureha Chemical Industry ■: f#J Product name:
xF, 11000J) and barium titanate powder with an average particle size of t5-2sm (manufactured by Fuji Titanium Industries, Ltd.: Product name 1-B)
T-204J), the volume fraction after molding is 77
1G, and the latter was kneaded with a 180C hot roll so that the latter was 23-, and then formed into a sheet with a thickness of 130 microns by a 230C hot press. This sheet is 1
Uniaxially stretched 6.5 times at 60C to give a film thickness of 60 microns, and further stretched 3 times at 150C in a direction perpendicular to the uniaxial stretching direction to obtain a biaxially stretched film with a film thickness of 25 microns. The porosity of the film was 21.9 volumes, and the porosity of the 20 & Il pressed film was 397 volumes. The correlation between the pressure and the capacitance of the biaxially stretched film is shown in FIGS. 1, 2, and 3, respectively. These electromagnetic capacities were measured using an LOR meter (manufactured by Yokogawa-Hewlett Packard) at I KHz and an element electrode area of 2.6 cd. The table below shows the capacity cost conversion rate for pressure in a range where the correlation with pressure of each element is linear.

表 一軸延伸フイルムは約800 #l/(3fまで線形性
を有し、この範口内で曖れた圧力センサーとなる0蒙た
、二軸延伸フィルムは^圧力憤域で幾分線形性がみるも
のの、加圧に対する変化率が非常に大きいため、100
0Q重/d以上の測定も可能である。
The uniaxially stretched film has linearity up to about 800 #l/(3f) and becomes an ambiguous pressure sensor within this range, while the biaxially stretched film shows some linearity in the pressure range. However, the rate of change with respect to pressurization is very large, so 100
It is also possible to measure 0Q weight/d or more.

以上の実、施例からも知られるように、この発明に係る
圧力センサーは、小型のものあるいは大型のものと、任
意の大きさに作製可能であり、耐久性に優ね、かつ広範
囲の荷重を測定できるなどの多くの特性を有するもので
あり、例えば可変コンデンサー型キーボードスイッチな
どに有用である。
As is known from the above embodiments, the pressure sensor according to the present invention can be manufactured in any size, such as small or large, has excellent durability, and can be used under a wide range of loads. It has many characteristics such as being able to measure

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図2および図3はそれぞれ未延伸シート、−軸延
伸フィルムおよび二軸延伸フィルムの圧力と静電容量と
の相関関係である。 代理人 上屋 勝
FIGS. 1, 2, and 3 show the correlation between pressure and capacitance for an unstretched sheet, a -axially stretched film, and a biaxially stretched film, respectively. Agent Masaru Ueya

Claims (1)

【特許請求の範囲】 1、圧力検知部が、高分子物質と高鋳電性無様物微粒子
とからなる成形フィルムであって、かつ、そのフィルム
中に約1容量−ないし999容量−の空孔率のボイドを
有し、しかもそのフィルムの両面に電極が設けられてい
て、圧力または圧力のInを電気容量−ζ関連する物性
値に変換して検知することを特徴とする圧力センサー。 2、成形フィルムが冷延伸されたものであることを特徴
とする特許請求の範囲91項に記載の圧力センサー。 6、高鋳電性無機物黴粒子が平均粒子径を約0.01な
いし50ミクロンとするものであることを特徴とする特
許請求の範囲第1項または第2項に1躯の圧力センサー
。 4、t1611亀性無嶺物微粒子が成形フィルム中に占
める体積分率を約5ないし50g6とすることを特徴と
する特許請求の範囲第1項ないし第3項のいずれか1項
番こ記載の圧力センサー。 5、高分子物質が弗化ビニリデン系1181であるとき
を特徴とする特許請求の範囲第1]Jないし第4項のい
ず右か1項に記載の圧力センサー。 6、高豹電性無機物微粒子が強銹電体セラミックスであ
ることを特徴とする特許請求の範囲第1項ないし第5項
のいすわか1項に記載の圧力センサー。
[Claims] 1. The pressure sensing portion is a formed film made of a polymeric substance and highly castable amorphous particles, and the film has pores of about 1 volume to 999 volumes. 1. A pressure sensor characterized in that the film has a void of 100% and is provided with electrodes on both sides of the film, and detects pressure or In of pressure by converting it into a physical property value related to capacitance -ζ. 2. The pressure sensor according to claim 91, wherein the formed film is cold-stretched. 6. A pressure sensor according to claim 1 or 2, characterized in that the highly castable inorganic mold particles have an average particle diameter of about 0.01 to 50 microns. 4. Any one of claims 1 to 3, characterized in that the volume fraction of the t1611 torporic solid particles in the formed film is about 5 to 50 g6. pressure sensor. 5. The pressure sensor according to any one of claims 1 to 4, wherein the polymeric substance is vinylidene fluoride 1181. 6. The pressure sensor as set forth in claim 1 of claims 1 to 5, wherein the highly conductive inorganic fine particles are strongly conductive ceramics.
JP20313281A 1981-12-16 1981-12-16 Pressure sensor Granted JPS58103638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20313281A JPS58103638A (en) 1981-12-16 1981-12-16 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20313281A JPS58103638A (en) 1981-12-16 1981-12-16 Pressure sensor

