JPS58101728A - Removing method for nitrogen oxides in waste gas of combustion - Google Patents

Removing method for nitrogen oxides in waste gas of combustion

Info

Publication number
JPS58101728A
JPS58101728A JP56200586A JP20058681A JPS58101728A JP S58101728 A JPS58101728 A JP S58101728A JP 56200586 A JP56200586 A JP 56200586A JP 20058681 A JP20058681 A JP 20058681A JP S58101728 A JPS58101728 A JP S58101728A
Authority
JP
Japan
Prior art keywords
combustion
nitrogen
waste
night soil
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56200586A
Other languages
Japanese (ja)
Inventor
Hidehiro Kito
木藤 栄寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP56200586A priority Critical patent/JPS58101728A/en
Publication of JPS58101728A publication Critical patent/JPS58101728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove NOX in waste gas of combustion at low running costs by feeding night soil into the waste gas of combustion of relatively high temp. and reducing NOX with the ammonia nitrogen in the night soil. CONSTITUTION:Human or livestock night soil is fed by spraying or the like to the flow of waste combustion gas at 850-1,100 deg.C and NOX in the waste combustion gas is removed perfectly or partially by a dry method using no catalyst. About >=60% of the nitrogen in the night soil is ammonia nitrogen which reduces NOX in the waste gases in the above-mentioned temp. range and further induces the chemical oxidation reaction by O2, whereby N2, CO2 and H2O are formed. Therefore, the best place for feeding the night soil is right after burning out of fuel, an when O2 is deficient in the combustion gas, a method for feeding the same in a form of mist together with air is suited.

Description

【発明の詳細な説明】 本発明はし尿を用いて燃焼ガス中の窒素酸化物(NOX
 )を完全に、まf(は部分的に除去する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses human waste to reduce nitrogen oxides (NOx) in combustion gas.
) is completely removed, and maf( is partially removed).

燃焼排ガス中の101を完全に、または部分的に除去す
る(以下除去するという0)方法に、乾式法と湿式法が
あり、乾式法はさらに触媒法と無触媒法とに分けられる
Methods for completely or partially removing (hereinafter referred to as 0) 101 in combustion exhaust gas include dry methods and wet methods, and dry methods are further divided into catalytic methods and non-catalytic methods.

触媒法は、例えば、燃焼排ガス渥度が約300〜400
℃の中温域に還元性薬品(たとえばアンモニアなど)を
吹込み、その直後に設置され九、たとえば、11%0ζ
Pt  などを含む触媒層を通過させることにより、N
oをM14C還元する方法である。(高温におけるMO
Xは実質的KMOである。、)ま九、無触媒法は還元性
の薬品(アンモニア、尿素など)を高温の燃焼室内に吹
込むことによって、これらと排ガス中のNoとを無触媒
的に反応させMlにする方法である。
In the catalyst method, for example, the combustion exhaust gas purity is about 300 to 400.
A reducing agent (such as ammonia) is injected into the medium temperature range of ℃ and installed immediately after that, for example, 11% 0
By passing through a catalyst layer containing Pt etc., N
This method reduces o to M14C. (MO at high temperature
X is effectively KMO. ,) The non-catalytic method is a method in which reducing chemicals (ammonia, urea, etc.) are injected into a high-temperature combustion chamber, and the NO in the exhaust gas is reacted non-catalytically to produce Ml. .

また、湿式法は、水博液により、比較的低温で、Mol
を溶去する方法で、HOtMO!に酸化するために、例
えばオゾンや0101  を用い、亜硫酸ナトリクム水
溶液などに吸収させると同時に還元して、窒素ガスにす
る。
In addition, in the wet method, Mol.
HOtMO! In order to oxidize to nitrogen, for example, ozone or 0101 is used, which is absorbed into a sodium sulfite aqueous solution and simultaneously reduced to nitrogen gas.

