JPS58103588A - Hydrogenolysis of heavy oil - Google Patents

Hydrogenolysis of heavy oil

Info

Publication number
JPS58103588A
JPS58103588A JP19697281A JP19697281A JPS58103588A JP S58103588 A JPS58103588 A JP S58103588A JP 19697281 A JP19697281 A JP 19697281A JP 19697281 A JP19697281 A JP 19697281A JP S58103588 A JPS58103588 A JP S58103588A
Authority
JP
Japan
Prior art keywords
catalyst
oil
iron
heavy oil
aluminosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19697281A
Other languages
Japanese (ja)
Other versions
JPS6124433B2 (en
Inventor
Hajime Shimakawa
島川 一
Satoshi Nakai
敏 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP19697281A priority Critical patent/JPS58103588A/en
Priority to US06/443,452 priority patent/US4446008A/en
Priority to CA000416353A priority patent/CA1198389A/en
Priority to FR8220648A priority patent/FR2517692B1/en
Publication of JPS58103588A publication Critical patent/JPS58103588A/en
Publication of JPS6124433B2 publication Critical patent/JPS6124433B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a large amount of hydrocracked oil, by hydrocracking heavy oil in the presence of a specified catalyst. CONSTITUTION:A crystalline aluminosilate with a silica to alumina ratio of 4.6 or above and an Na2O content of 2.4wt% or below is treated at 540-810 deg.C in the presence of steam, immersed in an aq. soln. (pH 1.5 or lower) of an iron salt such as FeCl2, treated at 0-100 deg.C for 0.5-10hr, washed with water, dried and fired at 300-800 deg.C to obtain an iron-contg. aluminosilicate (A). 3-24wt% Group VIB metal and 0.7-20wt% Group VIII metal of the Periodic Table are supported on a carrier composed of a mixture of 20-80wt% component A and 80-20wt% inorg. oxide (B) such as boehmite gel to obtain a catalyst. Heavy oil is hydrocracked in the presence of this catalyst, at a ratio of hydrogen/oil of 700- 200Nm<3>-H2/kl-oil, liquid hourly space velocity of 0.2-1.0hr<-1> and 350-450 deg.C under pressure of 50-200kg/cm<2>.

Description

【発明の詳細な説明】 本発明は重質油の水素化分解方法に関し、詳しくは特定
の処理を施したアルミノシリケートと無機酸化物からな
る担体に活性成分を担持してなる触媒を相いて重質油を
効率よく水素化分解して価値の高い軽質油に転化せしめ
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrocracking heavy oil, and more specifically, the present invention relates to a method for hydrocracking heavy oil. This invention relates to a method for efficiently hydrocracking heavy oil to convert it into high-value light oil.

近年、世界的に原油が重質化する傾向にあると同時に、
石油の1I111要構造が変化し、軽質油が不足する一
方で重質油が余る傾向を示している。そのため重質油を
分解してナフサ、灯油、軽油などの軽質油に転化する技
術が多数開発されてきている。
In recent years, there has been a global trend toward heavier crude oil, and at the same time,
The 1I111 structure of petroleum has changed, showing a tendency for light oil to be in short supply and heavy oil to be in surplus. Therefore, many technologies have been developed to crack down heavy oil and convert it into light oil such as naphtha, kerosene, and diesel oil.

そのうち特に水素比分解の技術は良質の軽質油が得られ
るため、有望視されている。
Among these, hydrogen specific cracking technology is particularly promising because it yields high-quality light oil.

しかしながら、従来の水素化分解技術は、灯油。However, traditional hydrocracking technology is limited to kerosene.

軽油に相当する中間留分の得率が少なく、シかも水素消
費量が多いなど様々な欠点があった。
There were various drawbacks such as low yield of middle distillate equivalent to light oil and high hydrogen consumption.

