JPS58103623A - Monitoring device for exit energy of optical fiber - Google Patents

Monitoring device for exit energy of optical fiber

Info

Publication number
JPS58103623A
JPS58103623A JP20327381A JP20327381A JPS58103623A JP S58103623 A JPS58103623 A JP S58103623A JP 20327381 A JP20327381 A JP 20327381A JP 20327381 A JP20327381 A JP 20327381A JP S58103623 A JPS58103623 A JP S58103623A
Authority
JP
Japan
Prior art keywords
energy
optical fiber
light
emitted
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20327381A
Other languages
Japanese (ja)
Other versions
JPS6261895B2 (en
Inventor
Hiromasa Ishiwatari
石渡 裕政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20327381A priority Critical patent/JPS58103623A/en
Priority to US06/444,331 priority patent/US4556875A/en
Priority to DE19823246290 priority patent/DE3246290A1/en
Publication of JPS58103623A publication Critical patent/JPS58103623A/en
Publication of JPS6261895B2 publication Critical patent/JPS6261895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2266Optical elements at the distal end of probe tips with a lens, e.g. ball tipped
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • G02B2006/4297Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources having protection means, e.g. protecting humans against accidental exposure to harmful laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To permit monitoring with good accuracy at all times by providing a light energy detecting element on the outer side of a circular conical luminous flux incident to the condenser lens between a condenser lens and the exit end of an optical fiber. CONSTITUTION:A light energy detecting element 15 for detecting part of the energy emitting from an optical fiber 11 without shielding the light incident to a condenser lens 12 is provided between the lens 12 and the exit end 11a of the fiber 11. The lens 12 is fixed by a lens hlder 16, and the light condensed by the lens 12 advances like an optical path 14. A cylindrical housing 17 contains the fiber 11, the lens 12 and a light energy detecting element 15. An amplifying and converting circuit 18 which amplifies the signal from the element 15 and converts the same to energy and an energy display 19 are provided.

Description

【発明の詳細な説明】 本発明は光導波路として光ファイバーを用いるレーず一
加工装置またはレーザー手術装置等において光ファイバ
ーの出射端から出射される光エネルギーの一部を測定す
ることによって出射光エネルギーの總鳳を監視する装置
に関し、その目的とするとζろは加工中または手術中で
あっても監視を中断する仁となしに常時監視を行うこと
ができるものを提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a laser beam processing device or a laser surgery device that uses an optical fiber as an optical waveguide. The purpose of the device for monitoring fertilization is to provide one that can perform constant monitoring without interrupting monitoring even during processing or surgery.

CO冨レしザー光を用いるレーザー加工装置またはレー
ザー手術装置は、加工部位または手術部位にレーザー光
を導(方法として、普通は複数のミラーカラ成るミラー
関節麗導波路を用いるが、ミラー関i*m導波路は操作
性や菟う−角度の振動によるズレなどが問題であゆ、こ
れらの欠点を解決するために導波路として光ファイバー
を用いることが検討されている。
Laser processing equipment or laser surgery equipment that uses CO-rich laser light guides the laser light to the processing site or surgical site (normally, a mirror joint waveguide consisting of a plurality of mirror collars is used, but a mirror joint i* The m-waveguide has problems in terms of operability and misalignment due to angular vibration, and in order to solve these drawbacks, the use of optical fibers as waveguides is being considered.

亀1図に光ファイバーを先導波路として用いるレーザー
加工装置またはレーザー手術装置の先導波路および集光
部分を示す。レーザー光5(1)で発生した光ビーム(
!I)はillの集光レンズ伏)で光ビーム(6)のよ
うに集光されて光ファイバー(3)の入射端に入射する
。光ファイバー(2)の内部を導波した光は光ファイバ
ー(3)の出射端から光ビーム【7)のように出射し、
@2の集光レンズ(4)によって焦点4iL置加工物ま
たは被手術物を置いて高密度の光エネルギーによって加
工または手術を行う。
Figure 1 shows the leading wavepath and light condensing part of a laser processing device or laser surgery device that uses an optical fiber as the leading wavepath. The light beam (
! I) is condensed into a light beam (6) by the condensing lens (I) of ill, and enters the input end of the optical fiber (3). The light guided inside the optical fiber (2) is emitted from the output end of the optical fiber (3) as a light beam [7],
The workpiece or surgical object is placed at a focal point of 4iL by the @2 condenser lens (4), and processing or surgery is performed using high-density light energy.