これら3方法のうち、混弐沫は、設備費、運転費共に他
の方法に比し著しく大であり、現在はとんど用いられて
いない。
Among these three methods, the mixing method has significantly higher equipment costs and operating costs than the other methods, and is hardly used at present.

また、乾式法のうちの触媒法は、NPG、 LPGや灯
油の燃焼排ガスのように硫黄酸化物(aOX )その他
触媒毒がほとんど存在しないガスには有利に利用できる
が、廃棄物燃焼炉、石炭焚の炉の場合のように、燃焼排
ガス中に1煤塵、硫黄酸化物(110X)、塩化水素ガ
スなどを含む場合、用いられない。
Among the dry methods, the catalytic method can be advantageously used for gases such as NPG, LPG, and kerosene combustion exhaust gas that contain almost no sulfur oxides (aOX) or other catalyst poisons, but they It is not used when the combustion exhaust gas contains soot, sulfur oxides (110X), hydrogen chloride gas, etc., as in the case of a fire-burning furnace.

し九がって、特にダーティガス用としては無触線法に頼
らざるを得ないが、この方法についても、使用する薬品
、例えば、アンモニア、尿素、ま化 たは場合によりこれらと併用する水素、−酸炭素、炭化
水素などは、いずれも高価なので、運@経責を高くする
欠点がある。
Therefore, especially for dirty gases, we have to rely on the non-contact method, but this method is also sensitive to the chemicals used, such as ammonia, urea, or hydrogen in combination with these. , -Acid carbons, hydrocarbons, etc. are all expensive, so they have the disadvantage of increasing luck and responsibility.

上記事情にかんがみ、本発明の目的は、運に費を低紙さ
せた、燃焼排ガス中のMolを低減させる方法を提供す
ること、さらに狭義には、し尿を用いてMOXを還元す
る方法を提供すること、し尿の軸用な利用方法を提供す
ることである。
In view of the above circumstances, it is an object of the present invention to provide a method for reducing Mol in combustion exhaust gas that is inexpensive and, more narrowly, to provide a method for reducing MOX using human waste. The purpose of the present invention is to provide a method for utilizing human waste.

すなわち、本発明は上記し九アンモニア、尿素の代わり
に1人間ま九は畜産劇物のし尿を使用するもので、し尿
の成分は例えば人聞のし尿の場合、その性質、成分を示
すと次のとおりである。
That is, the present invention uses night soil, which is a poisonous substance for livestock, in place of the ammonia and urea mentioned above. It is as follows.

PH7豐9 浮遊物   21,000〜26,000 ppmBO
D     8,000〜15,000  ppm1t
索   5,000〜6,000  ]>pmアンモニ
ア性窒素3,000〜4,000 DPIIIアルプミ
ノイド窒素 1,000〜2,000 ppm蒸発伐留
物  3.0〜3,5% (ただし、]>P”および%は重置基準値である。)上
記したアルブミノイド窒素もタン白質性の窒・素である
から、置換アンモニアと考えられ、したがって、人間の
し尿中の窒素の60〜80%が広義のアンモニア系とい
うことができる。
PH7 9 Floating matter 21,000-26,000 ppmBO
D 8,000-15,000 ppm1t
5,000-6,000 ]>pm Ammonia nitrogen 3,000-4,000 DPIII alpminoid nitrogen 1,000-2,000 ppm Evaporative logging 3.0-3.5% (However, ]>P (The above-mentioned albuminoid nitrogen is also a proteinaceous nitrogen/element, so it is considered to be substituted ammonia. Therefore, 60 to 80% of the nitrogen in human excrement is nitrogen in a broad sense. It can be said to be ammonia-based.

