JPS58102180A - X ray spectroscopy - Google Patents

X ray spectroscopy

Info

Publication number
JPS58102180A
JPS58102180A JP56201385A JP20138581A JPS58102180A JP S58102180 A JPS58102180 A JP S58102180A JP 56201385 A JP56201385 A JP 56201385A JP 20138581 A JP20138581 A JP 20138581A JP S58102180 A JPS58102180 A JP S58102180A
Authority
JP
Japan
Prior art keywords
kinetic energy
photoelectrons
ray
layer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201385A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagai
一敏 長井
Ikuo Okada
岡田 育夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56201385A priority Critical patent/JPS58102180A/en
Publication of JPS58102180A publication Critical patent/JPS58102180A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To form a spectro-photometer of soft X ray in a compact size by measuring photoelectrons released from a nitrogen absorbed layer when X ray irradiates the layer. CONSTITUTION:A metal substrate 2 is cooled with a cooler 3 full of liquid helium so that a nitrogen gas will be adsorbed on the surface thereof to form a nitrogen adsorbed layer 4. When X ray to be measured irradiates the layer 4, photoelectrons 5 are released therefrom 4. Kinetic energy of the photoelectrons 5 give various values according to various frequencies, which the X ray 1 contains. Then, the ptotoelectrons 5 are introduced to a kinetic energy discriminator 6 to measure the kinetic energy of the electrons along with the quantity thereof, which provides a spectrum with the kinetic energy corresponding to the wavelength of X ray and the quantity of the photoelectrons corresponding to the luminous intensity thereof.

Description

【発明の詳細な説明】[Detailed description of the invention]

不発明はX−1特に波長lI〜30Xの範囲の軟X I
I Q)波長と強度を簡単に測定できるXII分光決&
:UTる〇 従来のX@分光法は、■半導体検出III用いるも41
1、■回折結晶(又は回折格子)
The uninvention is X-1, especially soft X I in the wavelength range lI to 30X.
IQ) XII spectroscopy that allows easy measurement of wavelength and intensity
:UTru〇Conventional X@ spectroscopy uses ■semiconductor detection III 41
1.■ Diffraction crystal (or diffraction grating)

