JPS58100392A - Plasma unit - Google Patents

Plasma unit

Info

Publication number
JPS58100392A
JPS58100392A JP56196739A JP19673981A JPS58100392A JP S58100392 A JPS58100392 A JP S58100392A JP 56196739 A JP56196739 A JP 56196739A JP 19673981 A JP19673981 A JP 19673981A JP S58100392 A JPS58100392 A JP S58100392A
Authority
JP
Japan
Prior art keywords
plasma
potential
cathode
hollow part
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56196739A
Other languages
Japanese (ja)
Inventor
影山 賀都鴻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56196739A priority Critical patent/JPS58100392A/en
Publication of JPS58100392A publication Critical patent/JPS58100392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の属する技術分計 本発明は開放系磁場による長時間のプラズマの閉じ込め
を可能とするプラズマ装置に@する。
DETAILED DESCRIPTION OF THE INVENTION Technical Description to which the Invention Pertains The present invention is directed to a plasma device that allows plasma to be confined for a long time using an open magnetic field.

従来技術及び其の問題点 開放系磁場でプラズマを閉じ込める場合、プラズマの閉
じ込め時間を長くすることが核融合炉で必要なことはよ
く知られているが、被融合炉以外の用途に使用されるプ
ラズマ装置に於ても、閉じ込め時間を長くすればプラズ
マ発生装置の消費電力が少〈て済み、プラズマの密度を
鳥くすることができ、更にプラズマを包囲する固体壁へ
の熱入力が軽減されるなど、大きな効果が得られる。開
放系磁場によるプラズマ閉じ込めて閉じ込め時間を長く
する丸めには、開放端におけるプラギングが必要とされ
る。このことは、九とえば、CoGormexano:
Reduction of Losses in Op
@n−EndedMagnetic Traps ; 
Nucjear Fusion、 1G (’79 )
 。
Conventional technology and its problems It is well known that when confining plasma using an open magnetic field, it is necessary to increase the plasma confinement time in fusion reactors. In plasma equipment as well, by increasing the confinement time, the power consumption of the plasma generator can be reduced, the density of the plasma can be made more uniform, and the heat input to the solid wall surrounding the plasma can be reduced. Great effects can be obtained. Plugging at the open end is required for plasma confinement with an open magnetic field and rounding to increase the confinement time. This means that for example CoGormexano:
Reduction of Losses in Op
@n-EndedMagnetic Traps;
Nucjear Fusion, 1G ('79)
.

8.1083などの文献に記載されている。8.1083 and other documents.

プライングには高周波によるものと静電場によるものが
あ抄、静電場によるものには電極を用いる電極法と、タ
ンデムオフ−形磁場による両極性電位閉じ込めがあ抄、
これらはいずれも研究通出にある。この電極法には、カ
スプ磁場のポイント及びラインカスプに陽極及び陰極か
らなる静電プラグを用Vh九電磁トラップがある。第1
@は電磁トラップの原壇図で、文献T、J、DoJan
、B、L、8tani−field and J、M、
Larsen:PIasma Potentlij 1
!1ejectroataticaJjy pjugg
ed cusp@and m1rrors:The P
hycics of i’7uids、 18(’75
 ) e 10. l583に掲載されたものである。
There are two types of prying, one using high frequency and one using an electrostatic field.The other method using an electrostatic field includes the electrode method using an electrode, and the bipolar potential confinement using a tandem off-type magnetic field.
All of these are in the research notice. This electrode method includes a Vh9 electromagnetic trap that uses electrostatic plugs consisting of an anode and a cathode at the cusp magnetic field point and line cusp. 1st
@ is the original diagram of the electromagnetic trap, and is based on documents T, J, and DoJan.
,B,L,8tani-field and J,M,
Larsen:PIasma Potentlij 1
! 1ejectroaaticaJjy pjugg
ed cusp@and m1rrors: The P
hycics of i'7uids, 18('75
) e 10. It was published in 1583.

1中の符号(1)は2個1組のコイルでzmotわ抄に
軸対称に捲かれ、カスプ磁場を形成する。(2)はポイ
ントカスプに配設された中空円筒状OII %。
The code (1) in 1 is a set of two coils that are wound axially symmetrically in a zmot winding, forming a cusp magnetic field. (2) is a hollow cylindrical OII % arranged at the point cusp.