そこで本願出願人は、先般、特定の結晶質アルミノシリ
ケートを鉄塩水溶液で処理したものを担体として用いた
触媒を開発した(%1昭56−100546@明細書)
。この触媒を用いて重質油導の水素化分解を行なうと、
炭素析出量が少なく、また触媒の耐熱性が良いため長期
にわたって高い活性を維持したまま反応を進めることが
できる。しかし、この触媒では中間留分の得率は未だ十
分でなく、また水素の消費量も従来の方法に比ペて若干
減少させることができる程度で大幅に節約することはで
きない。
Therefore, the applicant of the present application recently developed a catalyst using a specific crystalline aluminosilicate treated with an iron salt aqueous solution as a carrier (%1 1984-100546@specification)
. When this catalyst is used for hydrocracking of heavy oil,
Because the amount of carbon deposited is small and the catalyst has good heat resistance, the reaction can proceed while maintaining high activity over a long period of time. However, with this catalyst, the yield of middle distillates is still insufficient, and the amount of hydrogen consumed cannot be reduced significantly compared to the conventional method, although it can be reduced slightly.

本発明の目的は、中間留分の得率が高く、シかも水素消
費意の少ない重質油の水素化分解法を開発することにあ
り、その構成は、重質油を触媒の存在下で水素化分解す
る方法において、水蒸気処理した結晶質アルミノシリケ
ートを鉄塩水溶液にて処理して得られる鉄含有アルミノ
シリケート20〜80重量%と無機酸化物80〜20重
量%からなる担体に、周期律表第■B族に属する金属お
よび第vlT#cに属する金属を担持してなる触媒を用
いることを%黴とする重質油の水素化分解方法を提供す
るものである。
The purpose of the present invention is to develop a method for hydrocracking heavy oil that provides a high yield of middle distillates and consumes less hydrogen. In the hydrogenolysis method, a carrier consisting of 20 to 80% by weight of iron-containing aluminosilicate obtained by treating steam-treated crystalline aluminosilicate with an aqueous iron salt solution and 80 to 20% by weight of an inorganic oxide is coated with a periodic system. The present invention provides a method for hydrocracking heavy oil using a catalyst supported with a metal belonging to group ⅢB of the table and a metal belonging to group vlT#c.

本発明の方法に用いる触媒の担体としては鉄含有アルミ
ノシリケートと無機酸化物の混合物が使用される。ここ
で鉄含有アルミノシリケートは結晶質アルミノシリケー
トを原料として、これを水蒸気処理し、さらに鉄塩水溶
液にて処理することによって得られる。この原料である
結晶質アルミノシリケートとしては、特に制限はなく様
々なものが使用可能であるが、通常はアルミナに対する
シリカの比率が4.6以上であシ、かつNano含量が
2−4重量%以下、好ましくは1重量%以下のものとす
べきである。具体的には、ホージャサイト。
A mixture of an iron-containing aluminosilicate and an inorganic oxide is used as a support for the catalyst used in the process of the invention. Here, the iron-containing aluminosilicate is obtained by using crystalline aluminosilicate as a raw material, treating it with steam, and further treating it with an aqueous iron salt solution. There are no particular restrictions on the crystalline aluminosilicate used as this raw material, and a variety of materials can be used, but usually the ratio of silica to alumina is 4.6 or more, and the nano content is 2-4% by weight. The content should preferably be 1% by weight or less. Specifically, Khojasite.

モルデナイトなどの天然ゼオライトあるいはY型。Natural zeolite such as mordenite or Y type.

Y型、L型などの合成ゼオライトをあげることができる
。これらはいずれも好適に使用することができるが、特
に空洞有効径の大きいものが好ましい。なお、この結晶
質アルミノシリケートとして、アル之すに対するシリカ
の比率が4.6未満のもの、あるいはNano含蓋が2
−4重量%を越えるものを用いると、pHt5以下の強
酸性下で、処理した場合にシリケート骨格がくずれるお
それがある。しかし、pHt5以上の剥除性あるいは中
性ないしアルカリ性の条件で処理する場合には、結晶質
アルミノシリケートのアルミナを5珂1壱P/j)去Φ
比率やNan。
Synthetic zeolites such as Y type and L type can be mentioned. Any of these can be suitably used, but those with a large effective cavity diameter are particularly preferred. In addition, as this crystalline aluminosilicate, the ratio of silica to aluminum is less than 4.6, or the nano-containing material is 2.
If more than -4% by weight is used, there is a risk that the silicate skeleton will collapse when treated under strong acidity with a pH of 5 or less. However, when removing the pH of 5 or more or treating under neutral or alkaline conditions, the alumina of crystalline aluminosilicate is removed by removing Φ
Ratio or Nan.

