JPS58100622A - Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion - Google Patents

Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion

Info

Publication number
JPS58100622A
JPS58100622A JP19630581A JP19630581A JPS58100622A JP S58100622 A JPS58100622 A JP S58100622A JP 19630581 A JP19630581 A JP 19630581A JP 19630581 A JP19630581 A JP 19630581A JP S58100622 A JPS58100622 A JP S58100622A
Authority
JP
Japan
Prior art keywords
steel
chemical conversion
steel plate
high strength
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19630581A
Other languages
Japanese (ja)
Other versions
JPH0147530B2 (en
Inventor
Shigeyoshi Maeda
前田 重義
Tsunetoshi Asai
浅井 恒敏
Shinichi Arai
信一 新井
Kenichi Suzuki
鈴木 堅市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19630581A priority Critical patent/JPS58100622A/en
Publication of JPS58100622A publication Critical patent/JPS58100622A/en
Publication of JPH0147530B2 publication Critical patent/JPH0147530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • C21D1/763Adjusting the composition of the atmosphere using a catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain an Si-Mn high strength steel plate having improved suitability to chemical conversion and paint corrosion resistance by restricting the contents of Si and Mn in steel, adding specific elements for stabilization of carbides and negative catalyst elements and annealing the steel in a specific atmosphere. CONSTITUTION:Elements for stabilization of carbides which are 0.1-1.0% Cr, 0.03-0.20% Ti, 0.03-0.20% V, 0.03-0.20% Nb, and 0.03-0.20% Zr as well as 1 kind components acting as a negative catalyst in deposition of C which are 0.008-0.025% S, 0.008-0.025% Se, 0.008-0.020% B, 0.01-0.20% Sb, 0.01-0.20% Bi, 0.02-0.01% Sn, etc. are added to Si-Mn steel consisting basically of 0.3- 2.0% Si, 0.5-2.0% Mn and 0.1% C. Further, Si and Mn are restricted to 3.0% Si+Mn. Such steel is annealed in an atmosphere controlled to 1vol% concn. of gaseous hydrogen and dew point -60-0 deg.C, whereby the Si-Mn high strength steel plate for automobiles, etc. having excellent suitability to chemical conversion is obtained.

Description

【発明の詳細な説明】 本発明は化成処理性(リン酸塩塗装下地処理性)のすぐ
れたシリコンーマンガ・ン系(以下51−Mn系と記述
する)の高強1度鋼板の製造方法に係わるものであって
、その骨子はSi0.3〜2.0%、 Mn0.5〜2
.0%、00.1%以下の含有量を有する鋼に、Or、
Ti、V、NbおよびZr等の炭化物安定化元系ならび
にS、Se、Sb、BiおよびSn等のグラファイト化
抑制元素のいずれか一種または2種以上を添加すること
によって焼鈍時の表面Cの析出を抑制し、同時に焼鈍ガ
ス成分を規定することによって、鋼表面の着色(ブルー
イング)を抑制するという両方の効果によって、化成処
理性のすぐれた51−Mn系高強度鋼板の製造方法を得
ることにある。本発明の契機となったのは51−Mn系
鋼板の化成処理性が焼鈍時に内部から拡散してきた表面
Cによって支配されるという新事実を発見したことに基
づくものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicone-manganese-based (hereinafter referred to as 51-Mn-based) high-strength steel sheet having excellent chemical conversion treatment properties (phosphate coating surface treatment properties). It is related to Si0.3-2.0%, Mn0.5-2
.. Steel with a content of 0%, 00.1% or less, Or,
By adding one or more of carbide stabilizing elements such as Ti, V, Nb, and Zr and graphitization suppressing elements such as S, Se, Sb, Bi, and Sn, precipitation of C on the surface during annealing can be suppressed. To obtain a method for manufacturing a 51-Mn-based high-strength steel sheet with excellent chemical conversion treatability, by both suppressing coloring (blueing) on the steel surface by suppressing the coloring (blueing) of the steel surface by simultaneously controlling the annealing gas components. It is in. The present invention was based on the discovery of a new fact that the chemical conversion treatability of 51-Mn steel sheets is controlled by surface C diffused from inside during annealing.

