JPS58100734A - Method and device for detecting fault of rotary equipment - Google Patents

Method and device for detecting fault of rotary equipment

Info

Publication number
JPS58100734A
JPS58100734A JP56200630A JP20063081A JPS58100734A JP S58100734 A JPS58100734 A JP S58100734A JP 56200630 A JP56200630 A JP 56200630A JP 20063081 A JP20063081 A JP 20063081A JP S58100734 A JPS58100734 A JP S58100734A
Authority
JP
Japan
Prior art keywords
pattern
rotation speed
reference pattern
peak
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56200630A
Other languages
Japanese (ja)
Inventor
Tetsuo Tamaoki
玉置 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP56200630A priority Critical patent/JPS58100734A/en
Publication of JPS58100734A publication Critical patent/JPS58100734A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a fault of rotary equipment in its early stage by imposing Fourier analysis on a signal showing the condition of the equipment and comparing the pattern of the obtained power spectrum density with a reference pattern. CONSTITUTION:The output S1 of an instrument 2 fitted to rotaty equipment 1 is fetched by a data storage device 5 through input equipment 4 under a command S2 of a controller. A revolutional number signal S3 in the data is sent to a data storage device 6 for correcting the number of revolutions, and other various data signals S4 are sent to a Fourier analysis device 7 to find power spectrum density. A pattern vector generating device 8 uses the peak width of an input from the input equipment 6 and the current number of revolutions to move the peak of a sample pattern X to a frequency position corresponding to the number of revolutions when a reference pattern mu is taught, and then outputs this as a new sample pattern X; and a comparing device 9 calculates the distance to the reference pattern mu in a reference pattern storage device 10 and then compares it with a threshold value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ポンプ、電動機等の回転機器の異常を検出す
る異常検出法および異常検出装置に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an abnormality detection method and an abnormality detection apparatus for detecting abnormalities in rotating equipment such as pumps and electric motors.

〔発明の技術的背景〕[Technical background of the invention]

原子力発電プラントには、ポンプ、電動機その他の回転
機器が多数使用されている。それらの回転機器が故障す
ると原子炉自体には何ら異常がなくても、プラントの運
転を停止させなければならず、回転機器のプラント稼働
率におよぼす影響は非常に大きい。
Nuclear power plants use many pumps, electric motors, and other rotating equipment. If these rotating devices break down, the plant must be shut down even if there is no abnormality in the reactor itself, and this has a significant impact on the plant operating rate of the rotating devices.

従って、回転機器の状態を常時監視し異常を早期に発見
し、その故障を未然に防ぐことが望ましい。
Therefore, it is desirable to constantly monitor the status of rotating equipment, detect abnormalities early, and prevent their failures.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に基きなされたもので、回転機器の
異常を早期に検出し得る回転機器の′異常検出法および
装置を得ることを目的としている。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a method and apparatus for detecting abnormalities in rotating equipment, which can detect abnormalities in rotating equipment at an early stage.

〔発明の概要〕[Summary of the invention]

本発明においては、回転機器またはその駆動軸受等に装
着された変位計、速度計、加速度計等から得られる信号
にフーリエ解析を施して得られたパワースペクトル密度
のパターンを、正常状態におけるそれらの基準パターン
と比較し、基準パターンとの距離により異常の有無を判
定するようにして前記目的を達成している。
In the present invention, the power spectral density patterns obtained by performing Fourier analysis on signals obtained from displacement meters, velocity meters, accelerometers, etc. attached to rotating equipment or their drive bearings, etc., are calculated based on their power spectral density patterns under normal conditions. The above objective is achieved by comparing with a reference pattern and determining the presence or absence of an abnormality based on the distance from the reference pattern.

すなわち、標本パターンを各周波数に対するパワースペ
クトル密度計算値の対数変換値により構成したn次元ベ
クトルXで表わし、基準パターンを同様の構成のベクト
ルμで表わすと、両ベクトル間の距離りは、ベクトルX
、μの要素Xj。
In other words, if the sample pattern is represented by an n-dimensional vector
, element Xj of μ.