レーザー加工またはレーザー手術においては、焦点近傍
に@′められたエネルギーを直接利用するので出射エネ
ルギー量を監視する仁とが必要であるが、従来はレーザ
ー発振管に流れる電流を測定して間接的に出射エネルギ
ーを監視するか、あるいはレーザー光源の出口近くに光
軸に対して45度のミラーを設け、レーザー光を90度
曲げてレーザー光検出−に導−測定する。何れの方法の
場合にオイてもレーザー光源から出射される光エネルギ
ーの監視であって、実際に焦点に集光される光エネルギ
ーの監視にはなっていない、光ファイバーを導波路とし
て用いる場合には、該光ファイバーの入射端、出射端で
の反射損失とその経年変化および該光フアイバー内部で
の光の損失とその経年変化などのためKLX光ファイバ
ーへの入射エネルギーの大赤さがわかっても、出射エネ
ルギーの監視にはならない。極端な場合の例として、光
ファイバーが途中で折れた場合には、入射エネルギーの
如何にかかわらず出射エネルギーは零になり、監視でき
ないことは明らかである。また、レーザー光源の出口近
くにミラーを設けてレーザー光を90度曲げて光検出器
で測定する方法の場合には、前記ミラーをレーザー光路
上に配置しなければならないために、レーザー出力を監
視している閏は加工または手術を行うことができないし
、逆に加工または手術を行っている時にはミラーをレー
ザー光路から外すためにレーザー出力の測定が行えず、
従って出力エネルギーの監視ができないと云う欠点があ
る。
In laser processing or laser surgery, the energy emitted near the focal point is directly used, so it is necessary to monitor the amount of emitted energy. Either the output energy is monitored, or a mirror is provided near the exit of the laser light source at an angle of 45 degrees with respect to the optical axis, and the laser beam is bent by 90 degrees and guided to a laser beam detector for measurement. In either method, the optical energy emitted from the laser light source is monitored, but the optical energy actually focused on the focal point is not monitored.When using an optical fiber as a waveguide, Even if it is known that the incident energy to the KLX optical fiber is large due to reflection loss and its aging change at the input end and output end of the optical fiber, and light loss inside the optical fiber and its aging change, etc., the output energy cannot be determined. It's not surveillance. As an extreme case, if the optical fiber is broken in the middle, the output energy will be zero regardless of the incident energy, and it is clear that monitoring cannot be performed. In addition, in the case of a method in which a mirror is installed near the exit of the laser light source and the laser beam is bent 90 degrees and measured with a photodetector, the laser output must be monitored because the mirror must be placed on the laser beam path. It is not possible to perform machining or surgery with a telescope that is closed, and conversely, when machining or surgery is being performed, the laser output cannot be measured because the mirror is removed from the laser beam path.
Therefore, there is a drawback that output energy cannot be monitored.

そこで本発明は、光ファイバーと、仁の光ファイバーか
ら出射され1光エネルギーを集光する集光レンズと、こ
の集光レンズと前記光ファイバーの出射端の間で集光レ
ンズに入射する円錐形状の光束の外側に配設されて前記
光ファイバーから出射される光エネルギーを受光検出す
る光エネルギー検出素子と、仁の光エネルギー検出素子
からの信号をエネルギー値に換算する処理回路と、この
J611111路のa理結果を表示するエネルギー表示
手段とを設け、光ファイバーから出射される光エネルギ
ーを直接監視し、かつ加工中であっても監視を中動する
ととなく行えるようにしたものである。
Therefore, the present invention provides an optical fiber, a condenser lens that condenses one light energy emitted from the optical fiber, and a cone-shaped light beam that enters the condenser lens between the condenser lens and the output end of the optical fiber. A light energy detection element disposed on the outside that receives and detects light energy emitted from the optical fiber, a processing circuit that converts the signal from the light energy detection element into an energy value, and the a result of this J611111 route. The optical fiber is equipped with an energy display means to directly monitor the optical energy emitted from the optical fiber, and can be monitored at any time even during processing.

