JPS5810146A - Output controlling method of spark-ignition internal- combustion engine - Google Patents

Output controlling method of spark-ignition internal- combustion engine

Info

Publication number
JPS5810146A
JPS5810146A JP56108005A JP10800581A JPS5810146A JP S5810146 A JPS5810146 A JP S5810146A JP 56108005 A JP56108005 A JP 56108005A JP 10800581 A JP10800581 A JP 10800581A JP S5810146 A JPS5810146 A JP S5810146A
Authority
JP
Japan
Prior art keywords
engine
gas
heat
intake
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56108005A
Other languages
Japanese (ja)
Inventor
Tokuichi Mizunuma
水沼 篤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Fuji Jukogyo KK
Priority to JP56108005A priority Critical patent/JPS5810146A/en
Publication of JPS5810146A publication Critical patent/JPS5810146A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • F02M31/087Heat-exchange arrangements between the air intake and exhaust gas passages, e.g. by means of contact between the passages
    • F02M31/093Air intake passage surrounding the exhaust gas passage; Exhaust gas passage surrounding the air intake passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve a thermal efficiency by a method wherein a mixture gas is heated by a discharged heat of the engine, the heating temperature is controlled to control an output of the engine and a pumping loss of the engine under a partial load is eliminated. CONSTITUTION:In a heat exchanger 8, one end of the heating chamber 11 is communicated with a discharged gas manihold of the main body 4 of the engine through a discharged gas branch passage 13 and the heating chamber 11 surrounds an outer circumference of the intake pipe 10, several heat pipes 14 are extended from the inside of the heating chamber 11 into the intake 10, a plurality of rows of heat pipes 14 are radially arranged and fins 15 are provided in order to improve a thermal efficiency. In a range of partial load, the gas is heated by a heat of the discharged gas through the heat exchanger 8 when the gas passes through the intake pipe 10. The gas is suctioned into the combustion chamber 5 through the intake valve 6 and then combustioned therein. Thus, it is possible to eliminate a pumping loss and improve a thermal efficiency.

Description

【発明の詳細な説明】 本発明は、ガソリン機関のような火花点火式内燃機関の
出力制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output control method for a spark ignition internal combustion engine such as a gasoline engine.

従来、前記のような内燃機関の出力制御は、第1図に例
示するように、一般にスロットル弁で行なっている。第
1図において、符号1は吸入系、2&を気化器、3は気
化器2の吸気通路に設けたスロットル弁、4はエンジン
本体、5はエンジン本体4に設けたIII焼室であり、
燃焼室5は吸入系1と吸入弁6を介して連通され、排気
弁1を介して排気系と連通されている。このような機関
では、吸入系1に設けたスロットル弁3でブースト圧を
制御することによって、出力制−を行なっているので、
部分負荷時にはボンピングロスが大きい。
Conventionally, the output control of an internal combustion engine as described above has generally been performed using a throttle valve, as illustrated in FIG. In FIG. 1, reference numeral 1 is an intake system, 2& is a carburetor, 3 is a throttle valve provided in the intake passage of the carburetor 2, 4 is an engine body, and 5 is a III combustion chamber provided in the engine body 4.
The combustion chamber 5 communicates with the intake system 1 via an intake valve 6, and communicates with the exhaust system via an exhaust valve 1. In such an engine, the output is controlled by controlling the boost pressure with the throttle valve 3 installed in the intake system 1.
Bumping loss is large during partial load.

すなわち、前述の内燃機関の出力Nは、燃料流量G (
kMs )に比例するから、NCCGである。
That is, the output N of the internal combustion engine mentioned above is determined by the fuel flow rate G (
Since it is proportional to kMs), it is NCCG.

空燃比をλ(A/G、ただしA (kMs )は空気流
量)とすhば、NCcA/λと置き換えられる。
If the air-fuel ratio is λ (A/G, where A (kMs) is the air flow rate), it can be replaced with NCcA/λ.