最近自動車用鋼板を中心として、軽愈化を目的に、より
高い強度を有する鋼板の開発が要望され、すでに種々の
タイプの高強度鋼板(以下ハイテンと称する)が開発、
実用化されているが、これらを大別するとSi、Mn、
pなどの含有量を高くする固溶強化型とNb、Ti、V
などを添加する析出強化型とがある。後者のタイプのハ
イテン並びにp添加ハイテンは通常所要元素の添加針が
少ない(<0.2%)ため、化成処理性は一般の軟鋼板
と大差ない・が、Si、Mn系では強要アップのためか
なり高い添加蓋(0,3%以上)を必要とすることから
、化成処理性が劣化(リン酸塩結晶が粗大化)し、した
がって塗装耐食性が通常の軟鋼板に比べて劣ることが知
られている。この理由の一つはSi。
Recently, there has been a demand for the development of steel plates with higher strength, mainly for automobile steel plates, with the aim of making them lighter in weight, and various types of high-strength steel plates (hereinafter referred to as high-strength steel plates) have already been developed.
Although these have been put into practical use, they can be roughly divided into Si, Mn,
Solid solution strengthened type that increases the content of P, etc. and Nb, Ti, V
There is also a precipitation-strengthened type that adds substances such as. The latter type of high-strength steel and p-added high-strength steel usually require less addition of required elements (<0.2%), so chemical conversion treatment properties are not much different from general mild steel sheets. It is known that because it requires a fairly high additive content (0.3% or more), chemical conversion treatment properties deteriorate (phosphate crystals become coarser), and therefore paint corrosion resistance is inferior to that of ordinary mild steel sheets. ing. One of the reasons for this is Si.

Mn が高いと、焼鈍時(還元ガス中で700〜800
℃で加熱軟化する過程)に鋼表面にSi、Mnを宮む厚
い複合酸化模が形成して鋼板が着色しくブルーイング)
、これがリン酸塩反応を阻害するためとされ、この観点
から特にSlの量を制限する技術が公知である(%公昭
53−73’i’1号、特開昭51−107218号)
When Mn is high, during annealing (700 to 800
During the process of heating and softening at ℃), a thick composite oxide pattern containing Si and Mn is formed on the steel surface, causing the steel plate to become colored and bluish.
It is said that this inhibits the phosphate reaction, and from this point of view, techniques for specifically limiting the amount of Sl are known (% Publication No. 53-73'i'1, JP-A-51-107218).
.

一方、鋼板表面の着色は鋼の成分にのみよるものでなく
、焼鈍時の雰囲気ガスによることもまたよく知られてお
り、この点から雰囲気露点(D、P、)を制限すること
も知られている(特開昭53−119708号)。すな
わち焼鈍は通常H2とN2との混合ガス中で加熱される
が、混合ガスは微量の水分を含んでおり、このN20と
N2との比率によって、鋼中成分の酸化が起るかどうか
が決まる。
On the other hand, it is well known that the coloration of the steel plate surface is not only caused by the steel components, but also by the atmospheric gas during annealing, and from this point of view it is also known to limit the atmospheric dew point (D, P,). (Japanese Unexamined Patent Publication No. 119708/1983). In other words, annealing is usually heated in a mixed gas of H2 and N2, but the mixed gas contains a small amount of moisture, and the ratio of this N20 to N2 determines whether or not oxidation of the components in the steel will occur. .

したがって適当な雰囲気ガスを選ぶことによって、Si
、Mnの高い鋼板でもブルーイングを起すことなく製造
することが可能である。特にハイテンの場合は、一般に
焼鈍時間の短い(く10分)連続焼鈍で製造されるため
、Si、MnO量がかなり高くてもブルーイングのない
光輝焼鈍板を得ることがバッチ焼鈍に比べて有利である
Therefore, by selecting an appropriate atmospheric gas, Si
Even steel plates with high Mn content can be manufactured without causing bluing. In particular, in the case of high tensile steel, it is generally manufactured by continuous annealing with a short annealing time (10 minutes), so it is advantageous compared to batch annealing to obtain bright annealed plates without bluing even if the Si and MnO contents are quite high. It is.