(3)はポイントカスプに配役された中空円筒状の陰極
、14)はラインカスプに配設され九2111組の環状
の陽極、(5)はラインカスプに配設された2個1組の
1状の陰極である。この2個1組のコイル(1)に挾ま
れ死空間及びコイル(1)の内部の空間には一つの図示
されない真空容器が配設され、この真空容器にはプラズ
マとなるべき気体が充填され、陰極(3)の少なぐとも
一方の陽極(2)の反対の側には図示されない電子銃か
ら射出され九電子は、陰極(3)及び陽極(2)を貫通
して図示されな一真空容器内部を運動し、充填され九気
体をイオン化してプラズマが形成される0点線(6)は
、グツズiの存在する空間の境界を示す、陰極(3)及
び陰極(5)の電位を零、陽極(2)及び陽極(4)の
電位をφAとしたとき、Z軸近傍の空間電位φは第2図
に示す様に分布する。プ9jCマの存在する空間の電位
φ、で、O<φeくφムである。プラズマの存在する空
間の両IIKは、陽極(2)の内部(電位の山が形成さ
れ一1電位の最も高い所で電位はφe+φiとなる。イ
オンの電価をZe、電子の電価を−eとおい友とき、エ
ネルギがZυiより小さいイオン及び運動エネルギが 
φeよ抄小さい電子はプラグiの存在する空間から磁場
方向に脱出できず、イオンは矢印(7)に示す様に、電
子は矢印(8)に示す様に反射されてプラズマ(戻され
る。すなわち、プラズマのイオン温度をTI。
(3) is a hollow cylindrical cathode arranged at the point cusp, 14) is an annular anode arranged at the line cusp and has 92111 sets, and (5) is a set of 2 annular anodes arranged at the line cusp. It is a cathode. A vacuum container (not shown) is provided in the dead space sandwiched between the two coils (1) and in the space inside the coil (1), and this vacuum container is filled with gas to become plasma. , nine electrons are emitted from an electron gun (not shown) on at least one side of the cathode (3) opposite the anode (2), and pass through the cathode (3) and the anode (2) to create a vacuum (not shown). The zero dotted line (6), which moves inside the container and ionizes the filled gas to form plasma, zeros the potential of the cathode (3) and the cathode (5), which indicates the boundary of the space where Gutsuzu i exists. , when the potentials of the anode (2) and the anode (4) are φA, the spatial potential φ near the Z axis is distributed as shown in FIG. The potential φ of the space where the pu9jC ma exists, and O<φe and φmu. Both IIK in the space where the plasma exists are inside the anode (2) (a mountain of potential is formed and the potential becomes φe + φi at the highest potential. The charge of the ions is Ze, and the charge of the electrons is - When e and Oitomo, ions whose energy is smaller than Zυi and whose kinetic energy is
Electrons smaller than φe cannot escape from the space where plug i exists in the direction of the magnetic field, and ions are reflected and returned to the plasma (as shown by arrow (8)), and ions are reflected as shown by arrow (8). , TI is the ion temperature of the plasma.

電子@度をTcとすると1!、 φ重″)) k’l’i /7.e 、φe>>kTe
/e   −・−・(1)とすること(より、プラズマ
の1放端におけるプライングができ、閉じ込め時間を格
段に改善できることが、従来の電磁トラップの効果であ
った。
If electron @ degree is Tc, it is 1! , φheavy'')) k'l'i /7.e, φe >> kTe
/e - (1) (The effect of the conventional electromagnetic trap is that it is possible to ply the plasma at one emission point, and the confinement time can be significantly improved.

−この電磁トラップtc 4 s次の様な問題点が6つ
丸、t@2図に示す如く、陽極(2)の内部に於て、空
間電位は最大φi+φCとなるが。
- This electromagnetic trap tc 4 s There are six problems as follows: t@2 As shown in Figure 2, the space potential inside the anode (2) reaches a maximum of φi+φC.