機関の排気量をV(CO)、回転数をn (rpa )
とすると、AOcρVn (ただしρは空気密度)であ
るから、 Noc、oVn/λ−−−(1) となり、v、n、λ はほぼ常数とみてよいから、NC
Cρとなる。
The displacement of the engine is V (CO), and the rotation speed is n (rpa).
Then, since AOcρVn (where ρ is the air density), Noc, oVn/λ---(1), and since v, n, and λ can be regarded as almost constants, NC
It becomes Cρ.

また、吸゛入系のスロットル弁下流側の圧力pb(吸入
管ブーストに相当)、11度をT(絶対側1とすればρ
ωPb /Tであるから、前記(1)式はNQll’P
b /T  −−−(2)となる。この機関ではスロッ
トル弁で混合気に圧力降下を生じさせて出力Iil制御
を行なっているので、スロットル弁上流側の圧力をPo
、スロットル弁による圧力降下をΔPとすれば、 Pb−Po−ΔP  ・・・(3) の出力−−を行なっていることになる。ボンピングロス
Lpは背圧をP「とすれば1poC(p’j −Pb)
で酪る。
Also, the pressure pb on the downstream side of the throttle valve in the intake system (corresponding to the suction pipe boost), 11 degrees is T (if the absolute side is 1, then ρ
Since ωPb /T, the above equation (1) is NQll'P
b /T---(2). In this engine, the throttle valve causes a pressure drop in the air-fuel mixture to control the output Iil, so the pressure on the upstream side of the throttle valve is
If the pressure drop due to the throttle valve is ΔP, then the output is Pb-Po-ΔP (3). Bumping loss Lp is 1poC(p'j -Pb) if back pressure is P'
Dairy with milk.

そこで、機関の部分負荷域でボンピングロスを減少させ
るために、吸入弁の閉時期を遅らせることが、S A 
E P aper (N o、800794. Con
trollin。
Therefore, in order to reduce the pumping loss in the partial load range of the engine, it is recommended to delay the closing timing of the intake valve.
E Paper (No, 800794. Con
trollin.

Engine  1oad  by  Means  
of 、Late Intake  Valve  C
1osino)で研究報告され、また特開昭55−11
2814号公報で提案されている。しかし、これらの鯛
一方法は、機構が複雑になり、出力の制御が面倒になる
上に、低負荷域でシリンダ内に残留する既燃ガスが過多
になるなどの問題があった。
Engine 1load by Means
of ,Late Intake Valve C
1 osino), and was also published in Japanese Unexamined Patent Publication No. 11/1983.
This is proposed in Publication No. 2814. However, these Taiichi methods have problems such as a complicated mechanism, troublesome output control, and an excessive amount of burned gas remaining in the cylinder in a low load range.

この発明は、前記(3)式から、 Noc(PO−ΔP)/T−−−(4)であり、混合気
の温度を変化させることにより、密度が変化することに
着目してなされたもので、吸入系のスロットル弁位置に
相当する位置から吸入弁までの間の適所で、機関の排熱
を混合気を加−熱すると共に、この加熱温度を制御し、
加熱温度が制御された混合気を燃焼させて、機関の出力
を制御することにより、前述した問題を解決して、比較
的簡単な構成で、低負荷域でもシリンダの残留既燃ガス
が過多になることなく、安定した機関の運転ができ、し
かも前記(4)式でΔPが0.P。
This invention was made by focusing on the fact that from the above equation (3), Noc(PO-ΔP)/T---(4), and the density changes by changing the temperature of the air-fuel mixture. At a suitable place between the position corresponding to the throttle valve position of the intake system and the intake valve, the exhaust heat of the engine is used to heat the air-fuel mixture, and the heating temperature is controlled.
By combusting the air-fuel mixture whose heating temperature is controlled and controlling the engine output, the above-mentioned problem can be solved with a relatively simple configuration that prevents excessive residual burnt gas from remaining in the cylinder even in the low load range. The engine can be operated stably without any problems, and furthermore, when ΔP is 0. P.