而して、本発明者らは、ブルーイングのないSl−Mn
  系ハイテンでもまた化成処理不良を起すことを見い
出し、S i−Mn系ハイテンの化成処理不良が、これ
までいわれているようなSi、Mnを含む複合酸緩膜の
存在にのみよるものでないことを知見した。そこでその
原因を種々調査した結果、鋼中Siが表面カーボンの析
出を著しく促進する事実を発見し、この表面Cが化成処
理不良の原因になっていることをつきとめた。一方Mn
は表面Cの析出を抑制するので、同−態量であれば、リ
ン酸塩結晶を緻密化し、化成処理性を改善することも明
らかとなった。一方1本来化成処理性のよい軟鋼板の場
合でも、表面C汚れが化成処理に悪影響をすることは広
く知られており、この表面Cの起源は圧延油の残査、焼
鈍ガス(CO)  からの付着、鋼中からの拡散などが
推定されている。
Therefore, the present inventors have developed Sl-Mn without blueing.
We found that chemical conversion treatment defects also occur in Si-Mn-based high tensile strength steels, and demonstrated that the chemical conversion treatment defects in Si-Mn-based high tensile strength steels are not solely due to the presence of a composite acid-relaxing film containing Si and Mn, as has been said up until now. I found out. As a result of various investigations into the causes of this, they discovered the fact that Si in steel significantly promotes the precipitation of surface carbon, and found that this surface C was the cause of poor chemical conversion treatment. On the other hand, Mn
It has also become clear that since it suppresses the precipitation of surface C, if the amount is the same, it densifies the phosphate crystal and improves chemical conversion treatment properties. On the other hand, it is widely known that surface C contamination has a negative effect on chemical conversion treatment even in the case of mild steel sheets that are naturally good in chemical conversion treatment.The origin of this surface C is from residual rolling oil and annealing gas (CO). It is assumed that this occurs due to adhesion of carbon dioxide, diffusion from within the steel, etc.

本発明者らは51−Mn系ノ・イテンク化成処理不良の
原因も、究極のとこ・ろ、この表面Cにあり、この表面
Cを抑制すれば、S i−Mn系ノ1イテンの化成処理
不良も改善できるとの着想のもとに種々の実験を行なっ
た。その結果、51−Mn鋼にCr、Nb、Ti、V 
 などの炭化物安定化元素、もしくは優先的に表面に拡
散吸着してCの析出に対して負触媒的作用をするS、 
 Ss、  Bi、  Sb、  B  およびSnを
添加することによって1表面のCの析出が抑制されると
同時に、緻密なリン酸塩結晶が形成され、通常の軟鋼と
同等以上のものが得られることが明らかとなり、ここに
本発明を構成するに至ったのである。以下に本発明の詳
細を図面を用いて説明する。
The present inventors believe that the ultimate cause of failure in chemical conversion treatment of 51-Mn-based materials lies in this surface C, and if this surface C is suppressed, chemical conversion treatment of Si-Mn-based materials can be improved. We conducted various experiments based on the idea that defects could also be improved. As a result, Cr, Nb, Ti, V
Carbide stabilizing elements such as S, or S which preferentially diffuses and adsorbs to the surface and acts as a negative catalyst against the precipitation of C;
By adding Ss, Bi, Sb, B, and Sn, the precipitation of C on one surface is suppressed, and at the same time, dense phosphate crystals are formed, and it is possible to obtain a product that is equivalent to or better than ordinary mild steel. This became clear, and this is how the present invention was constructed. The details of the present invention will be explained below using the drawings.

第1図は本発明の契機となった発見で、表面Cの析出が
、鋼中81濃度に比例して増大することを示す図面であ
る。図の縦軸はイオンマイクロアナライザー(IMA)
によって測定された表面Cのカウント数(厚さ150人
までの積分量)である。
FIG. 1 is a drawing showing that the surface C precipitation increases in proportion to the 81 concentration in steel, which is the discovery that led to the present invention. The vertical axis of the figure is the ion microanalyzer (IMA)
This is the count number of the surface C (integral amount up to 150 thicknesses) measured by .

表面Cは鋼中si濃度に比例し、 Mnはこれを抑制す
ること、また表面Cに対しては鋼中C濃度よりも、Sl
やMnの影響がより大きいことがわかる。
The surface C is proportional to the Si concentration in the steel, and Mn suppresses this.
It can be seen that the influence of Mn and Mn is greater.

第2図は市販のリン酸塩処理を行なった場合の鋼中81
量とリン酸塩処理結晶サイズ(径の太きいものほど結晶
が粗く、皮膜性能が令名)との関係を示したもので、鋼
中81が高いと結晶が粗大化し、一方Mnが高いと、結
晶粗大化に対するSiの悪影響が緩和されることがわか
る。第1図と第2図の現象的類似性から鋼中81による
リン酸塩結晶の粗大化の原因をただちに表面Cに結びつ
けることはできないが、これを証明するのが、第3図(
写真)と第4図とである。リン酸塩化成処理を行なう場
合は、脱脂後表面調整という前処理が必須であるが、こ
の表面調整剤はチタンコロイドのリン酸ソーダ分散液で
あり、鋼板表面に吸着したチタンがその後のリン酸塩結
晶析出の核となり、結晶を緻密化させるものといわれて
いる。第3図はこの効果を示したもので、一般に化成処
理性がすぐれているといわれる軟鋼板(バッチ焼鈍のキ
ャプド鋼板)でも、(a)は表面調整を行なったもので
表面調整をしない(b)と、全く粗い結晶しか形成しな
いことが一目りょう然である。
Figure 2 shows 81 in steel when commercially available phosphate treatment is applied.
This shows the relationship between the amount of phosphate treated crystals (the larger the diameter, the coarser the crystals, and the better the film performance). , it can be seen that the negative influence of Si on crystal coarsening is alleviated. Although the cause of the coarsening of phosphate crystals due to 81 in steel cannot be immediately linked to surface C due to the phenomenological similarity between Figures 1 and 2, Figure 3 (
photo) and Figure 4. When performing phosphate chemical conversion treatment, a pretreatment called surface conditioning after degreasing is essential, but this surface conditioning agent is a sodium phosphate dispersion of titanium colloid, and the titanium adsorbed on the steel plate surface is used for subsequent phosphoric acid treatment. It is said to act as a nucleus for salt crystal precipitation and make the crystals more dense. Figure 3 shows this effect.Even for mild steel sheets (batch annealed capped steel sheets) that are generally said to have excellent chemical conversion properties, (a) is a sheet with surface conditioning, and (b) is a sheet with surface conditioning. ), it is obvious at first glance that only coarse crystals are formed.