含量は特に考慮する必要はない。There is no need to particularly consider the content.

上記結晶質アルミノシリケージを水蒸気処理するが、こ
の場合、540〜810℃の水蒸気の存在下で処理する
ことが好ましい。ここで水蒸気は流通系であってもよい
し、密閉容器中に結晶質アルミノシリケートを保持して
加熱し、アルミノシリケートの保有する水により七ルア
スチーミングを行なってもよい。
The above-mentioned crystalline aluminosilicage is treated with steam, and in this case, the treatment is preferably carried out in the presence of steam at a temperature of 540 to 810°C. Here, the steam may be in a flow system, or the crystalline aluminosilicate may be held in a closed container and heated, and the water contained in the aluminosilicate may be used to perform 7-luer steaming.

続いて、水蒸気処理した結晶質アルミノシリケートを鉄
塩水溶液にて処理することが必要である。
Subsequently, it is necessary to treat the steam-treated crystalline aluminosilicate with an aqueous iron salt solution.

ここで鉄地水溶液としては、様々な塩や錯塩が用いられ
るが、一般的には塩化第一鉄、塩化第二鉄。
Various salts and complex salts are used as the iron base aqueous solution, but ferrous chloride and ferric chloride are generally used.

硝酸第一鉄、硝酸第二鉄、硫酸第一鉄、硫酸第二鉄など
の水溶液が用いられる。この鉄塩水溶液にて上述の水蒸
気処理した結晶質アルミノシリケートを処理するに°あ
たっては、系の−を酸性、特にpH1,5以下にB4 
節することが好ましい。そのため必要に応じて系に酸を
加えることも有効であり、このような酸としては、塩酸
、硝酸、硫酸など力(好適に用いられる。−が1.5以
下に調整された鉄塩水溶液にて処理すると、アルミノシ
リケーFの結晶を構成しているアルミニウムの一部力(
溶出し、代わりに鉄が入りこみ新たな結晶構造力(形成
される。
Aqueous solutions of ferrous nitrate, ferric nitrate, ferrous sulfate, ferric sulfate, etc. are used. When treating the above steam-treated crystalline aluminosilicate with this iron salt aqueous solution, the - of the system must be acidified, especially B4 to a pH of 1.5 or lower.
It is preferable to section. Therefore, it is effective to add an acid to the system if necessary. Examples of such acids include hydrochloric acid, nitric acid, and sulfuric acid. When treated with
Iron is eluted and replaced by iron, forming a new crystal structure.

上述の水蒸気処理した結晶質アルミノシリケートを鉄塩
水溶液にて処理す・う際の他の条件は、特に制限はなく
適宜定めればよいが、通常は0〜100℃の温度にて、
α5〜10時間程度接触させる。接触させる方法は、結
晶質アルミノシリケートを単に鉄塩水溶液に浸漬するだ
けでもよいが、攪拌等を行なえばより短時間で目的を達
成できる。
Other conditions when treating the above-mentioned steam-treated crystalline aluminosilicate with an iron salt aqueous solution are not particularly limited and may be determined as appropriate, but usually at a temperature of 0 to 100 ° C.
α Leave in contact for about 5 to 10 hours. The contacting method may be simply immersing the crystalline aluminosilicate in an aqueous iron salt solution, but the purpose can be achieved in a shorter time by stirring or the like.

また、かかる処理は一回のみでもよいが、複数回繰返す
と、鉄含有艦の高いアルミノシリケートが得られる。さ
らに接触処理に際して、超音波を使゛用すると効果的で
ある。
Further, although this treatment may be performed only once, if it is repeated multiple times, an aluminosilicate with a high iron content can be obtained. Furthermore, it is effective to use ultrasonic waves during the contact treatment.