μiおよび正常時におけるXjの標準偏差σiを用いて
、で定義され、このDが予め与えられた閾値αより大き
い時、異常と判定する。
is defined using μi and the standard deviation σi of Xj in normal times, and when this D is larger than a predetermined threshold α, it is determined to be abnormal.

本発明は式(1)によって定義されたDと閾値αとの比
較による上記の判定を基本原理とするものであるが、回
転機器の特性上上記の判定によったのでは誤判定を生じ
ることがある。すなわち、回転機器のパワースペクトル
密度は、その回転数に比例した周波数において、鋭くて
大きなピークを有するため、基準パターンを学習した時
の回転数から回転機器回転数が僅かにずれた場合にも、
Dは大きな値を示し実際には何ら異常がないにもかかわ
らず、異常とされてしまうことがある。
The basic principle of the present invention is the above-described determination based on a comparison between D defined by equation (1) and the threshold value α, but due to the characteristics of rotating equipment, erroneous determination may occur if the above-described determination is made. There is. In other words, the power spectrum density of a rotating device has a sharp and large peak at a frequency proportional to its rotation speed, so even if the rotation speed of the rotating device slightly deviates from the rotation speed at the time the reference pattern was learned,
D has a large value and may be considered abnormal even though there is actually no abnormality.

本発明においては、標本パターンXを得た時の回転機器
回転数を用いて、基準バタ〜ンμを学習した時の回転数
に応じた周波数位置に、標本パターンXのピークを移動
させたものを作成し、これを新たな標本パターンXとし
て前記式(1)によりDを求め、判定を行うようにして
誤判定を防止している。
In the present invention, the peak of sample pattern is created, this is used as a new sample pattern X, and D is determined using the above equation (1), and a determination is made to prevent erroneous determination.

〔発明の実施例〕[Embodiments of the invention]

第1図において、回転機器1またはその駆動軸受に取り
つけた変位計;速度計、加速度計、回転数計等を一括し
て示す計器2の出力信号S1は、制御装置3の診断実行
指令S1により信号入力装置4を経由してデータ保存装
置5に取入れられる。
In FIG. 1, an output signal S1 of an instrument 2 that collectively indicates a displacement meter, a speedometer, an accelerometer, a rotation speed meter, etc. attached to a rotating device 1 or its drive bearing is generated by a diagnosis execution command S1 from a control device 3. The signal is input to the data storage device 5 via the signal input device 4.

このデータ保存装置5に−たん保存された各種データ中
、回転機器の回転数に関する信号S3は、回転数補正デ
ータ保存装置6に送られ、他の諸データに関する信号S
4はフーリエ解析装置7に送られ、ここで7−リエ解析
を施され、それらのパワースペクトル密度が求められる
Among the various data stored in the data storage device 5, a signal S3 related to the rotation speed of the rotating equipment is sent to the rotation speed correction data storage device 6, and a signal S3 related to other various data is sent to the rotation speed correction data storage device 6.
4 are sent to the Fourier analyzer 7, where they are subjected to 7-lier analysis and their power spectral densities are determined.

回転数補正データ保存装置6は、基準パタ〜ン作成時の
回転数、各次振動モードのピークの平均的な大きさを回
転数の関数として表わした近似式、ピークの巾(振動モ
ードによらず一定値で近似)等を保存しており、入力さ
れた回転数に近い基準パターン作成持回転数におけるそ
れらのデ−タを、入力された回転数と共にパターンベク
トル作成装置に信号S5として出力する。一方、パター
ンベクトル作成装置には、信号S4のフーリエ解析結果
すなわちパワースペクトル密度に関する信号S6が入力
されており、パターンベクトル作成装置8は、次の如く
してパターンベクトルを作成する。
The rotation speed correction data storage device 6 stores the rotation speed at the time of creating the reference pattern, an approximate formula expressing the average size of the peak of each vibration mode as a function of the rotation speed, and the width of the peak (depending on the vibration mode). (approximated to a constant value) etc., and outputs the data at a standard pattern creation rotation speed close to the input rotation speed to the pattern vector creation device together with the input rotation speed as a signal S5. . On the other hand, the Fourier analysis result of the signal S4, that is, the signal S6 regarding the power spectrum density is input to the pattern vector creation device 8, and the pattern vector creation device 8 creates a pattern vector as follows.