本発明の説明に入る前に、光ファイバーから出射される
光の性質について説明する。
Before entering into the description of the present invention, the properties of light emitted from an optical fiber will be explained.

光ファイバーから出射される光エネルギーは光フアイバ
ー出射端から放射状に出射される。112図(@)は上
記光ファイバーから出射される光エネルギーの分布の一
定を示したもので、横軸は光ファイバーの光軸を基準と
した角度、縦軸はエネルギーである。gsf1図(b 
)は光ファイバーからの出射光が放射状に出射されるξ
とを説明する図で、Φ)は光ファイバー、(9a)は光
ファイバー(11)の出射端、曽は光ファイバー(・)
の光軸を示す。光ファイバー(11)からの、出射光は
、このように光軸曽の近浩では角度の増加と共に急激に
減少するが、ある角度以上では減少がゆるやか尋ζなり
、第2図(鳳)のようKiiが拡がった形である。今、
仮りに全出射エネルギーの90%が角度01で定める範
囲の中にあり、−6%が角度#意で定める範囲の中にあ
るとする。上記光ファイバー←)から出射される光エネ
ルギーを集光するために集光レンズを光軸曽に一致させ
て設ける時、全出射エネルギーの90%を利用するか、
96%を利用するかkよって、集光レンズのレンズ口径
に相当大きな差が生じる。−例として#、 = 16°
、θ雪= so”、光フアイバー物)の出射端(嘗a)
から集光レンズまでの距離を4C1lとすると、SO%
を利用する場合のレンズ口径は約I C1@ ’ v 
95%の利用の場合には約2C1lφとなる。レンズ口
径は操作性9重量、コストなどの制約から一定値内に制
限しなければならないので、上記の場合、レンズ口径を
fan−と定めれば、全出射エネルギーの10%が有効
−使われずに捨てられることkなる。しかし、レンズ口
径をたとえRan−としてもS%は有効に使われないし
、原理的にはレンズ口径を更に大キクシていっても、全
出射エネルギーを100%利用することは不可°能であ
る。本発明では、ξのように集光レンズのレンズ口径の
外に分布して、加工や手術に使われずに捨てられるエネ
ルギーを利用して出射エネルギーの監視を行うものであ
って、以下、本発明の一実施例を第8図〜I!5図に基
づいて説明する。
The optical energy emitted from the optical fiber is emitted radially from the optical fiber output end. Figure 112 (@) shows the constant distribution of light energy emitted from the optical fiber, where the horizontal axis is the angle with respect to the optical axis of the optical fiber, and the vertical axis is the energy. gsf1 diagram (b
) is ξ where the light emitted from the optical fiber is emitted radially.
In this figure, Φ) is the optical fiber, (9a) is the output end of the optical fiber (11), and Z is the optical fiber (.)
shows the optical axis of The light emitted from the optical fiber (11) decreases rapidly as the angle increases when the optical axis is close to zero, but beyond a certain angle, the decrease becomes more gradual, as shown in Figure 2 (Otori). It is an expanded form of Kii. now,
Assume that 90% of the total emitted energy is within the range defined by angle 01, and -6% is within the range defined by angle #. When installing a condensing lens aligned with the optical axis to condense the light energy emitted from the above optical fiber ←), do you use 90% of the total emitted energy?
Depending on whether 96% is used or not, there will be a considerable difference in the lens aperture of the condenser lens. - As an example #, = 16°
, θ snow = so”, the output end (嘗a) of the optical fiber object)
If the distance from to the condensing lens is 4C1l, SO%
The lens aperture when using is approximately I C1@'v
In the case of 95% utilization, it is approximately 2C1lφ. The lens aperture must be limited to a certain value due to constraints such as operability9 weight and cost, so in the above case, if the lens aperture is set as fan-, 10% of the total emitted energy will be effectively used. I'm afraid of being thrown away. However, even if the lens aperture is set to Ran-, S% is not used effectively, and in principle, even if the lens aperture is made larger, it is impossible to utilize 100% of the total output energy. In the present invention, the output energy is monitored by using the energy distributed outside the lens aperture of the condenser lens like ξ and discarded without being used for processing or surgery. An example of this is shown in Figure 8-I! This will be explained based on FIG.