が一定であることから、NQII!1/Tとなることに
よって、ボンピングロスをなくし、あるいは十分に減少
させることができて、部分負荷域での燃費を大幅に向上
させることができ、さらに加熱温度を制御することで出
力の制御も容易にできる火花点火式内燃機関の出力制御
方法を提供することを目的とするものである。
Since is constant, NQII! 1/T, it is possible to eliminate or sufficiently reduce the pumping loss, greatly improving fuel efficiency in the partial load range, and by controlling the heating temperature, it is also possible to control the output. The object of the present invention is to provide a method for easily controlling the output of a spark ignition internal combustion engine.

以下、本発明の一実施例につき第2図、第3図を参照し
て説明する。第2図、第3図において、符@8は熱交換
器であり、この熱交換器8は吸入系1のスロットル弁を
もたない気化器2とエンジン本体4の吸入マニホールド
9との間を連通させる吸入管1Gに一体的に組み込まれ
ている。また、この熱交換I8は、加熱室11の一端が
エンジン本体4の排気マニホールド12と排気分流通路
13を介して連通され、前記加熱室11は吸入管10の
外周を包囲して形成され、前記加熱室11内から吸入管
10内に多数の、ヒートパイプ14が延びこれらのヒー
トパイプ14は放射状に複数列に配置され、熱交換効率
をよくするためにフィン15が設けられている。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2 and 3. In FIGS. 2 and 3, the symbol @8 is a heat exchanger, and this heat exchanger 8 connects between the carburetor 2 of the intake system 1, which does not have a throttle valve, and the intake manifold 9 of the engine body 4. It is integrated into the suction pipe 1G that communicates with it. In addition, in the heat exchange I8, one end of the heating chamber 11 is communicated with the exhaust manifold 12 of the engine main body 4 via the exhaust distribution passage 13, and the heating chamber 11 is formed surrounding the outer periphery of the intake pipe 10. A large number of heat pipes 14 extend from the heating chamber 11 into the suction pipe 10, and these heat pipes 14 are arranged radially in a plurality of rows, and are provided with fins 15 to improve heat exchange efficiency.

加熱室11の他端が排気マニホールド12と連通する排
気!!18に排気道[1116を介して連通され、この
排気還流路16の出口部にvJIll弁17が設けられ
てい−る。なお、第2図中、5は燃焼室、6は吸入弁、
7は排気弁である。
The other end of the heating chamber 11 communicates with the exhaust manifold 12! ! 18 through an exhaust path [1116], and a vJIll valve 17 is provided at the outlet of this exhaust gas recirculation path 16. In addition, in Fig. 2, 5 is a combustion chamber, 6 is an intake valve,
7 is an exhaust valve.