上述の処理を行なって得られたアルミノシリケートを十
分に洗浄し、さらに乾燥後、焼成(500〜800℃)
すれば所望の鉄含有アルミノシリケートが得られる。
The aluminosilicate obtained by the above treatment is thoroughly washed, further dried, and then calcined (500 to 800°C).
The desired iron-containing aluminosilicate can then be obtained.

一方、上記の鉄含有アルミノシリケートと共に触媒担体
を構成する無機酸化物は、触媒の物理的強度を保持する
ことならびに適度の細孔分布により触媒としての機能を
高めるために加えるものであり、この目的に適合するも
のであれば、各種のものが使用できるが、例えば′、ベ
ーマイトゲル。
On the other hand, the inorganic oxide that constitutes the catalyst carrier together with the above-mentioned iron-containing aluminosilicate is added to maintain the physical strength of the catalyst and enhance its function as a catalyst through appropriate pore distribution. Various materials can be used as long as they are compatible with the requirements, such as boehmite gel.

アルミナヅル、シリカ−アルミナゲルなどの含水酸化物
が好適に用いられる。
Hydrous oxides such as alumina gel and silica-alumina gel are preferably used.

また触媒担体における上記鉄含有アル主ノシリケートと
無機酸化物の混合割合は、前者=後者=20〜80:8
0〜20(重i1%)、好ましくけ40〜70:60〜
3o (重量%)とすべをである。ここで鉄含有アルミ
ノシリケートの混合割合が少なすぎると中間留分の得率
が低くなる。逆に多すぎると中間留分の選択率が低くな
り、水素消費量が多くなる。
Further, the mixing ratio of the iron-containing alkali-based silicate and the inorganic oxide in the catalyst carrier is: former = latter = 20 to 80:8
0~20 (weight i1%), preferably 40~70:60~
3o (% by weight). If the mixing ratio of the iron-containing aluminosilicate is too small, the yield of the middle distillate will be low. On the other hand, if it is too large, the selectivity of the middle distillate will be low and the amount of hydrogen consumed will be large.

次に、本発明に用いる触媒において、上記担体に担持す
べき活性成分としては、周期律表第VIB族に属する金
属および第1層に属する金属が用いられる。この第VI
B族の金属と第1族の金属は併用することが必要であり
、どちらが一方のみの使用では本発明の目的を達成する
ことはできない。
Next, in the catalyst used in the present invention, as the active component to be supported on the carrier, a metal belonging to Group VIB of the periodic table and a metal belonging to the first layer are used. This VI
It is necessary to use the Group B metal and the Group 1 metal in combination, and the purpose of the present invention cannot be achieved by using only one of them.

ここで第VI B族の金属としては、タングステンま°
たはモリブデンが好ましく、また第1族の金属としては
ニッケルまたはコバルトが好ましい。なお、第■1族の
金属、第1族の金属けそれぞれ1種ずつ使用してもよい
が、それぞれ複数の金属を混合したものを用いてもよい
Here, the group VIB metals include tungsten and
or molybdenum is preferred, and the Group 1 metal is preferably nickel or cobalt. Incidentally, one kind each of Group 1 metals and Group 1 metals may be used, but a mixture of a plurality of metals may also be used.

上述の活性成分である金属の担装置は、特に制限はなく
各槍条件に応じて適宜定めればよいが、通常は周期律表
第%71B族の金属は触媒全体の3〜24重If好まし
くは8〜20真蓋嘩とすべきであり、また第1族の金属
については、触媒全体の17〜20重量襲、重量しくは
t5〜8重量襲重量べきである。
The supporting device for the above-mentioned active ingredient metal is not particularly limited and may be determined as appropriate depending on each spear condition, but usually metals from group 71B of the periodic table are preferably used in a proportion of 3 to 24 times the entire catalyst. should be between 8 and 20 percent, and for Group 1 metals, it should be between 17 and 20 percent by weight, or 5 to 8 percent by weight, of the entire catalyst.

上記活性成分を担体に担持するにあたっては、共沈法、
含浸法など公知の方、法によって行なえばよい。
In order to support the above active ingredient on a carrier, coprecipitation method,
This may be carried out by a known method such as an impregnation method.

