JPS58103206A - Array antenna device - Google Patents

Array antenna device

Info

Publication number
JPS58103206A
JPS58103206A JP20292581A JP20292581A JPS58103206A JP S58103206 A JPS58103206 A JP S58103206A JP 20292581 A JP20292581 A JP 20292581A JP 20292581 A JP20292581 A JP 20292581A JP S58103206 A JPS58103206 A JP S58103206A
Authority
JP
Japan
Prior art keywords
delay line
group
coupler
difference
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20292581A
Other languages
Japanese (ja)
Inventor
Yasuji Sawada
沢田 靖二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20292581A priority Critical patent/JPS58103206A/en
Publication of JPS58103206A publication Critical patent/JPS58103206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Abstract

PURPOSE:To prevent both deterioration of gain and null shift of a differential pattern, by using a hybrid coupler to a directional coupler that has a coupling degree to compensate a power loss due to a difference of the delay line lengths. CONSTITUTION:The difference of power loss between the delay line (3-2)(3-3) of a group B and the delay line (3-1) of a group A, i.e. the power loss of the 2nd line (3-3) is set at DELTALdB. In such case, the coupling degree CAdB between the terminal SIGMA of a directional coupler 6 and the line (3-3) is set so as to satisfy the equation 1. Thus the electric power to be distributed to the group B through the terminal SIGMA is larger than the electric power to be distributed to the group A by an amount of DELTALdB. Therefore the electric wave supplied through the terminal SIGMA is divided into two parts. Then the electric power obtained when the divided electric waves reach a coupler (2-1) for radiator is equal to the electric power obtained when the divided electric waves reach a coupler (2-3) for radiator. Therefore the levels of the amplitude distributions coincide with each other at the boundary between the groups A and B. This can prevent the occurrence of a null shift of a differential pattern as well as the deterioration of gain.

Description

【発明の詳細な説明】 この発明は、モノパルス測角機能を有する周波数走査ア
レイアンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency scanning array antenna device having a monopulse angle measurement function.

従来この種の装置として第1図に示すものがあった。図
において、(1−1)〜(1−4)は放射器、(2−1
)〜(2−4)は放射器用結合器、(3−1)(3−2
)は放射器(1−1)(1−2)又は(1−3)(1−
4)の 信号間に位相差を与える第1の遅延線路、(4
−1)(4−2)は無反射終端器、(7−1)(7−2
)はそれぞれ放射器(1−1)(1−2)又は(1−3
)(1−4)、第1の遅延線路(3−1)又は(3−2
)及び無反射終端器(4−1)又は(4−2)からなる
アンテナ回路、(3−3)はアンテナ回路(7−2)の
第1の遅延線路(3−2)と連続して設けられ、両アン
テナ回路(7−1)(7−2)の信号間に位相差を与え
るI82の遅延線路、(5)はノ1イブリッド結合器(
3dB結合器)、Σ、Δはその入出力端子である。ここ
で放射器(1−1)(1−2)を含む回路をA群、放射
器(1−3)(1−4)を含む回路をB群と称すること
にする。
A conventional device of this type is shown in FIG. In the figure, (1-1) to (1-4) are radiators, (2-1
) to (2-4) are radiator couplers, (3-1) (3-2
) is the radiator (1-1) (1-2) or (1-3) (1-
4) The first delay line gives a phase difference between the signals, (4)
-1) (4-2) is a non-reflection terminator, (7-1) (7-2
) are respectively radiators (1-1) (1-2) or (1-3
)(1-4), first delay line (3-1) or (3-2
) and a non-reflection terminator (4-1) or (4-2), (3-3) is continuous with the first delay line (3-2) of the antenna circuit (7-2). A delay line of I82 is provided to provide a phase difference between the signals of both antenna circuits (7-1) and (7-2), and (5) is a no.1 hybrid coupler (
3dB coupler), Σ, and Δ are its input and output terminals. Here, the circuit including the radiators (1-1) and (1-2) will be referred to as group A, and the circuit including the radiators (1-3 and 1-4) will be referred to as group B.