以上のように構成されたこの発明の一実施例による火花
点火式ガソリン機関は、気化器2で作られた混合気が、
部分負荷域では吸入管10を通過する際に、熱交換器8
によって排気ガスの熱で加熱されて、吸入弁6を介し燃
焼室5に吸入されて燃焼され、燃焼ガスは排気弁1を介
し排気マニホールド12、排気管18を経て排出される
。また、第25− 図の矢印に示すように、排気マニホールド12かう排気
分流路13を経て排気ガスが加熱室11に導かれ、ヒー
トパイプ14を加熱した後、排気還流路16から排気管
18に戻されて大気に放出される。ビートパイプ14は
加熱室11で内部に封入された熱媒体が蒸発し、吸入管
10内の部分で混合気との熱交換によって冷却され、凝
縮して加熱室11内部分に戻される循環を行ない、吸入
管10内の混合気を効率よく加熱することができる。そ
して、操作レバーによる操作などの適宜の手段で制御弁
11g)開度を制御することにより、排気ガスの加熱室
11への流鏝を制御して混合気の加熱濃度を変更、し、
混合気の密度を変えて機関の出力を制御する。この場合
に、混合気の濃度が低いほど、機関の出力が大きくなる
ので、全負荷の場合にはIIIIl弁11を全11排気
還流路1Gを閉じる)して混合気の加熱を行なわないよ
うにしてもよい。
In the spark-ignition gasoline engine according to one embodiment of the present invention configured as described above, the air-fuel mixture produced by the carburetor 2 is
In the partial load region, when passing through the suction pipe 10, the heat exchanger 8
The combustion gas is heated by the heat of the exhaust gas, is sucked into the combustion chamber 5 through the intake valve 6, and is combusted, and the combustion gas is discharged through the exhaust valve 1, the exhaust manifold 12, and the exhaust pipe 18. Further, as shown by the arrow in FIG. It is returned to the atmosphere. The beat pipe 14 performs a circulation in which the heat medium sealed inside the heating chamber 11 evaporates, is cooled by heat exchange with the mixture in the suction pipe 10, is condensed, and is returned to the interior of the heating chamber 11. , the air-fuel mixture in the suction pipe 10 can be efficiently heated. Then, by controlling the opening degree of the control valve 11g) by an appropriate means such as operation with an operating lever, the flow of the exhaust gas to the heating chamber 11 is controlled to change the heated concentration of the mixture,
Controls engine output by changing the density of the air-fuel mixture. In this case, the engine output increases as the concentration of the air-fuel mixture decreases, so in the case of full load, the III valve 11 is closed (all 11 exhaust recirculation passages 1G) to prevent heating of the air-fuel mixture. It's okay.

第4図に示すこの発明の他の実施例では、補助的なスロ
ットル弁19を気化器2に設けたことが第2図、第3図
に示す一実施例のものと構成が異な6− るだけであるから、第2図のものと対応する部分は同一
符号を第4図中につけて説明を省略する。
Another embodiment of the invention shown in FIG. 4 differs in construction from the embodiment shown in FIGS. 2 and 3 in that an auxiliary throttle valve 19 is provided in the carburetor 2. Therefore, parts corresponding to those in FIG. 2 are given the same reference numerals in FIG. 4, and their explanation will be omitted.

この第4図に示す実施例では、−jiMI弁17の操作
だけでは応答遅れがあるために、急加、減速時にスロッ
トル弁19を開閉動作させて応答遅れを補うと共に、必
要に応じ最大熱最以上の熱−を必要とする場合にも補助
としてスロットル弁19を用いる。
In the embodiment shown in FIG. 4, since there is a response delay if only the -jiMI valve 17 is operated, the throttle valve 19 is opened and closed during sudden acceleration and deceleration to compensate for the response delay, and the maximum thermal maximum is adjusted as necessary. Even when more heat is required, the throttle valve 19 is used as an aid.

このようにすると、自動車に搭載する機関のような急加
、減速など負荷の変動が多い機関にも、本発明による制
御方法が可能となる。
In this way, the control method according to the present invention can be applied to an engine, such as an engine installed in an automobile, which has frequent load fluctuations such as sudden acceleration and deceleration.

第1図に示した従来法と、第2図、第3図に示した本声
明の一実施例および第4図に示した他の実施例によるも
のとを、第5図(a)、(b)および(0)によって比
較すると明らかなように、ボンピングロスはLp cX
ニー (Pr −Pb ) テあり、従来法テハ第5図
(a)に斜線で示したようにボンピングロスが大きいの
に対し、本発明の一実施例の制御方法では第5図(b)
のようにボンピングロスがなく、他の実施例の制御方法
では、従来法に比べて吸入管負圧pbが小さいので、第
5図(0)に斜線で示したようにボンピングロスが小さ
い。
The conventional method shown in FIG. 1, one embodiment of this statement shown in FIGS. 2 and 3, and another embodiment shown in FIG. As is clear from comparing b) and (0), the pumping loss is Lp cX
Knee (Pr - Pb) There is a large pumping loss as shown by diagonal lines in Fig. 5(a) in the conventional method, whereas in the control method according to an embodiment of the present invention, the pumping loss is large as shown in Fig. 5(b).
In the control method of the other embodiment, the suction pipe negative pressure pb is smaller than in the conventional method, so the pumping loss is small as shown by diagonal lines in FIG. 5(0).