Δφ=φム一(φi+φe)     ・・・・・・・
・・12)で与えられる@極電位と空間電位の差Δφは
零にならず、Δφ〉Oである。Δφが形成される原因は
陽極の内部に電子が捕獲されて電子群を形成し、この電
子群が作る空間電荷によ静電場が形成されることである
。ΔφはZ軸からの距離rの関数でiΔφ=Δφ(r) ともられすことができる、電子群の作る電場の向きを考
慮して、 θ(Δφ) であることがわかる、Z軸上で電場のr成分はOである
から、Δφはr=Qで最大値ΔφmaxΔφmax”’
Δφ(0) をとる。従って、陽極内で、Z軸上の電位は式(2)%
式% となる、φiとφeはプラズマの粒子級平衡等で定まる
が、概ね同様程度の大きさで% 幻〜φ6である大きく
なり、はとんど4人に等しくなる緒果、Z軸上すなわち
r=Qで、 φi〜φe〜o、r=o       ・・・・・・・
・・(3)となや、式(1)が成立しないことが知られ
ている。
Δφ=φmuichi (φi+φe) ・・・・・・・
...12) The difference Δφ between the @polar potential and the space potential does not become zero, and Δφ>O. The reason why Δφ is formed is that electrons are captured inside the anode to form a group of electrons, and an electrostatic field is formed by the space charge created by this group of electrons. Δφ is a function of the distance r from the Z-axis, which can be expressed as iΔφ=Δφ(r). Taking into account the direction of the electric field created by the electron group, it can be seen that θ(Δφ) on the Z-axis. Since the r component of the electric field is O, Δφ has the maximum value Δφmax Δφmax"'
Take Δφ(0). Therefore, within the anode, the potential on the Z axis is expressed by the formula (2)%
φi and φe are determined by the particle class equilibrium of the plasma, etc., but they are approximately the same size. In other words, r=Q, φi〜φe〜o, r=o...
...(3) It is known that equation (1) does not hold true.

しかし、陽極内の大部分では式(1)が成立し、式(3
)はrの非常に小さい部分だけで成立するから電磁トラ
ップでは静電プラグのプラズマ閉じ込め時間を増加させ
る効果は大きいが、r〜0で式(3)が成立する結果静
電プラグにロスアパーチャが形成され、これを通してプ
ラズマが漏れるために、プラズマ閉じ込め時間の増加の
効果が制限されてい友。
However, in most parts of the anode, equation (1) holds true, and equation (3
) holds only for a very small portion of r, so the electromagnetic trap has a large effect of increasing the plasma confinement time of the electrostatic plug, but as equation (3) holds when r~0, a loss aperture is created in the electrostatic plug. The effect of increasing plasma confinement time is limited because the plasma leaks through this formation.

発明の目的 本発明はかかる事情に曽みてなされ九もので。purpose of invention The present invention has been made in light of these circumstances.

その目的とするところは、ロスアパーチャのない静電プ
ラグを設けること(より、高温高密度のプラズマを閉じ
込めることができ、かつその閉じ込め時間を大幅に増加
させることのできる開放系プラズマ装置を実現すること
である。
The aim is to provide an electrostatic plug with no loss aperture (to realize an open-system plasma device that can confine high-temperature, high-density plasma and significantly increase the confinement time). That's true.

発明の曇要 プラズマ境界とその電位を定めるリミタに隣接して嬉鳴
極を設けて陽極内への電子流入を抑制。
The cloud of the invention is provided adjacent to the limiter that determines the plasma boundary and its potential to suppress the inflow of electrons into the anode.

第一陰極に隣接する陽極の中空部の軸心をプラズマ電子
が入射する部分から隔離してロスアパーチャのない静電
プラグを形成し、もって高温高密度のプラズマを長時間
閉じ込めることができるようにした。
The axis of the hollow part of the anode adjacent to the first cathode is isolated from the part where plasma electrons enter, forming an electrostatic plug with no loss aperture, making it possible to confine high-temperature, high-density plasma for a long time. did.