一方第4図は、第1図のサンプルから選ばれた51−M
n系ハイテンの表面C量と、吸着チタン(表面調整剤)
との関係を図示したもので、核形成剤のチタンは表面C
と反比例し、表[fiCの高いものほど、チタンが吸着
しにくいことがわかる。すなわちこの一連の結果は、リ
ン酸塩結晶が鋼表面に緻密に形成するかどうかは、核形
成剤のチタンの吸着性によって支配きれており、このチ
タンの吸着は表面Cの存在によって阻害されること、並
びに81  はこの表面Cの析出を助長するがゆえにリ
ン酸塩結晶を粗大化することを明瞭に示している。
On the other hand, Figure 4 shows 51-M selected from the samples in Figure 1.
Surface C content of n-based high tensile strength steel and adsorbed titanium (surface conditioning agent)
This figure shows the relationship between titanium as a nucleating agent and surface C.
It can be seen from the table that the higher the fiC, the more difficult it is for titanium to adsorb. In other words, this series of results shows that whether or not phosphate crystals form densely on the steel surface is determined by the adsorption of titanium as a nucleating agent, and the adsorption of titanium is inhibited by the presence of surface C. This and 81 clearly show that this promotes the precipitation of C on the surface, thereby coarsening the phosphate crystals.

本発明者らは以上の基礎実験に基づき、51−Mn系の
ハイテンに炭化物安定化元素であるOr、Ti。
Based on the above basic experiments, the present inventors added Or and Ti, which are carbide stabilizing elements, to 51-Mn-based high tensile strength steel.

V、Nb  およびZnを添加することによって、また
C析出の負触媒となるS、  81)、  Bi、  
BおよびSnを添加することにより、S i−Mnハイ
テンの表面Cの析出を効果的に抑制し、よって化成処理
性の劣化を防止できることを見い出した。これらの元素
は単独添加によってもそれなりに効果を示すが。
By adding V, Nb and Zn, S, which also becomes a negative catalyst for C precipitation, 81), Bi,
It has been found that by adding B and Sn, precipitation of C on the surface of Si-Mn high tensile strength steel can be effectively suppressed, thereby preventing deterioration of chemical conversion treatment properties. These elements exhibit some effects even when added alone.

2種以上を複合添加することによって、著しく優れた表
面C抑制効果、従って化成処理性の改善が行なわれる。
By adding two or more kinds in combination, a remarkable effect of suppressing surface C and therefore improving chemical conversion treatment properties can be achieved.

特に作用機構の異なるグループ(炭化物安定化グループ
と負触媒グループ)の元素同志を組合せると、より少な
い添加量で、すぐれた効果が期待できる。しかしながら
、T1とSのようにTiSを安定形成するものでは効果
が相殺される場合もあり、常に複合添加がよいわけでは
ない。
In particular, when elements from groups with different action mechanisms (carbide stabilization group and negative catalyst group) are combined, excellent effects can be expected with a smaller amount added. However, the effects of T1 and S, which stably form TiS, may cancel each other out, so it is not always advisable to add them in combination.