第8図は本発明になる光ファイバーから出射エネルギー
監視装置の具体的配置図で、(ロ)は光ファイ1<−1
(11!l)は光ファイバー(ロ)の出射端、錦は集光
レンズ、斡は光ファイバー〇荀から集光レンズ曽に入射
する光の光路の出射角最大を示す線、軸は集光レンズ(
2)によって集光される光の光路を示す線、(2)は光
ファイバー(ロ)から出射し集光レンズに)に入射する
光を遍ぎらず、かつ光ファイバー(ロ)から出射される
エネルギーの一部を検出するための光エネルギー検出素
子、66は前記集光レンズ(2)を固定するレンズホル
ダー、αηは筒状筐体で、光ファイバー曽と集光レンズ
勾および前記光エネルギー検出素子(2)を収容してい
る。(至)は前記光エネルギー検出素子に)からの信号
を増幅、シ、エネルギー変換するための増幅変換回路〔
処理回路〕、輪はエネルギー表示手段である。。
FIG. 8 is a concrete layout diagram of the energy monitoring device emitted from the optical fiber according to the present invention, and (b) shows the optical fiber 1<-1
(11!l) is the output end of the optical fiber (b), the brocade is the condenser lens, the square is the line indicating the maximum output angle of the optical path of the light that enters the condenser lens from the optical fiber 〇Xu, and the axis is the condenser lens (
Line (2) indicates the optical path of the light condensed by 66 is a lens holder for fixing the condensing lens (2), αη is a cylindrical housing, which includes an optical fiber so, a condensing lens, and the light energy detecting element (2). ). (to) is an amplification conversion circuit for amplifying, converting energy of the signal from the optical energy detection element) [
Processing circuit], the ring is an energy display means. .