続いて本発明の方法を適用することのできる重質油とし
ては、原油の常圧蒸留1i!4渣油、減圧蒸留シレ 残徹油、減圧j1簀油、接触分解残渣油、ビスブレーキ
ング油、タールすンド油、シェールオイルなどをあげる
ことができる。
Subsequently, as heavy oil to which the method of the present invention can be applied, atmospheric distillation of crude oil 1i! 4 residue oil, vacuum distillation sill residue oil, vacuum distillation J1 residue oil, catalytic cracking residue oil, visbreaking oil, tar sand oil, shale oil, etc.

本発明の方法を実施する場合、従来から水素化分解に採
用されている反応条件を含む広範囲の反応条件を採用す
ることができるが、通常は、反応温度350〜450℃
1反応圧力50〜200時/−1水素/原料油比700
〜20001m’−Hz/U−油、液時空間速度(L 
H8V) (L 2〜t 0hr−”とし、また“水素
は純度75モル%以上のものが使用される。
When carrying out the method of the present invention, a wide range of reaction conditions can be employed, including reaction conditions conventionally employed in hydrogenolysis, but usually the reaction temperature is 350 to 450°C.
1 reaction pressure 50-200 hours/-1 hydrogen/raw oil ratio 700
~20001 m'-Hz/U-oil, liquid time-space velocity (L
H8V) (L2~t0hr-"), and hydrogen with a purity of 75 mol% or more is used.

本発明の方法は、上述の触媒を用いて重質油を、上記反
応条件下で水素化分解することにより進行する。
The method of the present invention proceeds by hydrocracking heavy oil using the catalyst described above under the reaction conditions described above.

本発明の方法によれば、効率よく水素化分解が進行し、
多重の水素化分解油が得られる。しかも、得られる水素
化分解油中に占める灯、軽油等の中間留分の割合は高く
、またこの中間留分は不飽和分、芳香族分が少なく直ち
に製品として利用できる極めて良質なものである。特に
本発明の方法によれば、鉄を含有しない脱アルミニウム
ゼオライ)(tlBY型ゼオライト)や水蒸気処理して
いない鉄含有アルミノシリケートゼオライトを用いた場
合に比べて、中間留分の得率が1割程度高い。
According to the method of the present invention, hydrogenolysis proceeds efficiently,
Multiple hydrocracked oils are obtained. Furthermore, the proportion of middle distillates such as lamps and gas oils in the obtained hydrocracked oil is high, and this middle distillate has a low unsaturated content and aromatic content and is of extremely high quality that can be used immediately as a product. . In particular, according to the method of the present invention, the yield of middle distillates is 10% higher than when using iron-free dealuminated zeolite (tlBY type zeolite) or iron-containing aluminosilicate zeolite that has not been treated with steam. To a high degree.

さらに、水素化分解の過程における水素の消費蓋が、従
来法に比べてかなシ少なく経済的にも有利な方法である
Furthermore, the consumption of hydrogen during the hydrocracking process is less than that of conventional methods, making it an economically advantageous method.

従って、本発明の方法は、石油精製の分野に有効に利用
されるものである。
Therefore, the method of the present invention can be effectively utilized in the field of petroleum refining.

次に本発明を実施例によシさらに詳しく説明する。Next, the present invention will be explained in more detail using examples.

実施例1 tlj触媒の調製 投入し、680℃で3時間七ル7スチー之ング処理を行
なった。この時の重置減少は約20 wt%であった。
Example 1 Preparation of tlj catalyst The catalyst was charged and subjected to steaming treatment at 680° C. for 3 hours. The weight loss at this time was about 20 wt%.