【用いるもU」に大別
され、ざら&:@は■回折結晶(又は回折格子) rt
O−ランド円周上に移動させつつ計るもの、@回折結晶
(又は回折格子)の置かれたローランド円と同一のロー
ランド円周上にX1mフィルム【l&置するものにわけ
られる。ところで、これらのX線分光法のうち、■は牛
導体検出器の応答速度の点でIP臓以下の短いパルスX
Ha U分光覚度漉定に不運であるほか、波長101以
上の軟xlIの検出分光が困離である◎また■QJのは
パルスXIIの分光光度滴定には長時間を要し、実用的
でない。 また更に■の@はX−の波長が長くなるに従って回折結
晶(又は回折格子)の焦点が伸びるために装置が大掴化
Tる欠点がある・ 本発明は上記の事情に鑑み、パルス放射のX@。 連続放射のX1m1間めずに軟Xsの分光光度の測定が
可能であり、かつ使用Tる装置の小溜化【計ることので
きるX@分光決【II&供Tるもので、窒素に分光Tべ
きXIIIt照射し、放出Tる光電子の運動エネルギー
および量111定することにより波長域/zwsolt
o軟XIIの波長オヨび強度III定Tることrt41
1黴とするものである0以下、不発明【図11+rt参
照して胛細に説明’r&II/図は不発明σ)一実施例
【示T閣であって、この(2)においてlは分光丁べき
xm、mは金属基板、8は冷却器、会は窒素吸着層、b
は光電子、6は光1子の運動エネルギー弁別器、7は真
空容器である。 金属基板8は清浄な状態に仕上げられたものであって、
例えば液体ヘリウムなどを満した冷却器B&:よって充
分に冷却され、千の1111にはNガス【@着させるこ
とにより窒素吸着jiltが形rlLiれでいる。これ
に分光TべきX@1tj111射Tれば、窒素吸着層か
ら光電子が放出される。 通常窒素のに軌道電子はJetツeVの結合エネルギー
で原子核と結合して安定状1mヲ保っているが、振動数
νu=X@の照射管うけると励起されてhシー3ツ2t
←1iik)・V  as運動エネルギーを持った光電
子となって真空中にとび出して来る。X線か種々の振動
数【含んでいると十れに応じて光電子の運動エネルギー
Bkもだ!ざまな錬【と4十こで光電子SK−運動エネ
ルギー弁N116に導いて運動エネルギー【測定し、同
時に光電子の置【測定Tれば、X纏波長に対応した運動
エネルギーと光度に対応した光電子量としτsamに示
Tようなスペクトルが得られる。これによりXllの分
光光度か測定される。これらの滴定は空気によるX@の
吸収、光電子の散乱管防止Tるために真空容III?の
中で行われる。この測定に際し、運動エネルギー弁別器
として写真フィルムタイプのもの管用いればxIIが短
いパルスの場合にも分光が可能である。 なお、XII波長がhν<392?eVの条件e滴丁場
会、つまり波長がJl/A以上の波長域では光電子は極
*&:減衰Tる。振動数νのX劇照射をうけた窒素はオ
ージェ効果によりhシーttS参・Vの光電子も放出す
るからhν>ttS参〇Vなる振動数に対応Tる波長t
@sl以下のXII#)分光には不適である。 したかって窒素吸着層を用いる場合の測定可能なXs波
長は/#−JOKである@ 盲た、113図は本発明の別の実施例e示T回である。 この図においてII/Itと同一の構成要素には同−符
号管付しである。この図において窒素ガX 9 ハ/ 
スA l 01m”)TXIIl[射1i11P1c導
かれる。1111内に導かれた窒素ガスには[11aJ
Xh照射孔xm+sし”r分光Tべ@X@l か照射さ
れる◎迩11内で得られる光電子は島I図すJ勘合と同
様に運動エネルギー弁別#6に導かれる。 かくしてこU]運動エネルギー弁別I#6において塾1
(2)rh s &と同様の111I足【行うことによ
りX線の分光光度を測定することかできる。なお、図に
おいてt3t*は各々窒素ガスによるX線の吸収、光電
子の散乱【防ぐためXh*1NN11%真真空−−7【
排気Tる排気口である・ 以上脱鳴したように、本発明は光電子Q)運動エネルギ
ーおよび量tllji!TることによりXaNの分光【
行う。この本発明によれば、パルス放射σ】X−1連続
放射のXIIMrt8わずに軟X11の分光光度の滴定
【行うことが可能であり1かっ使用Tる装置11f−小
形化できる利点かある。
[Use is roughly divided into U], Zara&:@ is ■ Diffraction crystal (or diffraction grating) rt
There are two types: one in which the measurement is performed while moving on the O-Land circumference, and one in which the X1m film is placed on the same Rowland circumference as the Rowland circle on which the diffraction crystal (or diffraction grating) is placed. By the way, among these X-ray spectroscopy methods, ■ is a short pulse
In addition to being unlucky in determining the Ha U spectral sensitivity, it is difficult to detect soft xlI with a wavelength of 101 or more ◎ In addition, QJ requires a long time for spectrophotometric titration of pulsed XII, making it impractical. . Furthermore, the @ of ① has the disadvantage that the focal point of the diffraction crystal (or diffraction grating) becomes longer as the wavelength of X- becomes longer, making the device difficult to grasp. X@. It is possible to measure the spectrophotometry of soft Xs within X1m1 of continuous radiation, and it is possible to use a small-sized device [Measureable X@Spectroscopy]. By determining the kinetic energy and quantity of the photoelectrons emitted by the
o Soft XII wavelength and intensity III constant T rt41
1 mold is defined as 0 or less, non-invention [explained in detail with reference to Figure 11+rt'r&II/figure is non-invention σ] An example xm, m is the metal substrate, 8 is the cooler, board is the nitrogen adsorption layer, b
is a photoelectron, 6 is a kinetic energy discriminator for a single photon, and 7 is a vacuum container. The metal substrate 8 is finished in a clean state,
For example, the cooler B& filled with liquid helium etc.: Therefore, it is sufficiently cooled, and by depositing N gas on 1111, a nitrogen adsorbing jilt is formed. If the spectrum T is multiplied by X@1tj111 rays T, photoelectrons are emitted from the nitrogen adsorption layer. Ordinarily, the orbital electrons of nitrogen bond with the atomic nucleus with a binding energy of Jetts eV and maintain a stable state of 1 m, but when exposed to an irradiation tube with a frequency of νu =
←1iik) ・V as It becomes a photoelectron with kinetic energy and jumps out into the vacuum. X-rays or various frequencies [depending on the number of vibrations included, the kinetic energy Bk of photoelectrons is also included! At the 40th point, the photoelectrons are guided to the kinetic energy valve N116 to measure the kinetic energy, and at the same time the photoelectron position is measured. Then, a spectrum like T shown in τsam is obtained. This allows the spectrophotometric intensity of Xll to be measured. These titrations are carried out in vacuum volume III to prevent the absorption of X@ by air and the scattering tube of photoelectrons. It takes place inside. In this measurement, if a photographic film type tube is used as a kinetic energy discriminator, spectroscopy is possible even when xII is a short pulse. In addition, the XII wavelength is hν<392? In the eV condition, that is, in the wavelength range of Jl/A or more, photoelectrons are attenuated. Nitrogen subjected to X-ray irradiation with a frequency of ν also emits photoelectrons of hsheet ttS and V due to the Auger effect, so the wavelength of T corresponds to the frequency of hν > ttS and V.
@sl or below XII#) Not suitable for spectroscopy. Therefore, the measurable Xs wavelength when using a nitrogen adsorption layer is /#-JOK. Figure 113 shows another embodiment of the present invention. In this figure, the same components as II/It are labeled with the same code. In this figure, nitrogen gas
Nitrogen gas introduced into 1111 contains [11aJ
Xh irradiation hole School 1 in Energy Discrimination I#6
(2) 111I foot similar to rh s & [By doing so, the spectrophotometric intensity of X-rays can be measured. In the figure, t3t* is Xh*1NN11% vacuum to prevent absorption of X-rays by nitrogen gas and scattering of photoelectrons, respectively.
As mentioned above, the present invention is capable of controlling photoelectron Q) kinetic energy and quantity tllji! Spectroscopy of XaN by T
conduct. According to the present invention, it is possible to perform spectrophotometric titration of soft X11 without pulsed radiation [sigma]X-1 continuous radiation XIIMRt8, and there is an advantage that the apparatus 11f can be made smaller using only one device.