光ファイバー鋳の出射端(Ua)から出射した光した光
のうち、光路曽よ抄も広い角度で出射した光は前記光エ
ネルギー検出素子(至)に入射し、吸収されて鵬に変換
され、温度上昇に対応する電気信号となる。前記光ファ
イバー(ロ)から出射する全エネルギーに対して光エネ
ルギー検出素子曽に入射するエネルギーの割合は既知で
あるから、前記光エネルギー検出素子からの信号を増幅
変換回路−によって全出射エネルギーあるいは集光レン
ズ(2)に入射するエネルギー値に換算し、エネルギー
表示手段−に表示して焦点に集光されるエネルギー値の
監視を常時行う仁とが可能であゆ、しかもエネルギー監
視のための実質的なエネルギー損失がまったくないと云
うもう一つの特長があるシ光エネルギー検出素子(至)
の−実施例を第4図に示す、曽は複数個の熱電対を直列
接続した熱電対列、@(2)は熱電対列(2)を構成す
る各熱電対を構成するii t *第2の金属から成る
纏い線または箔、輪は第1.第2の金属−と輪の第1の
接触点、(2)は同様に第2の接触点、に)は熱電対列
曽の出カリーV線、曽は熱電対列四を支えるための熱容
量の小さな基板、(2)は熱電対列曽と基板(2)を収
容する容器、−は容器−の一部を構成し光フアイバー軸
からの出射光が各第2の接触点0に入射することを防ぐ
遮蔽リングである。なお、熱電対列曽を構成する各熱電
対の第1の接触点(2)は、光ファイバー轡から出射さ
れるエネルギーを受けるよう、光路(2)で定まる円周
よりも若干大きな円周上に配列されており、各第2の接
触点(2)は遮蔽リング−で光ファイバー(ロ)からの
光が直接あたらないよう化構成されて冷接点を構成して
いる。また、熱電対の和が得られる。
Of the light emitted from the output end (Ua) of the optical fiber casting, the light emitted at a wide angle also enters the light energy detection element (Ua), is absorbed and converted into energy, and the temperature It becomes an electrical signal corresponding to the rise. Since the ratio of the energy incident on the optical energy detection element to the total energy emitted from the optical fiber (b) is known, the signal from the optical energy detection element is converted to the total output energy or concentrated light by the amplification conversion circuit. It is possible to constantly monitor the energy value condensed at the focal point by converting it into the energy value incident on the lens (2) and displaying it on the energy display means. Another feature of this optical energy detection element is that there is no energy loss.
An example of this is shown in FIG. 4, where z is a thermopile consisting of a plurality of thermocouples connected in series, and @(2) is ii t *th, which constitutes each thermocouple constituting the thermopile (2). The wire or foil or ring made of metal from No. 2 is No. 1. The first contact point of the ring with the second metal, (2) is the second contact point as well, (2) is the output curry V wire of the thermopile Z, and Z is the heat capacity to support the thermopile 4. a small substrate, (2) is a container that houses the thermopile array and the substrate (2), - is a part of the container, and the light emitted from the optical fiber axis is incident on each second contact point 0. This is a shielding ring that prevents this from happening. The first contact point (2) of each thermocouple constituting the thermopile array is placed on a slightly larger circumference than the circumference determined by the optical path (2) so as to receive the energy emitted from the optical fiber casing. Each second contact point (2) is configured with a shielding ring to prevent light from the optical fiber (b) from directly hitting it, thereby forming a cold junction. Also, the sum of thermocouples is obtained.

前記光ファイバー01から出射される光エネルギーの分
布は光ファイバー(ロ)の材料および製造工程によって
一様とならない。例えば光軸曽を中心とするある半径の
円周上のエネルギー分布をみても、同じ半径の円周上で
ありながら賑エネルギー一度は同じではない、従って、
このような不均一なエネルギー分布をしている光エネル
ギーを測定するために、同一円周上の一点だけを測定し
て全体のエネルギーを推定することは多くの誤差を生じ
る。
The distribution of light energy emitted from the optical fiber 01 is not uniform depending on the material of the optical fiber (b) and the manufacturing process. For example, if we look at the energy distribution on the circumference of a certain radius centered on the optical axis Zeng, the energy distribution will not be the same even though it is on the circumference of the same radius. Therefore,
Estimating the total energy by measuring only one point on the same circumference in order to measure light energy having such a non-uniform energy distribution causes many errors.

本発明では、乙の点を考慮し工多数の熱電対を同一円周
上に配置し、各点のエネルギー加算、すなわち積分を行
うことによって上記問題を解決している。
In the present invention, the above problem is solved by arranging a large number of thermocouples on the same circumference and performing energy addition, that is, integration, at each point in consideration of point B.

熱電対材料としては銅−コンスタンタンなどの他、一般
に使用される各種金属の組合せが利用で番、また具体的
な構造としては細い熱電対素線を交互に接続して第4図
(s+)のような形状1ζする場合の他、熱電対材料を
真空蒸着によって薄膜として熱容量の小さな電対列とす
ることも可能である。
In addition to copper-constantan, various commonly used combinations of metals can be used as thermocouple materials.The concrete structure is as shown in Figure 4 (s+), in which thin thermocouple wires are connected alternately. In addition to the case where the thermocouple material has a shape of 1ζ, it is also possible to form a thin film of the thermocouple material by vacuum evaporation to form a pile with a small heat capacity.

fs5図は本発明になる光エネルギー監視装置を用いた
一応用例を示し、第8図と同じ構成要素には同じ符号が
附けられている。
FIG.