このスチーミングゼオライト(以下「8HYゼオライト
」と略す。)80?及び濃度(L20モk / t O
7s (101) @の水溶液(pH−tO)aoo*
を1を容の三つロフラスコに入れ、50℃で2時間攪拌
処理した。その後、吸引謔過し、さらに50℃のイオン
交換水10tで十分に洗浄した後、80°Cで3時間乾
燥し、続いて450 ’Cにて3時間焼成して鉄含有ス
チーミングゼオライト (以下[1・−8HYゼオライ
ト」という。)を得た。このものの組成はNaaO含量
(L10vt%、 5tos/ム40s7.8(モル比
) 、 8102/F@2014 A 4  (モル比
)であった。
This steaming zeolite (hereinafter abbreviated as "8HY zeolite") 80? and concentration (L20mok/tO
7s (101) @Aqueous solution (pH-tO)aoo*
was placed in a three-necked flask with a volume of 1 and stirred at 50°C for 2 hours. After that, it was suctioned, washed thoroughly with 10 tons of ion-exchanged water at 50°C, dried at 80°C for 3 hours, and then calcined at 450'C for 3 hours to produce iron-containing steamed zeolite (hereinafter referred to as iron-containing steamed zeolite). [1.-8HY zeolite] was obtained. The composition of this product was NaaO content (L10vt%, 5tos/mu40s7.8 (mole ratio), 8102/F@2014 A4 (mole ratio).

一方、塩化アルミニウム水溶液とその5倍モルの水酸化
ナトリウム水溶液を反応させて水酸化アルミニウムの沈
澱をつくり、95°Cにて18時間熟成後、鍵過、水洗
してベーマイトゲルを得た。
On the other hand, aluminum hydroxide was precipitated by reacting an aqueous aluminum chloride solution with an aqueous sodium hydroxide solution in an amount 5 times the molar amount, and after aging at 95°C for 18 hours, the precipitate was filtered and washed with water to obtain a boehmite gel.

上記re −S HY 4オライド67グとアルミナベ
ーマイトゲル189?をイオン交換水5occを加えて
IJL練し、温式押出し成形に適する水分量に!#湿し
、成形圧501Cg/cdで直径1−9長さ5■に成形
した。続いて120℃で5時間乾燥し、さらに500℃
で5時間焼成してFs −B HYゼオラ1イト含@ 
60 wt%のFe−8HYゼオライド一ム120s担
体を得た。
The above re-S HY 4 olide 67g and alumina boehmite gel 189? Add 5 occ of ion-exchanged water and knead with IJL to make the moisture content suitable for hot extrusion molding! #It was moistened and molded to a diameter of 1-9 and a length of 5 cm at a molding pressure of 501 Cg/cd. Subsequently, it was dried at 120°C for 5 hours, and further dried at 500°C.
After baking for 5 hours, Fs-B HY containing zeolite
A 120s carrier containing 60 wt% Fe-8HY zeolide was obtained.

次いで、この担体75fにメタタングステン酸アンモニ
ウム濃厚溶液(WO,SαQ wt%)2αOIL/。
Next, a concentrated ammonium metatungstate solution (WO, SαQ wt%) 2αOIL/ was applied to the carrier 75f.

61′J#にニッケル14.9)を含む水溶液64m1
を加えて含浸させた後、90℃で3時間乾燥し、次いで
550℃で2時間焼成して、金属としてタングステン1
 h 1 vt%、ニッケルl 9 wt%の触媒を調
製した。このものの比表面積は578w1/lであった
64ml of aqueous solution containing nickel (14.9) in 61'J#
After adding and impregnating it, it was dried at 90°C for 3 hours, and then fired at 550°C for 2 hours to form tungsten as a metal.
A catalyst containing h 1 vt% and nickel l 9 wt% was prepared. The specific surface area of this product was 578w1/l.

(2)水素化分解反応 上述のこと<a14製した触媒100CCをステンレス
製反応管に充填し、410℃、420℃。
(2) Hydrocracking reaction 100 cc of the catalyst prepared above was filled in a stainless steel reaction tube at 410°C and 420°C.

450℃で1ookg/dの条件下でクラエート原油か
らの常圧蒸留残渣油(比重15/4℃α965゜545
℃+92 vo1% 、 S !h 9 wt% )を
r、、ngva 5 hr−” 、水素/油比2000
1赫1−o1tr通し水素化分解を行なった。結果を第
1表および#g1図に示す。
Atmospheric distillation residue oil (specific gravity 15/4℃ α965゜545
℃+92 vo1%, S! h 9 wt%) to r, ngva 5 hr-”, hydrogen/oil ratio 2000
Hydrogenolysis was carried out through 1 liter of 1-o1 tr. The results are shown in Table 1 and Figure #g1.