発明の実施例 第3図は本発明の一実施例を示すプラズマ装置の構成図
である。2個1組のコイルn)はZ軸のまわりに軸対称
(捲かれ、図示されない励磁電源とともに、プラズマを
収容する開放系磁場の一種のカスプ磁場を発生する装置
を構成する。C4)はカスプ磁場の開放端のひとつであ
るラインカスプに配設され九2個1組の環状の陽極、(
5)はラインカスプに配設された2個1組の環状の陰極
で、ラインカスプに於て磁場の方向と平行な零でない成
分を有する電場を形成する静電プラグを構成し、2個1
組の骸コイル(1)に挾まれ九空聞及び該コイル(1)
の内部の空間には、一つの図示されない真空容器が配設
され、該真空容器にはプラズマ境界面(6)を定めるリ
ミタ(9)が収容されている。二つの該Q tり(9)
はカスプ磁場の二つの開放端であるポイントカスプにそ
れぞれ配設され、磁場の方向(貫通し死中空部を有し、
咳中空部のプラズマを包囲している。プラズマの存在す
る空間の電位φpは、該第−一の電位φlで制御される
。すなわち、該すlり(9)とプラズマの間に存在する
シースを介するプラズマ電子及びイオンの伝導によレプ
ラズマと鋏嬉−璧の電位差すなわちシース電圧φSが定
まるから、 φp=φj+φS       ・・・・・曲(4)K
よ秒、φpが定まる。
Embodiment of the Invention FIG. 3 is a configuration diagram of a plasma apparatus showing an embodiment of the invention. A set of two coils n) are axially symmetrical (wound) around the Z-axis, and together with an excitation power source (not shown) constitute a device that generates a kind of cusp magnetic field of an open system magnetic field that accommodates plasma.C4) is a cusp magnetic field. A set of 92 annular anodes arranged at the line cusp, which is one of the open ends of the magnetic field, (
5) is a set of two annular cathodes disposed at the line cusp, forming an electrostatic plug that forms an electric field having a non-zero component parallel to the direction of the magnetic field at the line cusp;
Kukumon is held between Mukuro Coil (1) and said Coil (1).
A vacuum vessel (not shown) is arranged in the internal space of the plasma chamber, and a limiter (9) defining a plasma boundary surface (6) is accommodated in the vacuum vessel. Two Qt Tries (9)
are arranged at the point cusps, which are the two open ends of the cusp magnetic field, and the direction of the magnetic field (through it and having a hollow part,
Surrounds the plasma in the cough hollow. The potential φp of the space where plasma exists is controlled by the -first potential φl. That is, since the potential difference between the plasma and the sheath (9), that is, the sheath voltage φS, is determined by the conduction of plasma electrons and ions through the sheath existing between the slot (9) and the plasma, φp=φj+φS...・Song (4) K
After a few seconds, φp is determined.

図中の符号0・は皺17 f夕r9) K隣接して配設
され鹸IJ tり(9)の中空部を貫通し九磁力線が貫
通する中空部を有する第一陰極01は該第−陰極a呻に
IJ tり(9)と反対のIIIK゛隣接して配設され
、皺すン声(9)の中空部を貫通し九磁力線が貫通する
中空部を有する陽極、任lけ核陽極aカの第−陰極時と
反対の側Kll接してその開口を覆うように配設され丸
板状の第二陰極で、リキタI9)、第一陰極QO,陽極
αυ、第二陰極α■は静電プラグ轡を構成し、本実施例
ではカスプ磁場の開放端である二つのポイントカスプに
それぞれ峡静電プラグalが配設され、該靜罵プラグリ
は以下KpP述する様に磁場の方向と平行な零でない成
分を有する電場を形成する。
The reference numeral 0 in the figure indicates the wrinkle 17, the first cathode 01 having a hollow part arranged adjacent to the first cathode (9) and having a hollow part through which nine lines of magnetic force pass. An anode, which is arranged adjacent to the cathode (9) and opposite (IIIK) and has a hollow part through which the nine magnetic field lines pass through the hollow part of the crease (9). A round plate-shaped second cathode is arranged so as to be in contact with the opposite side of the anode a to the cathode and to cover the opening of the anode a, and includes a second cathode, a first cathode QO, an anode αυ, and a second cathode α■. constitutes an electrostatic plug, and in this embodiment, an electrostatic plug is provided at each of the two point cusps that are the open ends of the cusp magnetic field, and the silent plug is arranged in the direction of the magnetic field as described below. forms an electric field with a nonzero component parallel to .

第4図は第3図に示す実施例の主要部の構成と作用を示
すもので、 (a)は静電プラグ構成図、(b)は空間
電位φ(r、z)のr依存を示す線図、(C)は空間電
位φ(r、z)の2依存を示す線図である。
Figure 4 shows the structure and operation of the main parts of the embodiment shown in Figure 3, where (a) is a diagram of the electrostatic plug configuration, and (b) shows the dependence of space potential φ(r, z) on r. Diagram (C) is a diagram showing the two-dimensional dependence of the space potential φ(r,z).