次に周波数走査アンテナの原理について説明する。いま
簡単のために放射器用結合器を略して、第2図の回路で
考える。
Next, the principle of a frequency scanning antenna will be explained. For simplicity, we will omit the radiator coupler and consider the circuit shown in Figure 2.

放射器(1−1)から放射器(1−2)までの遅延線路
(3−1)の長さをS、線路内波長をλg、空間波長を
λ、放射器(1−1)と(1−2)との間隔をd、ビー
ム指向角度をθとすると、これらの間には次式の関係が
ある。
The length of the delay line (3-1) from the radiator (1-1) to the radiator (1-2) is S, the wavelength in the line is λg, the spatial wavelength is λ, and the radiator (1-1) and ( 1-2) and the beam direction angle is θ, the following relationship exists between them.

か得られる。式(2)より、周波数、したがってχ。or can be obtained. From equation (2), the frequency, and therefore χ.

χgを変えるとビーム指向角度θを変えることができる
。これが周波数走査アレイアンテナの原理である。
By changing χg, the beam directivity angle θ can be changed. This is the principle of a frequency scanning array antenna.

さて第1図にもどって動作について説明する。Now, returning to FIG. 1, the operation will be explained.

ハイブリッド結合器(5)のΣ端子から入力された電波
は2等分配され、一方の電波は遅延線路(3−1)を通
り、放射器用結合器(2−1)に達する。
The radio waves input from the Σ terminal of the hybrid coupler (5) are equally divided into two, and one radio wave passes through the delay line (3-1) and reaches the radiator coupler (2-1).

ここでこの放射器用結合器(2−1)の結合度に応じて
分岐された電波は放射器(1−1)より放射される。残
りの電波は放射器用結合器(2−2)に達し、その結合
度に応じて分岐され、放射器<1−2)より放射される
。残りの電波は無反射終端器(4−1)に吸収される。
Here, radio waves branched according to the coupling degree of the radiator coupler (2-1) are radiated from the radiator (1-1). The remaining radio waves reach the radiator coupler (2-2), are branched according to the degree of coupling, and are radiated from the radiator <1-2). The remaining radio waves are absorbed by the non-reflection terminator (4-1).

他方、遅延線路(3−3)に分配された電波は、上記と
同様にして、放射器(1−3) (1−4)より放射さ
れ、残りは無反射終端器(4−2)Gこ吸収される。
On the other hand, the radio waves distributed to the delay line (3-3) are radiated from the radiators (1-3) (1-4) in the same manner as above, and the rest are sent to the non-reflection terminator (4-2) G. This is absorbed.

ここで各放射器(1−1)、(1−2)、(1−3)。Here, each radiator (1-1), (1-2), (1-3).

(1−4)間の間隔をdとし、ハイブリッド結合器(5
)から放射器用結合器(2−1) 、 (2−2) 、
 (2−3)。
(1-4) is d, and the hybrid coupler (5
) to radiator coupler (2-1), (2-2),
(2-3).

(2−4)までの遅延線路長をそれぞれll+ 12 
e J’1ej4として、 lx−11= 6 12= 14−1s= S  ・・
・・・・・・・  (3)となるように選んでおくと、
ハイブリッド結合器(5)のΣ端子から入力された電波
は、すでに説明したように、(2)式で与えられるビー
ム指向角度θで放射器(1−1)〜(1−4)から放射
される。
Let the delay line length up to (2-4) be ll+12, respectively.
As e J'1ej4, lx-11= 6 12= 14-1s= S...
If you choose (3),
As already explained, the radio waves input from the Σ terminal of the hybrid coupler (5) are radiated from the radiators (1-1) to (1-4) at the beam direction angle θ given by equation (2). Ru.