比較例1 (亘)触媒の調製 実施例1(1)において、ハ(Mow)s水溶液の代わ
りにpH1Oの塩酸を使用したこと以外は実施例1と同
様の処理を行ない、N180含ill (L 1 vt
%、Si偽/A40.9.5 (モル比)の脱アルミニ
ウムY型ゼオライトを得た。以下は、実施例1(!)と
同様にして触媒を調製した。
Comparative Example 1 (Wataru) Preparation of Catalyst The same treatment as in Example 1 was carried out except that hydrochloric acid of pH 1O was used instead of the Mows aqueous solution in Example 1 (1). 1 vt
%, Si pseudo/A40.9.5 (molar ratio) dealuminated Y-type zeolite was obtained. A catalyst was prepared in the same manner as in Example 1 (!).

(2)水素化分解反応 上記(1)で得られた触媒を用いたこと以外は実施例1
(2)と同様にして水素化分解反応を行なった。
(2) Hydrocracking reaction Example 1 except that the catalyst obtained in (1) above was used.
A hydrogenolysis reaction was carried out in the same manner as in (2).

結果を第1表および第1図に示す。The results are shown in Table 1 and Figure 1.

比較例2 0)触媒の調製 実m例1(tlにおいて、スチーミング処理を行なわな
かったこと以外は実施例1(1)と同様にして触媒を調
製した。
Comparative Example 2 0) Preparation of Catalyst A catalyst was prepared in the same manner as in Example 1 (1) except that in Example 1 (tl), the steaming treatment was not performed.

(2)水素化分解反応 上記(1)で得られた触媒を用いたこと以外は実施例1
(2)と同様にして水素化分解反応を行なった。
(2) Hydrocracking reaction Example 1 except that the catalyst obtained in (1) above was used.
A hydrogenolysis reaction was carried out in the same manner as in (2).

結果を第1表および第1図に示す。The results are shown in Table 1 and Figure 1.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1.比較例1および比較例2における転
化率と中間留分の選択率との関係を示すグラフである。 手続補正音(自発) 昭和58年1月51日 特許庁長官 若杉和夫 殿 t 事件の表示 特願昭56−196972 2、 発明の名称 重質油の水素化分解方法 五 補正をする者 事件との関係  特許出願人 重質油対策技術研究組合 4、代理人 〒104 東京都中央区京橋1丁目1番10号 飄 補正の対象 明細書の発明の詳細な説明の掴 を「アルミナゾル、」に[正する。 (2)  同第9頁4行目の[α2〜t、 Ohr−”
 J を[α2〜10hr−’Jに訂正する。 (3)  同第11頁9〜10行目の「アルミナベーマ
イトゲル」を「ベーマイトゲル」に訂正する。 (以上)
FIG. 1 shows Example 1. 2 is a graph showing the relationship between conversion rate and middle distillate selectivity in Comparative Example 1 and Comparative Example 2. Procedural amendment sound (spontaneous) January 51, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi t Indication of the case Patent application 1982-196972 2. Name of the invention Process for hydrocracking of heavy oil 5. Person making the amendment Related: Patent applicant Heavy Oil Countermeasures Technology Research Association 4, Agent Address: 1-1-10 Kyobashi, Chuo-ku, Tokyo 104 A grasp of the detailed explanation of the invention in the specification subject to amendment to ``Alumina Sol'' [correction] do. (2) Page 9, line 4 [α2~t, Ohr-”
Correct J to [α2~10hr-'J. (3) "Alumina boehmite gel" on page 11, lines 9-10 is corrected to "boehmite gel."(that's all)

Claims (2)