−は比較回路、■は基準電圧発生回路、鐸は制御警報装
置、輪は出射光エネルギーを設定するための出力設定手
段である。今、光ファイバー鵠から出力設定手段(2)
によって設定されたエネルギーが両射されているとする
。光エネルギー検出素子曽はこの出射エネルギーに対応
した出力信号を発生し、増幅変換手段(財)はこれを増
幅変換した後、比較回路(2)に入力する。基準電圧発
生回路曽には出力設定手段(2)の設定位置に対応した
電圧が生じており、この基準電圧V凰と前記増幅変換手
段−の出力電圧v8とが比較回路(至)で比較される。
- is a comparison circuit, ■ is a reference voltage generation circuit, a bell is a control alarm device, and a ring is an output setting means for setting the emitted light energy. Now, the output setting method from the optical fiber (2)
Suppose that the energy set by is radiated in both directions. The optical energy detection element generates an output signal corresponding to this emitted energy, which is amplified and converted by the amplification and conversion means, and then input to the comparison circuit (2). A voltage corresponding to the setting position of the output setting means (2) is generated in the reference voltage generation circuit (2), and this reference voltage V7 and the output voltage v8 of the amplification/conversion means (2) are compared in the comparison circuit (2). Ru.

もし、何らかの原因で前記光ファイバー(ロ)が破断し
゛、その結果、光ファイバー(l力の出射端(tta 
)から光エネルギーが出射されなくなると、光エネルギ
ー検出素゛子(2)に生じる信号がなくな勢、比較回路
軸はこれを検出して異常信号を出力し、制御警報装置−
を駆動してレーザー光源の電源を断にしたり、警報を発
して異常状態を操作者に通報する。
If the optical fiber (b) breaks for some reason, as a result, the optical fiber (l force output end (tta)
), when the light energy is no longer emitted from the light energy detection element (2), the signal generated in the light energy detection element (2) disappears, and the comparison circuit shaft detects this and outputs an abnormal signal, and the control alarm device -
to turn off the laser light source or issue an alarm to notify the operator of abnormal conditions.

ξのようにすることにより、出射エネルギーの監視のみ
ならず、光ファイバー(2)の破断、特性変化などの監
視を容易に行うことができる。
By setting ξ, it is possible to easily monitor not only the output energy but also the breakage of the optical fiber (2), changes in characteristics, etc.