上記は送信の場合について説明したが、受信の場合は、
上記と逆の径路をたどり、ハイブリッド結合器(5)に
おいて、放射器(1−1)〜(1−4)のすべての電波
を同相合成した和信号と、放射器(1−1)と(1−2
)の合成波と放射器(1−3)と(1−4)の合成波と
の差をとった差信号とが得られ、和信号がΣ端子から取
出され、差信号がΔ端子から取出される。
The above explained the case of sending, but in the case of receiving,
Following the opposite route to the above, the hybrid coupler (5) combines the sum signal obtained by in-phase combining all the radio waves of the radiators (1-1) to (1-4) with the sum signal of the radiators (1-1) and ( 1-2
) and a difference signal obtained by taking the difference between the combined waves of radiators (1-3) and (1-4), the sum signal is taken out from the Σ terminal, and the difference signal is taken out from the Δ terminal. be done.

従来のモノパルス測角機能を有する周波数走査アレイア
ンテナ装置は以上のように構成されているので、B群の
遅延線路<3−2)(3−3)はA群の遅延線路(3−
1)に比べて第2の遅延線路(3−3)の線路長2Sだ
け長く、両者の藺には線路長25分の電力損失の差が生
じ、その結果A群とB群との境界で電力損失の差分たけ
第3図に示すように振幅分布に段差ΔLが生じ、利得低
下や差パターンのヌルシフトが生じるという欠点があっ
た。
Since the conventional frequency scanning array antenna device having a monopulse angle measurement function is configured as described above, the delay line of group B <3-2) (3-3) is replaced by the delay line of group A (3-3).
Compared to 1), the line length of the second delay line (3-3) is longer by 2S, and there is a difference in power loss between the two lines corresponding to the line length of 25, and as a result, at the boundary between Group A and Group B, As shown in FIG. 3, the power loss difference has a step difference ΔL in the amplitude distribution, resulting in a decrease in gain and a null shift in the difference pattern.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、モノパルス測角機能を有する周波
数走査アレイアンテナ、装置において、ハイブリッド結
合器を、遅延線路長の差による電力損失を補償する結合
度を有する方向性結合器とすることにより、利得低下及
び差パターンのヌルシフトの発生を防止できるようにし
たアレイアンテナ装置を提供することを目的としている
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and in a frequency scanning array antenna and device having a monopulse angle measurement function, a hybrid coupler is used to compensate for power loss due to difference in delay line length. It is an object of the present invention to provide an array antenna device that can prevent a decrease in gain and a null shift of a difference pattern by using a directional coupler having a degree of coupling as follows.

以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明の一実施例によるモノ4tレス測角機能
を有する周波数走査アレイアンテナ装置を示す。図にお
いて、第1図と同一符号は同図と同一のものを示し、(
6)はB群の第2の遅延線路(3−3)での電力損失を
補償する結合度を有する方向性結合器である。
FIG. 4 shows a frequency scanning array antenna device having a mono 4T angle measurement function according to an embodiment of the present invention. In the figures, the same symbols as in Fig. 1 indicate the same parts as in the same figure, and (
6) is a directional coupler having a degree of coupling that compensates for power loss in the second delay line (3-3) of group B.

次に作用効果について説明する。Next, the effects will be explained.

B群の遅延線路(3−2)(3−3)の電力損失と、A
群の遅延線路(3−1)の電力損失との差、即ち第2の
線路(3−3)での電力損失をΔLdBとしたとき、方
向性結合器(6)のΣ端子から遅延線路(3子からB群
へ分配される電力は、A群に分配される電力よりもΔL
dBだけ多く分配される。したがってΣ端子から入力さ
れた電波が2分配され、そとは等しくなり、第5図に示
すようにA群とB群との境界で振幅分布のレベルが一致
し、利得低下および差パターンのヌルシフトが生じるこ
とはない。
Power loss of delay lines (3-2) (3-3) of group B and A
When the difference from the power loss in the group delay line (3-1), that is, the power loss in the second line (3-3), is ΔLdB, the delay line ( The power distributed from the triplets to group B is ΔL lower than the power distributed to group A.
dB more is distributed. Therefore, the radio waves input from the Σ terminal are divided into two parts, which become equal, and as shown in Figure 5, the level of the amplitude distribution matches at the boundary between groups A and B, resulting in a decrease in gain and a null shift in the difference pattern. will not occur.