また本発明ではあくまでもブルーイングのない光輝焼鈍
板の得られる条件でその効果が期待できるものであるか
ら、この点から主要成分のSi+Mn≦3.0%に制限
すると同時に、焼鈍雰囲気も水素ガス濃度1%以上、露
点(D、P、) −6o℃〜0℃の範囲に、望ましくは
水素ガス濃度3%以上、露点−10℃以下に制御されな
ければならない。ガス雰囲気の限定範囲が広いのは、S
i+Mnの合計量によってブルーイングしやすさが変わ
り得るからで、この合計量が少ないほど、より高い露点
を採用することが可能である。例えばSi+Mn ==
2.0 %であれば、H25%、  D、P −20℃
であれば充分である。
In addition, in the present invention, the effect can be expected only under the conditions where a bright annealed plate without bluing can be obtained, so from this point of view, the main components Si + Mn are limited to 3.0%, and at the same time, the annealing atmosphere has a hydrogen gas concentration. The hydrogen gas concentration must be controlled to be 1% or more and the dew point (D, P,) to be in the range of -6oC to 0C, preferably to be 3% or more and the dew point to be -10C or less. The limited range of gas atmosphere is wide in S.
This is because the ease of bluing can change depending on the total amount of i+Mn, and the smaller this total amount is, the higher the dew point can be adopted. For example, Si+Mn ==
If it is 2.0%, H25%, D, P -20℃
If so, it is sufficient.

本発明方法によって製造された鋼板は通常の薄板製造方
法で容易に製造される。すなわち、溶鋼を連続鋳造また
は造塊法でスラブ(鋼片)となし、加熱炉で1100〜
1200℃に加熱後熱間で圧延し、スケールを酸洗して
除去したのち、冷間圧延によって所望の板厚に圧延する
。ついで焼鈍を行なうが、複合組織鋼を目的とする場合
は、α+γ温度域で加熱後急冷する。冷却速度は公知の
方法に従い、 Mn量によって決まる適当な条件(たと
えば1.5Mnでは50℃/sec以上)が選ばれる。
The steel sheet manufactured by the method of the present invention can be easily manufactured by a normal thin sheet manufacturing method. That is, molten steel is made into slabs (steel slabs) by continuous casting or ingot-forming, and heated to 1100 ~
After heating to 1200° C., hot rolling is performed, scale is removed by pickling, and then cold rolling is performed to a desired thickness. Next, annealing is performed, and if the objective is to obtain a composite structure steel, the steel is heated in the α+γ temperature range and then rapidly cooled. The cooling rate is determined by a known method and is determined by the amount of Mn (for example, 50° C./sec or higher for 1.5 Mn).

必要に応じて300℃前後の過時効処理を施し、1%前
後の圧延率で調質圧延を行なうことによって製品を得る
If necessary, an overaging treatment is performed at around 300° C., and a product is obtained by performing skin pass rolling at a rolling rate of around 1%.

本発明において表面C抑制のために添加される成分の添
加水準は単独添加の場合、幾分でも表面Cの抑制に効果
が認められた下限を示し、たとえば抑制効果の大きいS
やBではその下限は0.008チと低い水準になってい
る。一方その効果が目立って大きくないCrでは0.1
%であり、その他の炭化物安定化元素ではCの水準にも
依存するだめ厳密に決められないが、たとえばC0,0
05%ではTi、V、Nb、およびZrなどの炭化物安
定化元素は0.03%程度でも効果が認められる。ただ
し通常のハイテンとして適当な水準の00.05〜0.
07係の範囲では前記元素の添加量は0.1−0.2%
が望ましい。これらの添加成分を一種以上複合添加する
場合は、各々の成分の添加水準は低くてもよいことにな
る。一方これらの成分の上限値は、原則的にその効果(
リン酸塩処理性の改善効果)が飽和する濃度であるが、
その他にSでは0.025−以上では熱間圧延において
表面疵が発生すること、T1. V、 Nb、  Zr
  などでは、材料の強度が高くなり過ぎること、並び
に値段が高くなりすぎるという点も加味してその上限を
定めた。またSlの下限値0.3%というのはそれ未満
では、 SiによるCの表面析出は著しくなく、シたが
ってリン酸塩処理性も劣化しないためである。Mnは、
主として高強度を得るという材質的見地、並びに表面C
の抑制効果の二つの理由からYの下限0.5チを定めた
。Cの上限は、0.1%以上では、たとえCの抑制元素
を添加しても、表面Cの濃化が押えにくくなることから
、その上限を0.1%とした。
In the present invention, the addition level of the component added to suppress surface C, when added alone, is the lower limit at which the effect of suppressing surface C has been recognized. For example, S
The lower limit is as low as 0.008 inches for ``A'' and ``B''. On the other hand, in Cr, where the effect is not noticeably large, it is 0.1
%, and for other carbide stabilizing elements, it cannot be determined strictly as it depends on the level of C, but for example, C0,0
At 0.05%, carbide stabilizing elements such as Ti, V, Nb, and Zr are effective even at about 0.03%. However, the appropriate level for normal high tensile strength is 00.05 to 0.
In the range of Section 07, the amount of the above elements added is 0.1-0.2%
is desirable. When one or more of these additive components are added in combination, the level of addition of each component may be low. On the other hand, the upper limits of these components are, in principle, based on their effects (
The concentration is such that the effect of improving phosphate treatment properties is saturated.
In addition, when S is 0.025- or more, surface defects occur during hot rolling, and T1. V, Nb, Zr
The upper limit was set in consideration of the fact that the strength of the material would become too high and the price would become too high. The lower limit of Sl is 0.3% because if it is less than that, Si will not significantly precipitate C on the surface, and therefore the phosphate treatment property will not deteriorate. Mn is
Mainly from the material standpoint of obtaining high strength and surface C
The lower limit of Y was set at 0.5 cm for two reasons: the suppressing effect of The upper limit of C is set to 0.1% because if it is 0.1% or more, it becomes difficult to suppress the concentration of surface C even if a C suppressing element is added.