【特許請求の範囲】[Claims] (1)重質油を触媒の存在下で水素化分解する方法にお
いて、水蒸気処理した結晶質アルミノシリケートを鉄塩
水溶液にて処理して得られる鉄含有アルミノシリケート
20〜80重量%と無機酸化物80〜20重量襲からな
る担体に、周期律表第■B族に楓する金属および第1族
に属する金属を担持してなる触媒を用いることを特徴と
する重質油の水素化分解方法。
(1) In a method of hydrocracking heavy oil in the presence of a catalyst, 20 to 80% by weight of iron-containing aluminosilicate obtained by treating steam-treated crystalline aluminosilicate with an aqueous iron salt solution and inorganic oxide. A method for hydrocracking heavy oil, characterized in that a catalyst comprising a metal belonging to Group 1B of the periodic table and a metal belonging to Group 1 of the periodic table is supported on a carrier having a weight of 80 to 20%.
(2)鉄塩水溶液が、、atS以下のものである特許請
求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the iron salt aqueous solution has a concentration of atS or less.
JP19697281A 1981-12-09 1981-12-09 Hydrogenolysis of heavy oil Granted JPS58103588A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19697281A JPS58103588A (en) 1981-12-09 1981-12-09 Hydrogenolysis of heavy oil
US06/443,452 US4446008A (en) 1981-12-09 1982-11-22 Process for hydrocracking of heavy oils with iron containing aluminosilicates
CA000416353A CA1198389A (en) 1981-12-09 1982-11-25 Process for hydrocracking of heavy oils
FR8220648A FR2517692B1 (en) 1981-12-09 1982-12-09 PROCESS FOR HYDROCRACKING HEAVY OILS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19697281A JPS58103588A (en) 1981-12-09 1981-12-09 Hydrogenolysis of heavy oil

Publications (2)

Publication Number Publication Date
JPS58103588A true JPS58103588A (en) 1983-06-20
JPS6124433B2 JPS6124433B2 (en) 1986-06-11

Family

ID=16366704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19697281A Granted JPS58103588A (en) 1981-12-09 1981-12-09 Hydrogenolysis of heavy oil

Country Status (1)

Country Link
JP (1) JPS58103588A (en)

Also Published As

Publication number Publication date
JPS6124433B2 (en) 1986-06-11

Similar Documents

Publication Publication Date Title
JP2969062B2 (en) Hydrotreating method for producing premium isomerized gasoline
JPH08509904A (en) Method for preparing alumina-bonded zeolite catalyst
US3838040A (en) Hydrocracking with zeolite in a silica-magnesia matrix
US3619412A (en) Mordenite-containing hydrocracking catalyst
JPH0555189B2 (en)
US4446008A (en) Process for hydrocracking of heavy oils with iron containing aluminosilicates
WO2009008878A1 (en) Process for the production of diesel and aromatic compounds
JP2003525118A (en) Zeolite ZSM-48 based catalyst and method for improving pour point of paraffin charge
JPH01275693A (en) Three-zone hydrocracking method
KR20070084402A (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst comprising the aluminosilicate, and method 0f hydrocracking with the catalyst
US4443552A (en) Catalysts for the catalytic cracking of heavy oil
KR900005097B1 (en) Hydrocracking catalyst and hydrocracking process
US4980328A (en) Hydrocracking catalyst
JPS60219295A (en) Hydrogenation of heavy hydrocarbon oil
JPH0631333B2 (en) Hydrocracking method for hydrocarbons
JPS58103588A (en) Hydrogenolysis of heavy oil
JPH0528278B2 (en)
JP4156681B2 (en) Lubricating base oil contact turbidity
JPS58138788A (en) Hydrogenolysis method of heavy oil
WO2007114012A1 (en) Hydrocracking catalyst, and method for production of fuel base material
US7368619B1 (en) Process for the production of diesel and aromatic compounds
JPH07108983B2 (en) Process for producing middle distillate hydrocarbons
JP3731615B2 (en) Method for producing catalyst carrier and method for producing hydrocracking catalyst using the same
US3876524A (en) Production of jet fuel by a hydrocarbon conversion process using a catalyst comprising palladium and an amorphous aluminosilicate component
JPS608861B2 (en) Catalyst composition for hydrocracking of heavy hydrocarbon oils