なお、本発明において、熱交換器は必ずしも前記実施例
のものに限られることなく適宜のものを用いることがで
きる。また、本発明は、排気ガスの代りにエンジン本体
を冷却した後の冷却水など、機関の排熱を用いて混合気
を加熱し、この加熱温度を制御するものであれば、加熱
手段、その制御手段は適宜変更でき、加熱部分も吸入マ
ニホールドにしてもよい。
In addition, in the present invention, the heat exchanger is not necessarily limited to that of the above embodiments, and any suitable heat exchanger can be used. Further, the present invention is applicable to heating means, as long as the air-fuel mixture is heated using exhaust heat of the engine, such as cooling water after cooling the engine body instead of exhaust gas, and the heating temperature is controlled. The control means can be changed as appropriate, and the heating portion may also be a suction manifold.

また、本実施例では気化器式燃料供給系をもって説明し
たが、燃料噴射式でも成立するものである。
Further, although this embodiment has been described using a carburetor type fuel supply system, a fuel injection type fuel supply system is also applicable.

以上説明したように、この発明による出力−一方法は、
機関の排熱を用いて混合気を加熱し、この加熱濃度を制
御して機関の出力を制御するようにしたので、部分負荷
でのボンピング0スをなくしまたは減少させて、熱効率
すなわち燃費を大幅に向上させる9とができ1機の早期
達成ができて運転性を向上させることもでき、かつ燃料
の気化促進による混合気の分配の改善ができ、さらに蘭
学な構成で出力制御が容易にでき、さらに低負荷域でも
安定した機関の運転ができるという効采がある。
As explained above, the output method according to the present invention is as follows:
The engine's exhaust heat is used to heat the air-fuel mixture, and the heating concentration is controlled to control the engine's output, which eliminates or reduces pumping at partial loads and significantly improves thermal efficiency, or fuel efficiency. 9 can be achieved early on for one aircraft, improving drivability, improving fuel-air mixture distribution by promoting fuel vaporization, and making it easier to control output with a Western-style configuration. Furthermore, it has the advantage of being able to operate the engine stably even in the low load range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の火花点火式内燃機関のエンジン本体およ
び吸入系の構成説明図、第2図は本発明の一実施例によ
る火花点火式内燃機関を示を要部の構成説明図、第3図
は第2図の■−■線に沿う断面図、第4図は本発明の他
の実施例による火花点火式内燃機関を示す要部の構成説
明図、第5図(a)〜(0)は従来の機関のボンピング
ロスと、本発明による2つの実施例のボンピングロスと
を示す説明線図である。 1・・・吸入系、2・・・気化器、3・・・スロットル
弁、4・・・エンジン本体、5・・・燃焼室、6・・・
吸入弁、1・・・排気弁、8・・・熱交換器、9・・・
吸入マニホールド、10・・・吸入管、11・・・加熱
室、12・・・排′気マニホールド、13・・・排気分
流路、14・・・ヒートパイプ、15・・・フィン、1
6・・・排気還流路、11・・・制御弁、18・・・排
気管、19・・・スロットル弁。 9− 第1図 第2図 11i4WI 2 第6図 (0)       (1) ) (C)
FIG. 1 is an explanatory diagram of the configuration of the engine body and intake system of a conventional spark-ignition internal combustion engine, FIG. 2 is an explanatory diagram of the configuration of essential parts of a spark-ignition internal combustion engine according to an embodiment of the present invention, and FIG. The figure is a cross-sectional view taken along the line ■-■ in FIG. ) is an explanatory diagram showing the pumping loss of a conventional engine and the pumping loss of two embodiments according to the present invention. 1... Intake system, 2... Carburizer, 3... Throttle valve, 4... Engine body, 5... Combustion chamber, 6...
Suction valve, 1...Exhaust valve, 8...Heat exchanger, 9...
Suction manifold, 10... Suction pipe, 11... Heating chamber, 12... Exhaust manifold, 13... Exhaust branch flow path, 14... Heat pipe, 15... Fin, 1
6... Exhaust recirculation path, 11... Control valve, 18... Exhaust pipe, 19... Throttle valve. 9- Figure 1 Figure 2 11i4WI 2 Figure 6 (0) (1) ) (C)