以下に本発明の実施例を述べる。Examples of the present invention will be described below.

実施例 第1表に示す成分系の鋼種を2 Q Kfの真空溶解に
より溶製し、1250℃で加熱して熱間圧延で約2.3
1111の板厚の熱延鋼板を得た。熱延鋼板表面のスケ
ールはグラインダー研削によって除去した後、鉱油系エ
マルジョンを潤滑油として、板厚0.7imまで冷間圧
延した。ついで溶剤脱脂によって清浄化した後、第1表
に示すガス雰囲気中で770℃1分間の加熱を行ない、
鋼板の両面に雰囲気ガスジェットを吹きつける方法によ
って50℃/SeCの冷却速度で300℃まで急冷した
。その後150℃まで炉冷した後大気中に取り出した。
Example Steels having the composition shown in Table 1 were melted by vacuum melting at 2 Q Kf, heated at 1250°C, and hot rolled to about 2.3 kg.
A hot rolled steel plate having a thickness of 1111 was obtained. After removing scale on the surface of the hot-rolled steel sheet by grinding with a grinder, the hot-rolled steel sheet was cold-rolled to a thickness of 0.7 mm using a mineral oil emulsion as a lubricant. After cleaning by solvent degreasing, heating was performed at 770°C for 1 minute in the gas atmosphere shown in Table 1.
The steel plate was rapidly cooled to 300° C. at a cooling rate of 50° C./SeC by blowing atmospheric gas jets onto both sides of the steel plate. Thereafter, it was cooled in a furnace to 150°C and then taken out into the atmosphere.

このようにして得られたサンプルは一方において表面分
析に供し、一方において化成処理にひきつづき電着塗装
を行なった。化成処理は日本バーカーライジング社製B
t 3004  (ディップタイプ)で、電着塗装は日
本ペイント社製パワートップU−30を厚さ20μにな
るよう陰極電着した。化成処理性の評価はリン酸塩結晶
の大きさを、1〜5段階で分類(5: good、  
l poor )、また塗装耐食性は塩水噴霧試験(S
 S T ) 480 hr  後のスクラッチ部のふ
くれ巾を1〜5段階(5:good 、  l poo
r )で評価した。
The samples thus obtained were on the one hand subjected to surface analysis and on the other hand subjected to chemical conversion treatment followed by electrodeposition coating. Chemical treatment is Nippon Barker Rising Co., Ltd. B
t 3004 (dip type), and cathodic electrodeposition of Power Top U-30 manufactured by Nippon Paint Co., Ltd. was performed to a thickness of 20 μm. Chemical conversion treatment properties are evaluated by classifying the size of phosphate crystals into 1 to 5 grades (5: good;
l poor), and paint corrosion resistance was determined by salt spray test (S
S T ) 480 hr The swelling width of the scratch area after 1 to 5 steps (5: good, l poo
r).

第1表の結果から、51−Mn系鋼板に炭化物安定化元
素、優先吸着元素(負触媒)を添加したものは、いずれ
も化成処理性が向上し、塗装耐食性が普通鋼並に改善さ
れていることが明らかである。
From the results in Table 1, 51-Mn steel sheets to which carbide stabilizing elements and preferential adsorption elements (negative catalysts) are added have improved chemical conversion treatment properties and improved paint corrosion resistance to the same level as ordinary steel. It is clear that there are