まず、回転数補正データ入力装置から入力されたピーク
中と現在の回転数を用いて、標本パターンXの要素が何
次のモードのピーク中に含まれるかを調べる。次に、各
要素を前記の調べた結果により、基準パターンの対応す
る次数のピークの要素と同じ番号の位置に移す。各ピー
ク要素に、回転数補正データ保存装置6から入力された
近似式により求めた基準パターン作成時のピークの大き
さと現在のピークの大きさの比を掛け、その結果を補正
後の各要素の値とする。
First, using the peak and current rotational speeds input from the rotational speed correction data input device, it is checked in what mode of peak the element of the sample pattern X is included. Next, each element is moved to the position of the same number as the peak element of the corresponding order in the reference pattern according to the above-mentioned result. Each peak element is multiplied by the ratio of the peak size at the time of standard pattern creation and the current peak size, which was determined by the approximate formula input from the rotation speed correction data storage device 6, and the result is used to calculate the value of each element after correction. value.

この補正後の各要素により作成された標本パターンXは
、比較装置9に送られる。比較装置9には基準パターン
保存装置10から基準パターンμが入力されており、比
較装置は入力された両者により式(1)に従いそれらの
間の距離りを算出し、予め与えられている閾値αと比較
する。
The sample pattern X created by each element after this correction is sent to the comparison device 9. The reference pattern μ is inputted to the comparison device 9 from the reference pattern storage device 10, and the comparison device calculates the distance between the input two according to equation (1), and calculates the distance between them using a predetermined threshold value α. Compare with.

比較の結果D〉αであれば、警報発生装置および出力表
示装置に信号S7および同S8が送られ、警報が発生さ
れ、出力表示装置12に異常発生が表示される。D〈α
の時は信号5788は出力されない。
If the comparison result is D>α, signals S7 and S8 are sent to the alarm generating device and the output display device, an alarm is generated, and the output display device 12 displays the occurrence of an abnormality. D〈α
At this time, signal 5788 is not output.

上記のように、本発明によれば、回転機器の異常を早期
に発見することができるので、それらの異常に対する対
策をとることにより、故障の発生を防足することができ
る。
As described above, according to the present invention, abnormalities in rotating equipment can be discovered at an early stage, and by taking measures against these abnormalities, it is possible to prevent the occurrence of failures.

なお、本発明は上記実施例のみに実施されない。例えば
、回転数補正データ、基準パターンを各回転機器につい
て用意しておくことにより、複数の回転機器を一括して
監視することができる。
Note that the present invention is not limited to the above-mentioned embodiments. For example, by preparing rotation speed correction data and reference patterns for each rotating device, a plurality of rotating devices can be monitored at once.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各種回転機器の異常を早期に検出し、
その故障を未然に防止することができるので、例えば原
子カプラントのような各種回転機器を多用するプラント
の、例えば原子炉等の如くプラントの核心をなす装置の
故障によらない運転停止を最lJ・限とすることができ
、プラントの稼働率を著しく向上させることができる。
According to the present invention, abnormalities in various rotating equipment can be detected early,
Since it is possible to prevent such failures, it is possible to stop operations in plants that use a lot of various rotating equipment, such as nuclear reactors, without causing failures in the equipment that forms the core of the plant. It is possible to significantly improve the operating rate of the plant.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明一実施例のブロックダイヤグラムである。 1・・・回転機器、    2・・・計 器、3・・制
御装置、    4・・・信号入力装置、5・・・デー
タ保存装置、6・・・回転数補正データ保存装置、  
    7・・・フーリエ解析装置、8゛°パタ一ンベ
クトル作成装置、 9・・・比較装置、   10・・・基準ノ(ターン保
存装置 出願代理人 弁理士 菊 池 五 部
The figure is a block diagram of one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Rotating equipment, 2... Instrument, 3... Control device, 4... Signal input device, 5... Data storage device, 6... Rotation speed correction data storage device,
7...Fourier analysis device, 8° pattern vector creation device, 9...Comparison device, 10...Standard (Turn preservation device application agent, patent attorney, Kikuchi Gobu)

Claims (1)