陽極a1には電1i! (14Kよシミ位φ麿が与えら
れ、第一陰極(11には電源−により電位φklが与え
られ。
Anode a1 has electricity 1i! (A voltage of 14K is applied to the stain, and a potential φkl is applied to the first cathode (11) by the power supply.)

第二陰極aりには電源αeによ動電位φに2が与えられ
、各電位の間には、 4kg<φkt<0<φa        ・・・・・
・(5)の関係が成立する。りイタ(9)は接地されて
お抄咳リミタの内部にはシースaηを介してプラズマ(
1sが接触している。プラズマの存在する空間の電位φ
pは(4)から、φp=φlである。各電位−に、φg
、φ1の絶対値は静電プラグが有効に作用するように大
きくとられているから、1φp1(1φkllelφに
21.φ、である。すなわち%(5)を参照して、 4kg<φkl<φpくφa        ・・・・
・・田)が成立する。陽極αυの中空部の軸心は+7 
<夕(9)O中空部を頁通し九磁力線が陽極aυの中空
部で形成する磁束管の外部に位置し、第一陰極軸の鍔状
の部分と交わる。
A dynamic potential φ of 2 is applied to the second cathode a by the power source αe, and between each potential, 4kg<φkt<0<φa .
- The relationship (5) holds true. The limiter (9) is grounded, and plasma (
1s is in contact. Potential φ of the space where plasma exists
From (4), p is φp=φl. For each potential -, φg
, the absolute value of φ1 is set large so that the electrostatic plug works effectively, so 1φp1 (21.φ for 1φkllelφ). That is, referring to %(5), 4kg<φkl<φp. φa...
・・田) is established. The axis of the hollow part of the anode αυ is +7
<Yu (9)O Nine lines of magnetic force pass through the hollow part and are located outside the magnetic flux tube formed in the hollow part of the anode aυ, and intersect with the flange-shaped part of the first cathode axis.

発明の効果 かくして構成された第4図(a) K実施例を示し九静
電プラグ(IIの作用と発明の効果を第4図Φ)及び(
C)を参照して説明すると、陽極の中空部−には、電磁
トラップのポイントカスプにおける静電プラグの陽極内
部と同様、電子が捕獲されて電子群を形成し、鋏電子評
が作る空間電荷によ抄電場が形成される0本発明におゆ
るプラズマ装置の静電プラグが電磁トラップのポイント
カスプ(おける静電プラグと異なるところは、第一に、
本発IjIKよる静電プラグにおいては、陽極の中空部
舖の軸心はりζり(9)の中空部を通らないから、静電
ブック轡の近傍(於てプラズマの存在する空間を通る磁
力線は、陽極の中空部(1*に於てその軸心からの距離
τが、r=Qのところだけに存在する。一方電磁トラッ
プのポイントカスプにおける静電ブラダに於いては、プ
ラズマや存在する空間を通る磁力線は陽極の中空部に於
てr=Qにも存在する。本発明における静電プラグにお
いても電磁トラップのポイントカスプにおける静電プラ
グと同様に1陽極の中tI!部に於ける空間電位φ1は
第4図rb)に示す如く、その軸心上で最小となり、第
−陰極の電位φklKはぼ等しくなる。ここで電子群と
第一陰極の間の電位降下は無視している。一方プ2ズi
錦を包囲しているリミタ(9)の中空部の電位分布φ3
は第4図(b)に示す如く、プラグ−t1・が存在する
空間でφpであ抄、リミタ内壁で0である。φpけイオ
ンと電子のラーマ半径の相異により、負の値をとる。プ
ラズマasから射出されるイオン及び電子はほぼ磁力線
に?8−)て進むが、その磁力線は陽極の中空m1(1
1に於てはR1<r<RsKある。r == R1。
Effects of the Invention FIG. 4(a) shows the K embodiment thus constructed and shows the action of the electrostatic plug (II) and the effect of the invention in FIG. 4(Φ) and (
To explain with reference to C), in the hollow part of the anode, like the inside of the anode of an electrostatic plug at the point cusp of an electromagnetic trap, electrons are captured and form an electron group, and a space charge created by the scissors electrons is generated. The electrostatic plug of the present invention, in which an electric field is formed, is different from the electrostatic plug of the electromagnetic trap at the point cusp of the electromagnetic trap.
In the electrostatic plug according to the present IJIK, since the anode does not pass through the hollow part of the anode's hollow part or the hollow part of the axial center beam (9), the magnetic field lines passing through the vicinity of the electrostatic book cover (the space where plasma exists) , the hollow part of the anode (1*) exists only where the distance τ from its axis is r = Q.On the other hand, in the electrostatic bladder at the point cusp of the electromagnetic trap, the plasma and the existing space The lines of magnetic force that pass through also exist at r=Q in the hollow part of the anode.In the electrostatic plug of the present invention, as well as the electrostatic plug at the point cusp of the electromagnetic trap, there is a space in the tI! part in the middle of one anode. As shown in FIG. 4 (rb), the potential φ1 is at its minimum on its axis, and the potential φklK of the second cathode is approximately equal.Here, the potential drop between the electron group and the first cathode is ignored. On the other hand, p2zu i
Potential distribution φ3 in the hollow part of the limiter (9) surrounding the brocade
As shown in FIG. 4(b), is φp in the space where the plug t1 exists, and is 0 at the inner wall of the limiter. φp takes a negative value due to the difference in the Rahma radius of ions and electrons. Ions and electrons ejected from plasma AS almost form magnetic lines of force? 8-), but the lines of magnetic force move along the anode's hollow m1 (1
1, R1<r<RsK. r == R1.