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼中Si、Mn量と表面濃化Cとの関係を示す
図面。 第2図は鋼中81.Mn量とリン酸塩処理性(結晶のサ
イズ)との関係図である。 第3図は表面調整剤(チタンコロイド)処理を行なった
場合と省略した場合の軟鋼板のリン酸塩結晶の析出状態
の顕微鏡写真(倍率1000倍)である。(a)  表
面調整あり、 (b)表面調整省略したもの、 第4図はチタンコロイド(核形成剤)の眼着に対する表
面Cの影響(51−Mnハイテン鋼)を示す図である。 4 λ 口 S L z Wt九
FIG. 1 is a drawing showing the relationship between the amount of Si and Mn in steel and surface concentration of C. Figure 2 shows Haganechu 81. FIG. 3 is a relationship diagram between the amount of Mn and phosphate treatability (crystal size). FIG. 3 is a micrograph (1000x magnification) of the state of precipitation of phosphate crystals in mild steel sheets with and without surface conditioner (titanium colloid) treatment. (a) With surface adjustment, (b) Without surface adjustment. FIG. 4 is a diagram showing the influence of surface C on eyewear of titanium colloid (nucleating agent) (51-Mn high-tensile steel). 4 λ mouth S L z Wt9

Claims (1)

【特許請求の範囲】[Claims] (1)  st 0.3〜2.0%、Mn0.5%〜2
.0%。 C011%以下のシリコン−マンガン鋼を基本とし、こ
れl: Or 0.1〜1.0%、Ti0.03〜0.
20%、  V O,03〜0.20%、 Nl)、0
.03〜0.20%、  Zr O,03〜0.20%
、80.008〜O,,02,5%、Se0.008〜
0.025%。 B O,008〜0.020%、  Sb O,01〜
0.20%、 Bi 0.01〜0.20%およびSn
0.02〜0.10%の範囲の成分を、いずれが一種ま
たは2種以上を含有し、かっSi −1−MnS2.0
%以下であって、残部鉄および不可避的不純物からなる
鋼板を水素ガス濃11vo1%以上、露点−60℃〜o
℃に制御された雰囲気内で焼鈍することを特徴とする化
成処理性のすぐれたシリコン−マンガン系制強に鋼板の
製造方法。
(1) st 0.3-2.0%, Mn 0.5%-2
.. 0%. Based on silicon-manganese steel with CO11% or less, Or 0.1-1.0%, Ti 0.03-0.
20%, VO, 03~0.20%, Nl), 0
.. 03-0.20%, ZrO, 03-0.20%
,80.008~O,,02,5%,Se0.008~
0.025%. BO,008~0.020%, SbO,01~
0.20%, Bi 0.01-0.20% and Sn
Each contains one or more components in the range of 0.02 to 0.10%, and Si-1-MnS2.0
% or less, and the balance consists of iron and unavoidable impurities.
A method for manufacturing a silicon-manganese reinforced steel sheet with excellent chemical conversion properties, characterized by annealing in an atmosphere controlled at ℃.
JP19630581A 1981-12-08 1981-12-08 Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion Granted JPS58100622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19630581A JPS58100622A (en) 1981-12-08 1981-12-08 Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19630581A JPS58100622A (en) 1981-12-08 1981-12-08 Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion

Publications (2)

Publication Number Publication Date
JPS58100622A true JPS58100622A (en) 1983-06-15
JPH0147530B2 JPH0147530B2 (en) 1989-10-16

Family

ID=16355592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19630581A Granted JPS58100622A (en) 1981-12-08 1981-12-08 Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion

Country Status (1)

Country Link
JP (1) JPS58100622A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138052A (en) * 1983-12-26 1985-07-22 Nippon Kokan Kk <Nkk> Cold rolled steel sheet having superior corrosion resistance after coating
JPS6237349A (en) * 1985-08-12 1987-02-18 Kobe Steel Ltd Wire for steel cord excellent in phosphate chemical conversion treatment
US4956025A (en) * 1988-01-14 1990-09-11 Nippon Steel Corporation Process for producing cold-rolled high strength steel sheet having excellent formability and conversion-treatability
JPH05222485A (en) * 1992-02-10 1993-08-31 Kobe Steel Ltd Hot rolled steel plate excellent in press formability and affinity for resin and its production
JP2012072465A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2013124382A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet excellent in chemical treating properties and manufacturing method therefor
WO2013129295A1 (en) * 2012-02-28 2013-09-06 Jfeスチール株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
JP2015098620A (en) * 2013-11-18 2015-05-28 新日鐵住金株式会社 Automobile steel plate having excellent chemical convertibility and corrosion resistance
JP2016084520A (en) * 2014-10-29 2016-05-19 Jfeスチール株式会社 High workability and high strength cold rolled steel sheet excellent in chemical conversion treatment property and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843401A (en) * 1971-09-30 1973-06-23
JPS5113105A (en) * 1974-06-14 1976-02-02 Getsutsuen Hainritsuhi Ekiatsushikihoriipu gurabu baketsuto
JPS537371A (en) * 1976-07-09 1978-01-23 Seikosha Kk Repeat mechanism for clock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843401A (en) * 1971-09-30 1973-06-23
JPS5113105A (en) * 1974-06-14 1976-02-02 Getsutsuen Hainritsuhi Ekiatsushikihoriipu gurabu baketsuto
JPS537371A (en) * 1976-07-09 1978-01-23 Seikosha Kk Repeat mechanism for clock