ここで方向性結合器(6)として分配後の位相差が90
°のものを使用する場合は、90°移相器で補正を行な
う。例えはΣ端子から入力してA群に分配される電波の
位相がB群に分配されるそれよりも90°遅れている場
合には、A群の遅延線路(3−1)に位相を90進ませ
る移相器を挿入するか、あるいはB群の遅延線路(3−
2)(3−3)に位相を90遅らせる移相器を挿入すれ
ばよい。たたしこの場合、挿入する移相器での電力損失
を考慮して方向性結合器(6)の結合度を決める必要が
ある。
Here, as a directional coupler (6), the phase difference after distribution is 90
When using a 90° phase shifter, correction is performed using a 90° phase shifter. For example, if the phase of the radio wave input from the Σ terminal and distributed to group A is delayed by 90 degrees than that distributed to group B, the phase is changed to the delay line (3-1) of group A by 90 degrees. Either insert a phase shifter to advance the
2) A phase shifter that delays the phase by 90 degrees may be inserted in (3-3). However, in this case, it is necessary to determine the degree of coupling of the directional coupler (6) in consideration of power loss in the inserted phase shifter.

なお上記実施例では直列給電の場合について説明したが
、本発明は第6図に示すような並列給電の場合にも適用
でき、上記実施例と同様の効果を奏する。また上記実施
例では放射器の個数を4とした場合について説明したが
、この放射器の個数は4より多くてもよい。また上記実
施例では振幅分布を一様分布としているが、この振幅分
布はもちろんテーバ状分布であってもよい。
In the above embodiment, the case of series power supply has been described, but the present invention can also be applied to the case of parallel power supply as shown in FIG. 6, and the same effects as in the above embodiment can be obtained. Further, in the above embodiment, the case where the number of radiators is four has been described, but the number of radiators may be greater than four. Further, in the above embodiment, the amplitude distribution is a uniform distribution, but the amplitude distribution may of course be a Taber-like distribution.

以上のように本発明によれば、モノパルス測角機能を有
する周波数走査アレイアンテナ装置において、アンテナ
回路に信号を分配するかあるいはアンテナ回路からの信
号より和信号及び差信号を合成する結合器として、アン
テナ回路間の遅延線路長の差による電力損失を補償する
結合度を有する方向性結合器を使用するようにしたので
、利得低下及び差パターンのヌルシフトの発生を防止で
きる効果がある。
As described above, according to the present invention, in a frequency scanning array antenna device having a monopulse angle measurement function, as a combiner that distributes a signal to an antenna circuit or synthesizes a sum signal and a difference signal from signals from the antenna circuit, Since a directional coupler having a degree of coupling that compensates for power loss due to a difference in delay line length between antenna circuits is used, it is possible to prevent a decrease in gain and a null shift of a difference pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のモノパルス測角機能を有する周波数走査
アレイアンテナ装置の構成図、9J2図は周波数走査ア
ンテナの原理を説明するための図、第3図は上記装置に
おける振幅分布を示す図、第4図はこの発明の一実施例
によるモノパルス測角機能を有する周波数走査アレイア
ンテナ装置の構成図、第5図は上記装置の振幅分布を示
す図、第6図は本発明の他の実施例によるアレイアンテ
ナ装置の構成図である。 (1−1)〜(1−4)・・・放射器(アンテナ)、(
3−1)(3−2)・・・第1の遅延線路、(3−3)
・・・第2の遅延線路、(6)・・・方向性結合器、(
7−1)(7−2)・・・アンテナ回路。 なお図中、同一符号は同−又は相当部分を示す。 代理人  葛 野 信 − 第1図 第2図 第3図 第5図 第4図 ΔΣ
Fig. 1 is a block diagram of a conventional frequency scanning array antenna device having a monopulse angle measurement function, Fig. 9J2 is a diagram for explaining the principle of a frequency scanning antenna, Fig. 3 is a diagram showing the amplitude distribution in the above device, FIG. 4 is a configuration diagram of a frequency scanning array antenna device having a monopulse angle measurement function according to one embodiment of the present invention, FIG. 5 is a diagram showing the amplitude distribution of the above device, and FIG. 6 is a diagram according to another embodiment of the present invention. FIG. 2 is a configuration diagram of an array antenna device. (1-1) to (1-4)...Radiator (antenna), (
3-1) (3-2)...first delay line, (3-3)
... second delay line, (6) ... directional coupler, (
7-1) (7-2)...Antenna circuit. In the drawings, the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 ΔΣ