(R1+ B−s ) / 2 == R2eRsにお
ける静電プラグIの空間電位φ(Rlg)、φ(R’2
1”)#φ(R3,z)は第4図(C)に示される。こ
れらは陽極の中空部及び内面に於て全てφpK対し正の
高電位KToる。プラズマ装置を通る磁力線で陽極の中
空部a優で電位が最も低いもの呟φ(31,z)である
から、プラズマを通る全ての磁力線KfEiって第2図
に示すものく類似し九イオンと電子の両方に対する電位
障壁ができてお)1本発明のプラズマ装置の静電プラグ
には、電磁トラップのポイントカスプの静電プラグに存
在したロスア″−チャは、存在しない。これが本発明の
第一の効果であ抄、この幼果によりてプラズマの閉じ込
め時間を大幅に増加させることので亀る開放系プラズマ
装置が実現し九。
(R1+B-s)/2 == Space potential of electrostatic plug I at R2eRs φ(Rlg), φ(R'2
1") #φ(R3,z) is shown in FIG. 4(C). They are all at a positive high potential KTo with respect to φpK in the hollow part and inner surface of the anode. Since the lowest potential in the hollow part a is φ(31,z), all the magnetic field lines KfEi passing through the plasma are similar to those shown in Figure 2, creating a potential barrier for both ions and electrons. (1) The electrostatic plug of the plasma device of the present invention does not have a loss feature that exists in the electrostatic plug at the point cusp of the electromagnetic trap. This is the first effect of the present invention, and as the plasma confinement time is greatly increased by this seedling, an open system plasma device can be realized.