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138052A (en) * 1983-12-26 1985-07-22 Nippon Kokan Kk <Nkk> Cold rolled steel sheet having superior corrosion resistance after coating
JPS6237349A (en) * 1985-08-12 1987-02-18 Kobe Steel Ltd Wire for steel cord excellent in phosphate chemical conversion treatment
JPH0465894B2 (en) * 1985-08-12 1992-10-21 Kobe Steel Ltd
US4956025A (en) * 1988-01-14 1990-09-11 Nippon Steel Corporation Process for producing cold-rolled high strength steel sheet having excellent formability and conversion-treatability
JPH05222485A (en) * 1992-02-10 1993-08-31 Kobe Steel Ltd Hot rolled steel plate excellent in press formability and affinity for resin and its production
JP2012072465A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2013124382A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet excellent in chemical treating properties and manufacturing method therefor
WO2013129295A1 (en) * 2012-02-28 2013-09-06 Jfeスチール株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
CN104136644A (en) * 2012-02-28 2014-11-05 杰富意钢铁株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
JPWO2013129295A1 (en) * 2012-02-28 2015-07-30 Jfeスチール株式会社 Si-containing high-strength cold-rolled steel sheet, method for producing the same, and automobile member
US10174430B2 (en) 2012-02-28 2019-01-08 Jfe Steel Corporation Si-containing high strength cold rolled steel sheet, method of producing the same, and automotive members
JP2015098620A (en) * 2013-11-18 2015-05-28 新日鐵住金株式会社 Automobile steel plate having excellent chemical convertibility and corrosion resistance
JP2016084520A (en) * 2014-10-29 2016-05-19 Jfeスチール株式会社 High workability and high strength cold rolled steel sheet excellent in chemical conversion treatment property and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0147530B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
KR102648242B1 (en) Advanced high strength zinc plated steel sheet having excellent electrical resistance spot weldability and manufacturing method thereof
KR101403111B1 (en) Galvanized steel sheet having excellent surface property and method for manufacturing the same
WO2019189849A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
EP2548664A1 (en) Process for producing hot-rolled steel sheet and process for producing hot-dip galvanized steel sheet
MX2014003789A (en) Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor.
JPS58100622A (en) Production of silicon-manganese high strength steel plate having excellent suitability to chemical conversion
JPH04337026A (en) Production of hot rolled high strength steel plate excellent in fatigue strength and fatigue crack propagation resistance
JPH07180001A (en) Ferritic stainless steel bright annealing material excellent in workability and rust resistance
EP2980239B1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JPS6052528A (en) Production of high-strength thin steel sheet having good ductility and spot weldability
JPS648694B2 (en)
JP2001303229A (en) High strength galvannealed steel sheet excellent in press-formability and plating adhesion and producing method thereof
JP2000063985A (en) Cold rolled steel sheet for porcelain enameling, hardly causing strength reduction after firing
KR102546616B1 (en) Advanced high strength zinc plated steel sheet having excellent surface quality and electrical resistance spot weldability and manufacturing method thereof
JP7493132B1 (en) High-strength steel sheet, high-strength plated steel sheet, and manufacturing method thereof, and component
JPH03199343A (en) Cold rolled steel sheet for press working having extremely good chemical conversion treatability, weldability, punchability and slidability
CN116463547B (en) 120 kg-level ultrahigh-strength galvanized steel sheet and manufacturing method thereof
US20240018617A1 (en) Thin steel sheet
JPH0210853B2 (en)
JPH03180444A (en) High strength cold rolled steel sheet excellent in butt weldability and chemical convertibility and its manufacture
WO2024127766A1 (en) High-strength steel sheet, high-strength plated steel sheet, methods for producing same, and member
KR910003035B1 (en) Process for excellant working galvanized steel sheets
WO2024053544A1 (en) High-strength hot-dip-galvanized steel sheet and production method for same
WO2023191021A1 (en) Galvanized steel sheet, member, and production methods therefor
CN116377188A (en) Method for eliminating missing plating defect of high-strength steel with Mn content of more than 1.5% and application of high-strength steel