JPH1198371A - Environmental light measuring instrument, device and method for processing image and recording medium - Google Patents

Environmental light measuring instrument, device and method for processing image and recording medium

Info

Publication number
JPH1198371A
JPH1198371A JP9252051A JP25205197A JPH1198371A JP H1198371 A JPH1198371 A JP H1198371A JP 9252051 A JP9252051 A JP 9252051A JP 25205197 A JP25205197 A JP 25205197A JP H1198371 A JPH1198371 A JP H1198371A
Authority
JP
Japan
Prior art keywords
color
sensor
main
light
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9252051A
Other languages
Japanese (ja)
Other versions
JP3748482B2 (en
Inventor
Toshiyuki Mizuno
利幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25205197A priority Critical patent/JP3748482B2/en
Priority to US08/941,303 priority patent/US6567543B1/en
Publication of JPH1198371A publication Critical patent/JPH1198371A/en
Application granted granted Critical
Publication of JP3748482B2 publication Critical patent/JP3748482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and highly accurately find the color rendering property of environmental light to affect color reproduction by providing a 1st sensor, of which the main beam split sensitivity characteristics have sensitivity near the main bright line of a fluorescent lamp, and a 2nd sensor, of which the main beam split sensitivity characteristics do not contain the main bright line, and finding the color rendering property of environmental light based on the outputs of the 1st and 2nd sensors. SOLUTION: An environmental illumination light measuring means 40 is arranged with the sensors having the following beam split sensitivity characteristics. Concerning a photodetecting means G sensor, the beam split sensitivity characteristics have the peak sensitivity at 546 nm in the main bright line of the fluorescent lamp, a photodetecting means B sensor has the peak sensitivity at 485 nm containing no bright line, and a photodetecting means R sensor has the peak sensitivity at 680 nm not containing the other main bright line. Thus, light intensity in the bright line wavelength part of environmental illumination light and light intensity in a wavelength part except for the bright line can be measured. An environmental light specifying means 41 specifies lightness, color temperature and color rendering property and sends them to a color image processing means 20 as signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境光を測定する
環境光測定装置および環境光測定結果に応じて演色性を
求める画像処理装置、方法および記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ambient light measuring device for measuring ambient light, and an image processing device, method and recording medium for obtaining color rendering in accordance with the result of ambient light measurement.

【0002】[0002]

【従来の技術】撮像データや原稿データをコンピュータ
に取り込みCRTなどのカラーディスプレイ画面上に表
示し、必要なデザインや色変更を加えた後にプリンタな
どに出力しハードコピーを得ることが一般でも多く行わ
れる様になってきた。
2. Description of the Related Art It is common practice to take image data and document data into a computer, display them on a color display screen such as a CRT, make necessary changes in the design and color, and then output them to a printer to obtain a hard copy. It has come to be.

【0003】そして、表示画像とハードコピーの色を合
わせるべく、カラーマッチング処理が行われている。こ
のカラーマッチング処理では、デバイスに応じた色信号
間の変換、例えばCRTに応じたRGB信号からプリン
タに応じたCMYBk信号間の変換、を国際標準委員会
(CIE)で定められているデバイスに依存しない色空
間(例えばXYZ等)を介して行う。そして、各デバイ
スに応じた信号とデバイスに依存しない色空間との対応
関係はプロファイルに変換テーブルとして格納されてい
る。
[0003] A color matching process is performed to match the colors of the display image and the hard copy. In the color matching process, conversion between color signals according to a device, for example, conversion from RGB signals according to a CRT to CMYBk signals according to a printer depends on a device defined by the International Standards Committee (CIE). This is performed via a color space (for example, XYZ, etc.) that does not. The correspondence between the signal corresponding to each device and the color space independent of the device is stored in the profile as a conversion table.

【0004】例えば、プリンタのプロファイルは、目的
のデバイスに種々の色画像データを与えて出力させた色
画像を測色し、画像データと測色値を対応させたテーブ
ルを作成することにより作成される。
[0004] For example, a profile of a printer is created by measuring the color image output from a target device given various color image data and creating a table in which the image data and the colorimetric values correspond to each other. You.

【0005】これらのプロファイル作成時の環境照明光
は図4のa,b曲線で示す様な分光分布を持ったCIE
で決められた標準照明光での値と仮定しているので、こ
れらの照明下ではプロファイルにより正確に補正するこ
とができる。しかし、観察している環境照明光が図4の
c,d曲線で示す様な分光分布を持った照明下では正確
に補正することができない。
The environment illumination light at the time of creating these profiles has a CIE having a spectral distribution as shown by the curves a and b in FIG.
Since it is assumed that the value is based on the standard illumination light determined in the above, it is possible to correct more accurately by the profile under these illuminations. However, accurate correction cannot be performed when the environment illumination light being observed has illumination having a spectral distribution as shown by the curves c and d in FIG.

【0006】これは550nm波長付近の輝線による光
で演色性が悪いためである。これらの演色性の悪い環境
照明下では、同じプリンタ出力物でも色の変化率が異な
るために、異なった色に見える。そこで従来は、厳密な
色合わせを行う場合にはプロファイル作成時の標準照明
光と環境照明光をほぼ同じにする事や、環境照明光の種
類を測定して更に色補正プロセスを加える事を行ってい
る。
[0006] This is because the color rendering property is poor due to the light of the bright line near the wavelength of 550 nm. Under such environmental lighting with poor color rendering properties, even the same printer output product looks different because the color change rate is different. Therefore, conventionally, when performing strict color matching, standard illumination light at the time of profile creation and environmental illumination light are made almost the same, and the type of environmental illumination light is measured and a color correction process is further added. ing.