次に第一陰極Q呻の作用とプラズマ閉じ込めに関する効
果を説明する。第−陰極嗜の中空部(至)の電位はそこ
に空間電荷が無いとき第一陰極の電位φに1にほぼ等し
い亀の高電位になる。実際には員の高電位の部分へはプ
ラズマ電子は反射されて到達できないが、プラズマイオ
ン社加速されて到達でき、梢−陰極の中空部−には正の
空間電荷が存在し、鋏中空部(至)の電位は空間電荷が
ないと仮定し九ときの電位よりOK近い値をとる。該中
空部(4)を飛行するイオンの一部は捕獲されてイオン
群を形成する。骸イオン群の粒子損失が少いときには、
イオン密度は上昇してその最大値はプラズマミロの存在
する空間の電位φpK達するが、φpを越えることはな
い、この場合の第一陰極の中空部(至)の電位分布が箒
4図(b)に示されるφ2である。プラズマから射出さ
れ良電子は、第一陰極の中空部(至)の作る電位障壁φ
p−6に出合い、大部分がここで反射されてプラグ!に
戻され、残ヤの僅かのものが第一陰極の中空部働を貫通
して陽極の中空部(IIK達し、それを貫通して第二陰
極α看の作る電位障−に−よ〉反射されて結局プラズマ
に戻される。
Next, the action of the first cathode Q and the effect on plasma confinement will be explained. When there is no space charge there, the potential of the hollow part of the second cathode becomes a tortoise-high potential which is approximately equal to 1 to the potential φ of the first cathode. In reality, plasma electrons cannot reach the high-potential part of the scissor because they are reflected, but they can reach it after being accelerated by the plasma ion beam. Assuming that there is no space charge, the potential at (to) takes a value close to OK than the potential at nine. Some of the ions flying through the hollow space (4) are captured and form an ion group. When the particle loss of the Mukuro ion group is small,
The ion density increases and its maximum value reaches the potential φpK of the space where plasma Miro exists, but it does not exceed φp. In this case, the potential distribution in the hollow part of the first cathode is shown in Figure 4 (b). ) is φ2. The good electrons ejected from the plasma are exposed to the potential barrier φ created by the hollow part of the first cathode.
It encounters p-6, and most of it is reflected here and plugs! A small amount of the residue passes through the hollow part of the first cathode and reaches the hollow part (IIK) of the anode, and is reflected by the potential barrier created by the second cathode. and is eventually returned to plasma.

陽極の中空部住優に形成される電子群の密度(よって、
閉じ込めうるプラズマの温度と密度が定を抄。
The density of the electron group formed in the hollow part of the anode (therefore,
The temperature and density of plasma that can be confined are determined.

高温高密度のプラズマを直接陽極の中空部と一つの陰極
だけでプラグするととは不可能であり九が本発明におい
て第一陰極を用い九結果、陽極の中空部へ飛来するプラ
ズマ電子は著しく少〈な抄、温度密度のプラズマを閉じ
込めることができるようくなった。これが本発明の第二
の効果である。
It is impossible to plug high-temperature, high-density plasma directly between the hollow part of the anode and only one cathode.As a result of using the first cathode in the present invention, the number of plasma electrons flying into the hollow part of the anode is significantly reduced. It is now possible to confine plasma at a high temperature. This is the second effect of the present invention.

発明の応用例 本発明は開放系プラズマ装置に関するものである。実施
例ではカスプ磁場を用い九プラズマ装置について説明し
たが、磁場はカスプ(限定せず、開放系なら本発明を適
用できるととく言う壕でもなく、例えば一様磁場、ミラ
ー磁場に適用して客い、またプラズマ装置の用途は限定
しない6例えば被融合炉、表面加工・処m%溶接、イオ
ン源等のプラズマ装置に適用できる。
APPLICATION OF THE INVENTION The present invention relates to an open system plasma device. In the embodiment, nine plasma devices were explained using a cusp magnetic field, but the magnetic field is not limited to a cusp (not limited to an open system where the present invention can be applied; for example, the present invention can be applied to a uniform magnetic field, a mirror magnetic field, etc.). However, the application of the plasma device is not limited; for example, it can be applied to a fusion reactor, a surface processing/processing m% welding, an ion source, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

111図は電磁ドブツブの娯環図、第2図は電磁トラッ
プの2輪近傍の空間電位の分布を示す縮図、@311は
本発明の一実施例を示すプラズマ装置構成図、第4図は
第3図に示す実施例の主要部の構成と作用を示すもので
、(a)は静電プラグ構成図、(b)は空間電位のr依
存を示す線図、(C)は空間電位のZ依存を示す縮図で
ある。 (1)・・・コイル、(2)、 +41 、(iυ・・
・陽極、+3)、τ5)・・・陰極、+9)・・・Q 
tり、【1の・・・第一陰極、11a・・・第二陰極、
I・・・静電プラグ、 on、幡、a・・・・電St%
り・・・・プラズマ、(II・・・陽極αυの中空部、
(2G・・・第−陰極四の中空部。
Figure 111 is a ring diagram of an electromagnetic trap, Figure 2 is a miniature diagram showing the distribution of space potential near the two wheels of an electromagnetic trap, @311 is a configuration diagram of a plasma device showing an embodiment of the present invention, and Figure 4 is a diagram of the configuration of a plasma device showing an embodiment of the present invention. 3 shows the configuration and operation of the main parts of the embodiment shown in Figure 3, where (a) is a diagram showing the electrostatic plug configuration, (b) is a diagram showing the r dependence of the space potential, and (C) is a diagram showing the Z dependence of the space potential. It is a microcosm of dependence. (1)...Coil, (2), +41, (iυ...
・Anode, +3), τ5)...Cathode, +9)...Q
t, [1...first cathode, 11a...second cathode,
I...Electrostatic plug, on, flag, a...Electric St%
Ri...Plasma, (II...Hollow part of anode αυ,
(2G...Hollow part of the fourth cathode.