まえ家1のし尿について、その性質、分析例を示すと、 PH7,0 浮遊物   21,000〜26.000 ppmBO
D     8,000〜17.000 PI>m全f
i1素   4000〜5,000 ppmアンモニア
性窒素 2.OQO〜3,000 ppmアルグミノイ
ド窒素 800〜2,000 ppm轟発残留物 3.
0〜5.0% (ただしppmおよび%は重量基準−である。)であっ
て、家畜のし尿についても、その全1巣の55〜80%
が広Aのアンモニア糸である。
Regarding the human waste from Mae House 1, its properties and analysis examples are as follows: PH7.0 Floating matter 21,000-26.000 ppmBO
D 8,000~17,000 PI>m total f
i1 element 4000-5,000 ppm ammonia nitrogen 2. OQO~3,000 ppm Algminoid nitrogen 800~2,000 ppm Roaring residue 3.
0 to 5.0% (ppm and % are based on weight), and 55 to 80% of the total amount of human waste from livestock.
is wide A ammonia thread.

すなわち、控えめに見て、全窒素の約60%以上は広義
のアンモニア系窒素であって、上記分析値に含まれてい
ないが、亜硝酸塩として含まれる窒素はほとんどなく、
硝酸塩として含まれる窒素は10() ppm以下であ
る。
In other words, conservatively speaking, more than 60% of the total nitrogen is ammonia nitrogen in a broad sense, and is not included in the above analysis value, but very little nitrogen is included as nitrites.
The nitrogen content as nitrate is 10() ppm or less.

さて、実験の結果によるとし尿がNoに対して還元力を
発揮するのは約850℃から1100 ’Cの謡度範囲
であって、この際起こる化学反応は、単純化して表わす
と、 4NR1+6NO+:6RコO+511z  ・・・・
・・・・・・・・(1)161JR3+120z=24
RzO+8Nト・・・・・・・・C)(Rtま水率パ子
またはタン白質中の1ミノ基を除いたアミノ基当りの残
基とする。Rが水素原子以外の場合、RsOなるik現
は適当でなく、さらに酸素を消費して、二酸化炭素と水
になる。)となる。
Now, according to the results of experiments, human urine exhibits a reducing power for No in the range of approximately 850°C to 1100'C, and the chemical reaction that occurs at this time can be expressed simply as: 4NR1+6NO+: 6RkoO+511z...
・・・・・・・・・(1) 161JR3+120z=24
RzO+8N...C) (Rt water ratio per amino group excluding 1 amino group in protein. If R is other than a hydrogen atom, RsO ik (Currently, this is not appropriate; it consumes more oxygen and becomes carbon dioxide and water.)

上記反動式は、し尿中の窒素のうちアンモニア糸のもの
のみがMOの還元に関与し得ることと、還元に使用され
なかったアンモニア系物質は燃焼排ガス中の酸素によシ
酸化されて窒素に変わることを化学方程式を用いて示し
たに過ぎず、厳密な物資収支間係を示すためのものでは
ない。
The above-mentioned reaction formula is based on the fact that only ammonia fibers among the nitrogen in human waste can participate in the reduction of MO, and that ammonia-based substances that are not used for reduction are oxidized by oxygen in the combustion exhaust gas and converted to nitrogen. It is merely a chemical equation used to show that changes occur, and is not intended to show the exact relationship between material balances and expenditures.

しかしながら、(2)式から還元に使用され々力為つた
アンモニア系物質を酸化させるに充分な酸素の存在が必
須であることが示峻されるが、すべての燃焼排ガスは、
燃焼炉で余剰空気(厳密には余剰酸素)を用いて燃焼さ
せる結果、酸#を含んでおり、この酸素含有量は、還元
に使用されなかったアンモニア系物質を燃焼させるOK
充分である。
However, it is clear from equation (2) that it is essential to have enough oxygen to oxidize the ammonia-based substances used for reduction, but all combustion exhaust gas
As a result of combustion using surplus air (excess oxygen to be exact) in a combustion furnace, it contains acid #, and this oxygen content is OK to burn ammonia-based substances that were not used for reduction.
That's enough.