以上説明のように本発明によると、光ファイバーからの
出射エネルギーを直接的に、精度よく、常時監視する仁
とがで曇ると云う大きな特徴を有し、かつξれを実施す
るために実質的に光エネルギーを全く損失しないメリッ
トがある。よって、レーザー加工装置およびレーザー手
術装置の全てに適用可能である。更に、エネルギー検出
素子として熱電変換素子を用いるので、特にYAGレー
ザ−、CO,レーザなと赤外線領域のレーザー加工装置
9乎術装置に効果的である。
As explained above, the present invention has the major feature of directly, accurately, and constantly monitoring the energy emitted from the optical fiber, and also has the major feature that the energy emitted from the optical fiber is monitored at all times with high precision. This has the advantage of not losing any light energy. Therefore, it is applicable to all laser processing devices and laser surgery devices. Furthermore, since a thermoelectric conversion element is used as the energy detection element, it is particularly effective for laser processing equipment in the infrared region, such as YAG laser, CO, and laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバーを用いるレーザー加工装置または
レーザー手術装置の先導波路および集光部分の説明図、
gg図は光ファイバーからの出射工事ルギー分布説明図
、118図は本発明による光フアイバー出射エネルギー
監視装置の構成図、第4図は光エネルギー検出素子の要
部断面図とそのA−A線に沿った縦断面図、第6図は応
用例を示す構成図である。 aト・・・・・・・・光ファイバ、(2)・・・・・・
・・・集光レンズ、に)・・・・・・・・・光エネルギ
ー検出素子、神・・・・・・・・・レンズホルダー、暢
・・・・・・・・・筒状筺体、(至)・・・・・・・・
・増幅変換手段、曽・・・・・・・・・エネルギー表示
手段、曽・・・・・・・・・熱電対列、−・・・:・・
・・1目の接触点、榊・・・・・・・・・lI=の接触
点、■・・・・・・・・・リード線、に)・・・・・・
・・・基板、(2)・・・・・・・・・客器、−・・・
・・・・・・遮蔽リング、−・・・・・・・・・比較回
路、曽・・・・曲・基準電圧発生回路、(至)・・・・
・・・・・制御警報装置、−・・・・・・・・・出力設
定手段 代理人 森本1弘 第1図 第2図 【 第3図 C2L)     (1,)
FIG. 1 is an explanatory diagram of a leading wavepath and a condensing part of a laser processing device or laser surgery device using an optical fiber,
Fig. gg is an explanatory diagram of energy distribution of light emitted from an optical fiber, Fig. 118 is a configuration diagram of an optical fiber emitted energy monitoring device according to the present invention, and Fig. 4 is a cross-sectional view of a main part of an optical energy detection element along the line A-A. FIG. 6 is a configuration diagram showing an application example. a......Optical fiber, (2)...
...Condensing lens,) ......Light energy detection element, God ......Lens holder, Nobu ......Cylindrical housing, (To)・・・・・・・・・
・Amplification conversion means, So...Energy display means, So...Thermopile, -...:...
・・1st contact point, Sakaki・・・I= contact point, ■・・・・・Lead wire, )・・・・・・・
... Board, (2) ...... Customer equipment, -...
・・・・・・Shielding ring, −・・・・Comparison circuit, Zeng・・Standard voltage generation circuit, (to)・・・・
...Control alarm device, -... Output setting means agent Kazuhiro Morimoto Figure 1 Figure 2 [Figure 3 C2L] (1,)

Claims (1)

【特許請求の範囲】 1、光ファイバーと、この光ファイバーから出射される
光エネルギーを集光する集光レンズと、この集光レンズ
と鍵記光ファイバーの出射端の閾で集光レンズに入射す
る円錐形状の光束の外偶に配設されて前記光ファイバー
から出射される光エネルギーを受光検出する光エネルギ
ー検出素子と、仁の光エネルギー検出素子からの償号を
エネルギー値に換算する処理回路と、この処理回路の処
理結果を表示するエネルギー表示手段とから構成される
光フアイバー出射エネルギー監視装置。 L光エネルギー検出素子を、前記円錐状の光束を取り巻
くリング形状で、リング形状の受光面全体に入射された
光エネルギーに比例した出力を生しメるよう構成した特
許請求の範囲第1項記職の光フアイバー出射エネルギー
監視装置。 8、処!1回路出力を基準電圧と比較して光ファイバー
の破断、特性劣化を検出し、異常発生時に警報装置を作
動させるよう構成した特許請求の範囲第1項記載の光フ
アイバー出射エネルギー監視装置。 4、光ヱネルギ、−検出素子を、複数の熱電対の直列接
続によって構成し、各熱電対の第1の接受光するよう互
いに同−2上に配設し、各熱1電対のW、2の接点を前
記光ファイバーからの光エネルギーを受光しないようリ
ング状光適蔽板の後部に配設して冷接点を構成した特許
請求の範囲第2項記蒙の光ファイ゛バー出射エネルギー
監視装置。
[Claims] 1. An optical fiber, a condensing lens that condenses the light energy emitted from the optical fiber, and a conical shape that enters the condensing lens at the threshold of the output end of the condensing lens and the optical fiber. a light energy detection element disposed on the outer side of the light beam to receive and detect the light energy emitted from the optical fiber; a processing circuit for converting the code from the light energy detection element into an energy value; An optical fiber output energy monitoring device comprising energy display means for displaying circuit processing results. Claim 1, wherein the L light energy detection element has a ring shape surrounding the conical light beam and is configured to produce an output proportional to the light energy incident on the entire ring-shaped light receiving surface. Industrial optical fiber output energy monitoring device. 8. Where! 2. The optical fiber emitted energy monitoring device according to claim 1, wherein the optical fiber output energy monitoring device is configured to compare the output of one circuit with a reference voltage to detect breakage and characteristic deterioration of the optical fiber, and to activate an alarm device when an abnormality occurs. 4. Optical energy, - The detection element is constructed by connecting a plurality of thermocouples in series, arranged on the same plane so that each thermocouple receives and receives the first light, and the W of each thermocouple is 2. The optical fiber emitted energy monitoring device according to claim 2, wherein a cold contact is formed by disposing the second contact at the rear of the ring-shaped light shielding plate so as not to receive the optical energy from the optical fiber. .
JP20327381A 1981-12-15 1981-12-15 Monitoring device for exit energy of optical fiber Granted JPS58103623A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20327381A JPS58103623A (en) 1981-12-15 1981-12-15 Monitoring device for exit energy of optical fiber
US06/444,331 US4556875A (en) 1981-12-15 1982-11-24 Irradiated power monitoring system for optical fiber
DE19823246290 DE3246290A1 (en) 1981-12-15 1982-12-14 RADIATION ENERGY MONITORING SYSTEM FOR AN OPTICAL FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20327381A JPS58103623A (en) 1981-12-15 1981-12-15 Monitoring device for exit energy of optical fiber