Claims (1)

【特許請求の範囲】[Claims] 吸入系のスロットル弁位置に相当する位胃から吸入弁ま
での間の適所で、機関の排熱を混合気と熱交換させて、
混合気を加熱すると共に、この加熱濃度を制御し、加熱
8!度が制御された混合気を燃焼させて、機関の出力を
制御することを特徴とする火花点火式内燃機関の出力制
御方法。
Heat exchanges exhaust heat from the engine with the air-fuel mixture at a suitable location between the intake valve and the intake valve, corresponding to the throttle valve position of the intake system.
The mixture is heated and the heating concentration is controlled, heating 8! A method for controlling the output of a spark ignition internal combustion engine, the method comprising controlling the output of the engine by combusting an air-fuel mixture whose temperature is controlled.
JP56108005A 1981-07-09 1981-07-09 Output controlling method of spark-ignition internal- combustion engine Pending JPS5810146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108005A JPS5810146A (en) 1981-07-09 1981-07-09 Output controlling method of spark-ignition internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108005A JPS5810146A (en) 1981-07-09 1981-07-09 Output controlling method of spark-ignition internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS5810146A true JPS5810146A (en) 1983-01-20

Family

ID=14473563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108005A Pending JPS5810146A (en) 1981-07-09 1981-07-09 Output controlling method of spark-ignition internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5810146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896545A1 (en) * 2006-01-20 2007-07-27 Renault Sas Internal combustion engine e.g. direct injection internal combustion engine for motor vehicle, has heat exchanger unit placed between exhaust circuit and intake circuit which has distributor with intake branches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896545A1 (en) * 2006-01-20 2007-07-27 Renault Sas Internal combustion engine e.g. direct injection internal combustion engine for motor vehicle, has heat exchanger unit placed between exhaust circuit and intake circuit which has distributor with intake branches

Similar Documents

Publication Publication Date Title
US3408992A (en) Internal combustion engine and process utilizing heated auxiliary air to obtain complete combustion
JPH0243894B2 (en)
EP0701048B1 (en) A cylinder head
US3310045A (en) Internal combustion engine fuel feeding system
US3513816A (en) Exhaust recycle system for an internal combustion engine
US3982395A (en) Exhaust system for multi-cylinder internal combustion
US4068637A (en) Multicylinder internal combustion engine
US4271802A (en) Secondary intake gas control system for internal combustion engine
US4051672A (en) Multi-cylinder internal combustion engine
US3580232A (en) Engine exhaust recirculation
US3053242A (en) Carbureting system
US3171393A (en) Exhaust gas heated system for engine intake manifold
JPS5810146A (en) Output controlling method of spark-ignition internal- combustion engine
US3955546A (en) Fuel heat generator for internal combustion engines
US4009701A (en) Internal combustion engine having provisions for heating the fuel-air mixture by means of the exhaust
US4041700A (en) Manifold reactor
US4241712A (en) Induction system for an internal combustion engine
US3601183A (en) Device for heating gas mixtures
US1353213A (en) Internal-combustion engine of the v-type
US1290953A (en) Manifold heat-regulator.
JPS636463Y2 (en)
FR3007079A1 (en) COMBUSTION ENGINE OF A MOTOR VEHICLE WITH INTAKE HEATER
JPS6315552Y2 (en)
JP2022021455A (en) EGR system
JPH11257165A (en) Cooling system for exhaust gas recirculation system of internal combustion engine