また、Noに対するし尿の使用量は、その含有するアン
モニア系物質を窒素のモル欽で表わした場合、10モル
敗に対して、少なくも0;67倍のモル成用いることが
NO全全部還元するために必要なことを示しておシ、実
際には、はぼ当−以上のアンモニア系物質を用いても、
NOを完全に除去することはできないので、過剰に用い
る必要がある。
In addition, the amount of human waste to be used for NO is at least 0:67 times the molar concentration of nitrogen when the ammonia-based substances it contains is expressed as molar nitrogen per 10 molar loss, so that all of the NO can be reduced. However, in reality, even if more than one ammonia-based substance is used,
Since NO cannot be completely removed, it is necessary to use it in excess.

し尿がN0t−還元し得る温度は、前記したように85
0°〜1100℃であるが、実装値でし尿を送入°する
場所としては、燃料が燃焼し終った直後が最適であシ、
°ごみ焼却炉の場合は二次燃焼室入口、嵐鮪焚などのボ
イラの場合は木管群の始−まる所に送入する。この際、
加圧または回転分畦板を使用するなどの力泳で、燃焼排
ガス中へ噴霧状に分散させることが望ましく、もし、燃
焼ガス中の酸素が不足する場合には空気と共に霧状に送
入する方体が便利である。噴霧されたし尿は、高温の下
で気化分解してNOを還元することになる。
As mentioned above, the temperature at which human waste can be reduced to N0t is 85
Although the temperature is 0° to 1100°C, the best place to send human waste according to the actual value is immediately after the fuel has finished burning.
°In the case of a garbage incinerator, it is sent to the entrance of the secondary combustion chamber, and in the case of a boiler such as Arashi-Tuna-fired, it is sent to the beginning of the woodwind group. On this occasion,
It is preferable to disperse it into the combustion exhaust gas in the form of a spray using pressure or force such as using a rotating ridge plate.If there is a lack of oxygen in the combustion gas, it is better to send it in the form of a mist with air. The body is convenient. The sprayed human waste is vaporized and decomposed at high temperatures to reduce NO.

仄に実施例により、未発用のNOj低減方法を具、体向
に説明する。
A method for reducing unreleased NOj will be explained in detail by way of an example.

六mtl’lJ1 排ガスit 55,000M吟への連続燃焼機械式どみ
燃焼炉の炉出口部の燃焼排ガス温度900℃、NO!濃
度1100pp のとき、該炉出口に人間し尿を噴霧し
ft帖米、 し尿送入k  アンモニア系物質  No除去率確〆h
      1%ア:/9ニア水換算ルg/h 714       435         50%
920       561         60%
1100       671         70
%であった。
6mtl'lJ1 Exhaust gas temperature 900℃ at the furnace outlet of the continuous combustion mechanical sluggish combustion furnace to 55,000M Gin, NO! When the concentration is 1100 pp, human human waste is sprayed at the outlet of the furnace.
1% A:/9Nia water equivalent g/h 714 435 50%
920 561 60%
1100 671 70
%Met.

上記のように、人間および家畜のし尿は、燃焼排ガス中
のMO(したがってMOX )を除去するのに有効であ
るが、一方、し尿処理の立場からいうと、最近の処理規
制では1.BODだけでなく、窒素分の低下も要求され
つつあり、そのν味で、BOD成分および含有窒素を二
酸化炭素、水、窒素ガスとして、大気中に放出すること
ができる本方法は極めて有用であり、技術的かつ経済的
な意味で一公害防止に貢献する所大といえる。
As mentioned above, human and livestock human waste are effective in removing MO (therefore MOX) from combustion exhaust gas, but from the perspective of human waste disposal, recent treatment regulations require 1. There is a growing demand for a reduction in not only BOD but also nitrogen content, and this method is extremely useful because it can release BOD components and nitrogen contained into the atmosphere as carbon dioxide, water, and nitrogen gas. This can be said to be a major contribution to pollution prevention in both a technical and economic sense.