Publications (2)

Publication Number Publication Date
JPS58103623A true JPS58103623A (en) 1983-06-20
JPS6261895B2 JPS6261895B2 (en) 1987-12-23

Family

ID=16471311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20327381A Granted JPS58103623A (en) 1981-12-15 1981-12-15 Monitoring device for exit energy of optical fiber

Country Status (1)

Country Link
JP (1) JPS58103623A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145021U (en) * 1980-03-31 1981-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145021U (en) * 1980-03-31 1981-11-02

Also Published As

Publication number Publication date
JPS6261895B2 (en) 1987-12-23

Similar Documents

Publication Publication Date Title
KR100327141B1 (en) System and method for real-time wafer temperature measurement based on light scattering
JP4347688B2 (en) Fiber optic equipment
US4081678A (en) Through-the-lens thermometer apparatus
US4556875A (en) Irradiated power monitoring system for optical fiber
JP2740206B2 (en) Thermal radiation type low temperature measuring instrument
US4865446A (en) Laser power and energy meter
US4459986A (en) Surgical laser system
CN101410928A (en) Dual-colour pyrometric measurement of X-ray focal spot temperature
JPH1075934A (en) Radiation thermometer
US5349437A (en) Electromagnetic radiation detector utilizing an electromagnetic radiation absorbing element in a Mach-Zehnder interferometer arrangement
US3400266A (en) Infrared radiometric microscope
US4815841A (en) High resolution color band pyrometer ratioing
JPS58103623A (en) Monitoring device for exit energy of optical fiber
EP0863390A1 (en) &#34;Device for the detection of optical parameters of a laser beam&#34;.
US4955979A (en) Optical pyrometer with at least one fibre
KR20190068425A (en) Radiation thermometer
GB2183821A (en) A temperature sensor
JP5544249B2 (en) Inspection device
JP2781269B2 (en) Optical fiber sensor
JPS58103622A (en) Monitoring device for exit energy of optical fiber
US3012473A (en) Contrast radiometer with background elimination
JPH10104084A (en) Multicolor thermometer
US7138622B2 (en) Method and apparatus for monitoring light beams
JP2011043389A (en) Ferrule probe
JPS629229A (en) Laser power meter