Claims (1)

【特許請求の範囲】[Claims] C1)モノパルス測角機能を有する周波数走査アレイア
ンテナ装置であって、一対のアンテナと該両アンテナの
信号間に位相差を与える第1の遅延線路とからなる複数
のアンテナ回路と、隣接する上記アンテナ回路の信号間
、に位相差を与える第2の遅延線路と、該第2の遅延線
路での電力損失を補償する結合度を有し上記各アンテナ
回路に送信信号を分配するかあるいは上記各アンテナ回
路からの受信信号より和信号及び差信号を合成する方向
性結合器とを鍋えたことを特徴とするアレイアンテナ装
置。
C1) A frequency scanning array antenna device having a monopulse angle measurement function, comprising a plurality of antenna circuits each including a pair of antennas and a first delay line that provides a phase difference between the signals of both antennas, and the adjacent antennas. A second delay line that provides a phase difference between the signals of the circuit, and a degree of coupling that compensates for power loss in the second delay line, and distributes the transmission signal to each of the antenna circuits, or distributes the transmission signal to each of the antenna circuits. An array antenna device comprising a directional coupler that combines a sum signal and a difference signal from received signals from a circuit.
JP20292581A 1981-12-15 1981-12-15 Array antenna device Pending JPS58103206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20292581A JPS58103206A (en) 1981-12-15 1981-12-15 Array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20292581A JPS58103206A (en) 1981-12-15 1981-12-15 Array antenna device

Publications (1)

Publication Number Publication Date
JPS58103206A true JPS58103206A (en) 1983-06-20

Family

ID=16465424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20292581A Pending JPS58103206A (en) 1981-12-15 1981-12-15 Array antenna device

Country Status (1)

Country Link
JP (1) JPS58103206A (en)

Similar Documents

Publication Publication Date Title
US3392395A (en) Monopulse antenna system providing independent control in a plurality of modes of operation
JP4469009B2 (en) Method and apparatus for improving performance in a waveguide-based spatial power combiner
EP0253465B1 (en) Beam forming antenna system
US2585173A (en) Radio-frequency transmission line circuit
US4583061A (en) Radio frequency power divider/combiner networks
US4814775A (en) Reconfigurable beam-forming network that provides in-phase power to each region
US4121220A (en) Flat radar antenna employing circular array of slotted waveguides
US3710281A (en) Lossless n-port frequency multiplexer
US4612548A (en) Multi-port radio frequency networks for an antenna array
CA1234621A (en) Crossover traveling wave feed
CA1122284A (en) Two into three port phase shifting power divider
US5717405A (en) Four-port phase and amplitude equalizer for feed enhancement of wideband antenna arrays with low sum and difference sidelobes
GB1600346A (en) Antenna system having modular coupling network
US5302953A (en) Secondary radar antenna operating in S mode
US2818549A (en) Antenna coupling network
US3938160A (en) Phased array antenna with array elements coupled to form a multiplicity of overlapped sub-arrays
US4176359A (en) Monopulse antenna system with independently specifiable patterns
JP2020092458A (en) Isolation in multi-port amplifier
GB1577228A (en) 4-input/4-output port rf coupler
JPS58103206A (en) Array antenna device
US4176322A (en) Radio frequency lens
WO2017203597A1 (en) Three power divider and multibeam forming circuit
RU2364999C1 (en) Distributor for phased antenna
USH880H (en) In-plane transmission line crossover
US3063025A (en) Waveguide network