なお、燃焼排ガス中へ、し尿を墳1する際、またはその
前後に燃料ガス、例えば−鍍化員素、水素、炭化水素類
、またはこれらの2種以上の混合物を吹込むと、その燃
焼熱で、温度上昇し、水の蒸発熱による温度降下を防げ
るが、このことは必須条件でない。
In addition, if fuel gas, such as -chlorinated carbon, hydrogen, hydrocarbons, or a mixture of two or more of these, is injected into the combustion exhaust gas when or before or after burying human waste, the combustion heat will be increased. This increases the temperature and prevents the temperature from decreasing due to the heat of evaporation of the water, but this is not a necessary condition.

出鯨人  株式会社 り り マ 代理人  弁理士 三 木 正 字 代理人  弁理士 中 村 義〒Dewhaleman Ririma Co., Ltd. Agent: Patent Attorney Masaaki Miki Agent: Patent Attorney Yoshi Nakamura

Claims (1)

【特許請求の範囲】[Claims] 850℃から1100”cの燃焼排ガス流れにし尿を送
入することを特徴とする燃焼排ガス中の窒素酸化物除去
方法。
A method for removing nitrogen oxides from combustion exhaust gas, characterized in that human waste is introduced into the combustion exhaust gas stream at a temperature of 850° C. to 1100”c.
JP56200586A 1981-12-11 1981-12-11 Removing method for nitrogen oxides in waste gas of combustion Pending JPS58101728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200586A JPS58101728A (en) 1981-12-11 1981-12-11 Removing method for nitrogen oxides in waste gas of combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200586A JPS58101728A (en) 1981-12-11 1981-12-11 Removing method for nitrogen oxides in waste gas of combustion

Publications (1)

Publication Number Publication Date
JPS58101728A true JPS58101728A (en) 1983-06-17

Family

ID=16426802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200586A Pending JPS58101728A (en) 1981-12-11 1981-12-11 Removing method for nitrogen oxides in waste gas of combustion

Country Status (1)

Country Link
JP (1) JPS58101728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775514A1 (en) * 1995-11-27 1997-05-28 Ebara Corporation Method for treating exhaust gases and foul water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775514A1 (en) * 1995-11-27 1997-05-28 Ebara Corporation Method for treating exhaust gases and foul water

Similar Documents

Publication Publication Date Title
KR101702831B1 (en) Abatement of Nitrogen Oxides and Sulfur Oxides
US5058514A (en) Process for controlling acid gas emissions in power plant flue gases
CA2596893C (en) Targeted duct injection for so3 control
US4726302A (en) Method of reducing the nitrogen oxide content of a flue gas produced by a fossil-fuel power plant
US6162409A (en) Process for removing Nox and Sox from exhaust gas
EP0828550B1 (en) Flue gas scrubbing and waste heat recovery system
CA1304914C (en) Reduction of nitrogen- and carbon-based pollutants through the use of urea solutions
US9114357B2 (en) Treatment of nitrogen oxides in flue gas streams
KR102586253B1 (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
JP2008532734A5 (en)
JP2000279751A (en) Method and device for denitrating pressure fluidized bed boiler
FR2474059A1 (en) COMPOSITION AND METHOD FOR PREVENTING CORROSION OF THE COLD END OF BOILERS
GB2232972A (en) Removing nitrogen oxides and sulphur oxides from exhaust gas
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
KR102099885B1 (en) NOx and SOx removal device and removal process in wet scrubber using pyrolysis of hydrogen peroxide
JPS58101728A (en) Removing method for nitrogen oxides in waste gas of combustion
CZ75094A3 (en) Process of purifying gas containing nitrogen oxide and sulfur dioxide
JPH0359303A (en) Method for simultaneous desulfurization and denitration in furnace
JPH0394813A (en) Method for removing harmful gas in waste gas generated by incineration of refuse
JPS62186925A (en) Treatment of exhaust gas
Livengood et al. Process for combined control of mercury and nitric oxide.
CN106559989A (en) The process of nitrogen oxides in flue gas stream
KR100520415B1 (en) Nox removal method from exhaust fumes
KR100289168B1 (en) Process for Reducing Nitrogen Oxides in Exausted Gas
JPS6230804B2 (en)