【特許請求の範囲】 回転機器の状態を示す各種信号にフーリエ解析を施して
パワースペクトル密度を求め、それらの対数変換値を要
素とするn次元ベクトルを一次標本パターンとして作成
し、回転機器の正常状態において学習された同じくn次
のベクトルから成る基準パターンと、前記−次標本パタ
ーンに基き次の手順a ” cにより得られた二次標本
パターンとの距離と予め与えられた閾値を比較して異常
の有無を検出する回転機器の異常検出法 a、−次標本パターン作成時における回転機回転数に最
も近い基準パターン作成持回転数におけるピーク巾との
比較による一次標本パターン中の各要素の属する振動モ
ードの決定す、各要素の基準パターンの対応する次数の
ピークの位置への移行 C0基準パターン作成時の回転数、各次振動モードビー
クの平均的な大きさ間の近似式から基準パターン作成時
のピークの大きさと現在のピークの大きさの比を求め、
これを−次標本パターンの各ピーク要素に乗じたものを
要素とする二次標本パターンを作成。 (2)回転機器の回転数を含む状態を示す信号を得る手
段と、制御装置の指令により前記信号をデータ保存装置
に取込む信号入力装置と、このデータ保存装置から回転
機器の回転数信号を入力され基準パターン作成時の回転
数、各次振動モードのピークの平均的な大きさを回転数
の関数として表わした近似式、ピークの巾を記憶する回
転数補正データ保存装置と、前記データ保存装置からの
回転数以外の各種信号にフーリエ解析な椎し得られたパ
ワースペクトル密度を求めるフーリエ解析装置と、前記
回転数補正曵データ保存装置が出した入力回転数に最も
近い回転数で学習された基準パターンについての保存デ
ータおよび入力回転数と、前記パワースペクトル密度と
から前記のパフースベクトル密度に補正を施しその補正
値を要素とする標本パターンを作成するパターンベクト
ル作成装置と、正常状態において得られた基準パターン
を記憶する基準パターン保存装置と、前記標本パターン
と基準パターンとの距離を求めこれと予め定めた閾値と
を比較し前記距離が閾値より大きい時出力を発生する比
較装置とを有することを特徴とする回転機器の異常検出
装置。
[Claims] Fourier analysis is performed on various signals indicating the status of rotating equipment to obtain power spectrum densities, and an n-dimensional vector whose elements are logarithmically transformed values is created as a primary sample pattern to determine the normality of rotating equipment. The distance between the standard pattern made of the same n-th vector learned in the state and the secondary sample pattern obtained by the following steps a '' c based on the -th sample pattern is compared with a predetermined threshold. Abnormality detection method for rotating equipment for detecting the presence or absence of an abnormality (a): Creation of a reference pattern closest to the rotational speed of the rotating machine when creating the -order sample pattern; determining the belonging of each element in the primary sample pattern by comparison with the peak width at the given rotation speed; Determining the vibration mode, moving the reference pattern of each element to the position of the peak of the corresponding order.Creating the reference pattern from the rotation speed when creating the C0 reference pattern, and the approximate expression between the average size of each order vibration mode peak. Find the ratio of the current peak size to the current peak size,
A secondary sample pattern whose elements are created by multiplying each peak element of the -order sample pattern by this is created. (2) A means for obtaining a signal indicating the state including the rotation speed of the rotating equipment, a signal input device for inputting the signal into a data storage device according to a command from the control device, and a signal input device for receiving the rotation speed signal of the rotating equipment from the data storage device. A rotation speed correction data storage device that stores the input rotation speed at the time of creating the reference pattern, an approximate expression expressing the average size of the peak of each vibration mode as a function of the rotation speed, and the width of the peak, and the data storage device. A Fourier analyzer performs Fourier analysis on various signals other than the rotation speed from the device and calculates the resulting power spectrum density, and the rotation speed is learned using the rotation speed closest to the input rotation speed output by the rotation speed correction data storage device. a pattern vector creation device that corrects the parfous vector density based on the saved data and input rotation speed regarding the reference pattern and the power spectrum density and creates a sample pattern having the correction value as an element; A reference pattern storage device that stores the obtained reference pattern, and a comparison device that calculates the distance between the sample pattern and the reference pattern, compares it with a predetermined threshold value, and generates an output when the distance is greater than the threshold value. An abnormality detection device for rotating equipment, characterized by comprising:
JP56200630A 1981-12-11 1981-12-11 Method and device for detecting fault of rotary equipment Pending JPS58100734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200630A JPS58100734A (en) 1981-12-11 1981-12-11 Method and device for detecting fault of rotary equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200630A JPS58100734A (en) 1981-12-11 1981-12-11 Method and device for detecting fault of rotary equipment