Publications (2)

Publication Number Publication Date
JPS58103638A true JPS58103638A (en) 1983-06-20
JPH022523B2 JPH022523B2 (en) 1990-01-18

Family

ID=16468937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20313281A Granted JPS58103638A (en) 1981-12-16 1981-12-16 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS58103638A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195904A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Pressure sensor
JP2003075277A (en) * 2001-09-05 2003-03-12 Omron Corp Sheetlike pressure sensor
JP2011257217A (en) * 2010-06-08 2011-12-22 Konica Minolta Business Technologies Inc Material for sensor and pressure sensitive sensor including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119621U (en) * 1991-04-15 1992-10-26 住友建機株式会社 Bearing device for pin connections of construction machinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195904A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Pressure sensor
JP2003075277A (en) * 2001-09-05 2003-03-12 Omron Corp Sheetlike pressure sensor
JP2011257217A (en) * 2010-06-08 2011-12-22 Konica Minolta Business Technologies Inc Material for sensor and pressure sensitive sensor including the same

Also Published As

Publication number Publication date
JPH022523B2 (en) 1990-01-18

Similar Documents

Publication Publication Date Title
Arshak et al. Development of new capacitive strain sensors based on thick film polymer and cermet technologies
Chu et al. Relaxor ferroelectric poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors
Zhang et al. Preparation process and dielectric properties of Ba0. 5Sr0. 5TiO3–P (VDF–CTFE) nanocomposites
Das-Gupta et al. Polymer-ceramic composite materials with high dielectric constants
JPH0380518A (en) Electric double layer capacitor
US6522527B2 (en) Anode member for a solid electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the same
JP7067837B2 (en) Multilayer film capacitor
McLean et al. Tantalum solid electrolytic capacitors
Chung et al. Electric poling of carbon fiber with and without nickel coating
WO2021198133A1 (en) Flexible pressure sensor and method for preparing the same
Goyal et al. Electrical properties of novel three-phase polymer nanocomposites with a high dielectric constant
Banerjee et al. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites
JPS58103638A (en) Pressure sensor
JPH07297461A (en) Piezoelectric ceramics-polymer composite material and its manufacture
Sadaoka et al. Electrical properties of anodized aluminium in a humid atmosphere
JP2993965B2 (en) Electric double layer capacitor
Nikolarakis et al. Design and construction of capacitors with the use of nano-barium titanate’s (BaTiO3) composite materials
Xia et al. Thermal stability of piezoelectricity for porous polytetrafluoroethylene electret film
Mohapatra et al. Fabricating solid state fractional capacitor in the frequency range of mhz to khz
JP2007263687A (en) Method for measuring specific dielectric constant of green compact
JP3642597B2 (en) Separator used for battery
JPS61164129A (en) Pressure sensor
JP2002110477A (en) Electrode forming method and capacitor
JP4141061B2 (en) Load transducer
JPS5815210A (en) Pressure sensitive resistance element