Claims (1)

【特許請求の範囲】 プラズマを収容する開放系磁場を発生する装置と、プラ
ズマの存在する空間の電位を制御する手段と、#開放系
磁場の開放端に配設され該磁場の方゛肉と平行な零でな
い成分を有する電場を彫設する静電プラグとを具備する
プラズマ装置に於て。 前記静電プラグの少くともひとつは、前記開放系磁場の
、磁場方向に貫通した中空部を有しプラズマを包囲する
リミタと%皺すミタに際接して配設され該リミタの中空
部を質通し九磁カ線が貫通する中空部を有する第一陰極
と骸第−陰極にリミタと反対の側に@接して配設され該
’74夕の中空部を貫通し九磁力纏が貫通する中空部を
有する陽極と、#1lIIIAの第一陰極と反対の側に
隣接してその開口を覆うよう(配設され九第二陰極と、
陽極に祉すイタ電位よ抄^〈二つの陰極にはリミタ電位
よりも低い電位を与える手段を具備し、陽極の中空部の
軸心は、94夕の中空部を貫通し九磁カ線が陽
[Claims] A device for generating an open-system magnetic field that accommodates plasma, a means for controlling the electric potential of a space where the plasma exists, and In a plasma device comprising an electrostatic plug that establishes an electric field with parallel non-zero components. At least one of the electrostatic plugs is disposed adjacent to a limiter and a wrinkling limiter of the open system magnetic field that have a hollow portion penetrating in the direction of the magnetic field and surround the plasma, and are arranged to protect the hollow portion of the limiter. A first cathode having a hollow part through which nine magnetic power lines pass through, and a hollow part which is disposed in contact with the opposite side of the limiter on the opposite side of the limiter and has a hollow part through which nine magnetic power lines pass through. a second cathode (disposed adjacent to the opposite side of the first cathode of #1lIIIA and covering the opening thereof;
The electric potential that serves the anode is equipped with means for applying a potential lower than the limiter potential to the two cathodes, and the axis of the hollow part of the anode passes through the hollow part of the Yang
JP56196739A 1981-12-09 1981-12-09 Plasma unit Pending JPS58100392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196739A JPS58100392A (en) 1981-12-09 1981-12-09 Plasma unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196739A JPS58100392A (en) 1981-12-09 1981-12-09 Plasma unit

Publications (1)

Publication Number Publication Date
JPS58100392A true JPS58100392A (en) 1983-06-15

Family

ID=16362790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196739A Pending JPS58100392A (en) 1981-12-09 1981-12-09 Plasma unit

Country Status (1)

Country Link
JP (1) JPS58100392A (en)

Similar Documents

Publication Publication Date Title
US4584160A (en) Plasma devices
JP7122760B2 (en) Plasma confinement system and method of use
US3025429A (en) Ion magnetron
JPS58100392A (en) Plasma unit
JPS58100393A (en) Plasma unit
JPS58140998A (en) Plasma device
JPS59112596A (en) Plasma device
JPS58100398A (en) Plasma unit
JPS5987799A (en) Plasma unit
JPS59121798A (en) Plasma device
JPS59112598A (en) Plasma device
JPS58117698A (en) Plasma device
JPH0144000B2 (en)
JPS58157098A (en) Plasma device
JPS59112600A (en) Plasma device
JPH0237679B2 (en)
JPS59121797A (en) Plasma device
JPH0467320B2 (en)
JPS59112597A (en) Plasma device
Reiser Comparison of Gabor lens, gas focusing, and electrostatic quadrupole focusing for low-energy ion beams
JPS58137995A (en) Plasma device
JPS58117696A (en) Plasma device
JPH0247840B2 (en)
JPS5987798A (en) Plasma unit
JPS58117697A (en) Plasma device