Publications (1)

Publication Number Publication Date
JPS58100734A true JPS58100734A (en) 1983-06-15

Family

ID=16427570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200630A Pending JPS58100734A (en) 1981-12-11 1981-12-11 Method and device for detecting fault of rotary equipment

Country Status (1)

Country Link
JP (1) JPS58100734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187971A (en) * 1992-01-17 1993-07-27 Hitachi Electron Service Co Ltd Acoustically diagnosing device for air-cooling fan
WO2021019672A1 (en) * 2019-07-30 2021-02-04 日本電信電話株式会社 Abnormality level estimation device, abnormality level estimation method, and program
JPWO2021019671A1 (en) * 2019-07-30 2021-02-04
KR20230075513A (en) 2020-11-16 2023-05-31 미쓰비시덴키 가부시키가이샤 motor diagnostics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187971A (en) * 1992-01-17 1993-07-27 Hitachi Electron Service Co Ltd Acoustically diagnosing device for air-cooling fan
WO2021019672A1 (en) * 2019-07-30 2021-02-04 日本電信電話株式会社 Abnormality level estimation device, abnormality level estimation method, and program
JPWO2021019671A1 (en) * 2019-07-30 2021-02-04
WO2021019671A1 (en) * 2019-07-30 2021-02-04 日本電信電話株式会社 Feature amount extraction device, abnormality estimation device, methods thereof, and program
JPWO2021019672A1 (en) * 2019-07-30 2021-02-04
US11971332B2 (en) 2019-07-30 2024-04-30 Nippon Telegraph And Telephone Corporation Feature extraction apparatus, anomaly score estimation apparatus, methods therefor, and program
KR20230075513A (en) 2020-11-16 2023-05-31 미쓰비시덴키 가부시키가이샤 motor diagnostics
DE112020007771T5 (en) 2020-11-16 2023-08-31 Mitsubishi Electric Corporation ELECTRIC MOTOR DIAGNOSTIC DEVICE

Similar Documents

Publication Publication Date Title
US7089154B2 (en) Automatic machinery fault diagnostic method and apparatus
EP1613932B1 (en) Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
US4435770A (en) Vibration diagnosing method and apparatus for a rotary machine
Su et al. Induction machine condition monitoring using neural network modeling
CN108427374A (en) Diagnosis data acquisition system, diagnosis system and computer-readable medium
KR102391124B1 (en) Modeling and visualization of vibration mechanics in residual space
CN114216640A (en) Method, apparatus and medium for detecting fault status of industrial equipment
Wegerich et al. Nonparametric modeling of vibration signal features for equipment health monitoring
JPH0141928B2 (en)
JPS58100734A (en) Method and device for detecting fault of rotary equipment
WO2022064038A1 (en) Method and system for wind speed determination using vibration data
EP3712577B1 (en) Apparatus for equipment monitoring
JP2001324380A (en) Shaft vibration abnormality diagnostic device for rotating machine
JPH01101418A (en) Diagnosing device for rotary machine
JPH06307921A (en) Diagnostic monitoring system for rotating machine
JPH05296888A (en) Diagnostic apparatus for rotary machine
JPH02232529A (en) Method and apparatus for diagnosing vibration of rotary machine
JPH01270623A (en) Apparatus for diagnosing vibration of rotary machine
JPH06264704A (en) Vibration diagnostic device for rotational machine
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JPH07260564A (en) Abnormality diagnostic device for rotary equipment and method thereof
JPS6235044B2 (en)
JPS61128128A (en) Diagnostic apparatus for abnormality of rotating body
US20240183737A1 (en) Rotary machine diagnostic device and rotary machine diagnostic method
JPS59230492A (en) Monitoring method of rotary electric machine