【図面の簡単な説明】[Brief explanation of the drawing]

總1図は本発明U】一実施例【示T説明(2)、■コ(
2)は同v4施例(おいて滴定される光電子の強度【運
動エネルギーと(1)−係を示T図、IK、7図は本命
−QJ別の実施例【示T説明図である。 1・・・・・・X−、ト・・・・・金属基板、8・・川
・冷却器、番・・・・・・窒素の吸着層、6・・・・・
・光電子、6・・・・・・運動エネルギー弁別器、7・
・・・・・真空容器、9・・・・・・窒素ガス、lO・
・・・・・ノズル%11・・・°・・xsn射III、
1m・・・・・・XIl照射孔。 出願人日本電信電話公社 第1図 7 第2図 運動ニーネルN゛− 第3図 41
Figure 1 shows the present invention U] One embodiment [Explanation (2),
2) is a T diagram showing the relationship between the intensity (kinetic energy and (1)) of photoelectrons titrated in the same v4 example, IK, and Figure 7 is an explanatory diagram showing another example of Favorite-QJ. 1...X-, G...Metal substrate, 8...River cooler, No....Nitrogen adsorption layer, 6...
・Photoelectron, 6...Kinetic energy discriminator, 7.
...Vacuum container, 9...Nitrogen gas, lO.
...Nozzle %11...°...xsn radiation III,
1m...XIl irradiation hole. Applicant Nippon Telegraph and Telephone Public Corporation Figure 1 7 Figure 2 Movement Ninel N - Figure 3 41

Claims (1)

【特許請求の範囲】 窒素な分光丁べきxillm射し、放出Tる光電子の運
動エネルギーおよび量III定することにより波長域1
2〜JQ人の軟XIIの波長および強度III定するこ
と【特徴とするxs1分光分光
[Claims] By determining the kinetic energy and amount of photoelectrons emitted from nitrogen, the wavelength range 1 can be determined.
2 ~ Determining the wavelength and intensity of JQ human soft XII [Characteristics of xs1 spectroscopy
JP56201385A 1981-12-14 1981-12-14 X ray spectroscopy Pending JPS58102180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201385A JPS58102180A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201385A JPS58102180A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Publications (1)

Publication Number Publication Date
JPS58102180A true JPS58102180A (en) 1983-06-17

Family

ID=16440201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201385A Pending JPS58102180A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Country Status (1)

Country Link
JP (1) JPS58102180A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Similar Documents

Publication Publication Date Title
Alecian et al. Characterization of the magnetic field of the Herbig Be star HD 200775
Demasa et al. The measurement of photoluminescence quantum yields. 1 A Review2
Bloemen Diffuse galactic gamma-ray emission
Alexander et al. The Chandra deep field north survey. VI. The nature of the optically faint X-ray source population
Bamba et al. Chandra observations of galactic supernova remnant Vela Jr.: a new sample of thin filaments emitting synchrotron X-rays
CN101228609B (en) Determining layer thickness using photoelectron spectrum
Sharma Spectroscopy
JPH03505251A (en) Methods for measuring thickness and composition of films on substrates
Hirayama et al. X-Ray/Gamma-Ray Observations of the PSR B1259–63/SS 2883 System near Apastron
Romani The spectral energy distribution of the high-z blazar Q0906+ 6930
Nargolwalla et al. Technique for the evaluation of systematic errors in the activation analysis for oxygen with 14-Mev. neutrons
Kahlon et al. Experimental investigation of alignment of the L3 subshell vacancy state produced after photoionisation in lead by 59.57 keV photons
Davis et al. " Polywater": Evidence from electron spectroscopy for chemical analysis (ESCA) of a complex salt mixture
JPS58102180A (en) X ray spectroscopy
Osborne et al. Determination of the K/π ratio from electromagnetic cascade measurements
Meshcheryakov et al. Evolution of broad-band SED during outburst rise in NS X-ray Nova Aql X-1
Ghisellini et al. The blazar PKS 0528+ 134: new results from BeppoSAX observations
Yonezawa et al. Determination of boron in Japanese geochemical reference samples by neutron-induced prompt gamma-ray analysis
Schrader The Angular Correlation of the Cascade Gamma Rays from the Decay of Au 198
Seto et al. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes
Skillman et al. Thermal and non-thermal radio continuum emission from II Zw 70
US2200853A (en) Apparatus for measuring ultraviolet radiations
JPH01270690A (en) Measuring method of intensity of x-ray for exposure
Lund et al. Experimental special relativity with a meter stick and a clock
Goss et al. Variable radio emission from the extragalactic supernova 1970g in M101