【0007】[0007]

【発明が解決しようとする課題】ところがプロファイル
作成時の標準照明と環境照明光を同じにする事は、高価
な設備を用いて複雑な作業を行うことが必要となるので
一般の事務所では困難である。また、観察する環境照明
光を測定して色補正する従来方法では図7に示す様に可
視域光(例えば波長380〜780nm)の3色、RG
B色感度を持った光検出器を用いて測定を行い、色温度
や環境照明光を判定し、補正を行っている。ところが従
来の3色で色温度を測定し補正する方法では、検出する
波長範囲が広いため、輝線を有する蛍光灯光源等を識別
することができないという問題があった。
However, it is difficult for a general office to make the standard illumination and the environmental illumination light the same when creating a profile, because it is necessary to perform complicated work using expensive equipment. It is. Further, in the conventional method of measuring the environment illumination light to be observed and performing color correction, as shown in FIG. 7, three colors of visible light (for example, wavelength 380 to 780 nm), RG
The measurement is performed using a photodetector having B color sensitivity, and the color temperature and the ambient illumination light are determined and corrected. However, the conventional method of measuring and correcting color temperatures of three colors has a problem in that a fluorescent light source having a bright line cannot be identified because the wavelength range to be detected is wide.

【0008】この為に、改善された従来方法では輝線や
フリッカー検出を行い、蛍光灯照明か、否かを判定して
いる。ところが、事務所などで多くみられる照明は蛍光
灯とそれ以外が混じった様々なもので、例えば図5に示
すように、分光的な方法で測定すると屋外光の中に輝線
の影響がはっきりと現れるので、蛍光灯照明と判定され
てしまう。
For this reason, in the improved conventional method, bright lines and flicker are detected to determine whether or not the illumination is fluorescent light. However, the lighting often found in offices and the like is a mixture of fluorescent lamps and other types, and for example, as shown in FIG. 5, when measured by a spectroscopic method, the effect of the bright line is clearly visible in the outdoor light. Because it appears, it is determined to be fluorescent lamp illumination.

【0009】しかし、蛍光灯照明として色画像処理を行
っても再現色は不正確になる。また、蛍光灯の種類や使
用された時間経過でも演色性は異なり同様に再現色は不
正確になる。このため、正確な色再現を行う場合、時間
的、コスト的に負荷のかかる分光的な測定方法を使用せ
ざるを得なかった。
However, even if color image processing is performed as fluorescent lamp illumination, the reproduced color becomes inaccurate. In addition, the color rendering properties are different depending on the type of the fluorescent lamp and the elapsed time of use, and similarly, the reproduced color becomes inaccurate. For this reason, in order to perform accurate color reproduction, a spectral measurement method that is time-consuming and costly must be used.

【0010】本発明は上述の点に鑑みてなされたもので
あり、本願第1の発明は色再現に影響を与える環境光の
演色性を簡単に高精度に求めることができるようにする
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and the first invention of the present application is to enable easy and highly accurate determination of the color rendering of ambient light which affects color reproduction. Aim.

【0011】また、本願第2の発明は、環境光を簡単な
構成で測定することができる環境光測定装置を提供する
ことを目的とする。
Another object of the present invention is to provide an ambient light measuring device capable of measuring ambient light with a simple configuration.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明は以下の構成を有することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention is characterized by having the following configuration.

【0013】本願請求項1に記載された発明は、主たる
分光感度特性が蛍光灯の主要輝線付近に感度を有する第
1のセンサと、主たる分光感度特性が前記蛍光灯の主要
輝線を含まない第2のセンサと、前記第1のセンサおよ
び前記第2のセンサの出力に基づき、環境光の演色性を
求める手段を有することを特徴とする。
According to the first aspect of the present invention, there is provided a first sensor having a main spectral sensitivity characteristic near a main bright line of a fluorescent lamp, and a first sensor having a main spectral sensitivity characteristic not including the main bright line of the fluorescent lamp. And a means for obtaining color rendering of ambient light based on outputs of the first sensor and the second sensor.

【0014】本願請求項6に記載された発明は、主たる
分光感度特性が蛍光灯の主要輝線である546nm波長
付近感度を有する第1の光検出手段と、主たる分光感度
特性が前記主要輝線を含まない650nmより長い波長
帯および480nm付近に感度を有する第2の光検出手
段とを有することを特徴とする。
The invention described in claim 6 of the present application is the first light detecting means whose main spectral sensitivity characteristic has a sensitivity near the wavelength of 546 nm, which is the main emission line of a fluorescent lamp, and the main spectral sensitivity characteristic includes the main emission line. And a second photodetector having sensitivity in a wavelength band longer than 650 nm and near 480 nm.

【0015】本願請求項7に記載された発明は、主たる
分光感度特性が蛍光灯の主要輝線である546nm波長
付近感度を有する第1の光検出手段と、主たる分光感度
特性が前記主要輝線を含まない650nmより長い波長
帯に感度を有する第2の光検出手段と、環境光の色温度
を測定する色温度測定手段とを有することを特徴とす
る。
[0015] The invention described in claim 7 of the present application is the first light detecting means whose main spectral sensitivity characteristic has a sensitivity near the wavelength of 546 nm, which is the main emission line of a fluorescent lamp, and the main spectral sensitivity characteristic includes the main emission line. A second light detecting unit having sensitivity in a wavelength band longer than 650 nm, and a color temperature measuring unit for measuring a color temperature of ambient light.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)実施形態1にかかる色画像処理部の1例
を図1に示す。図1では色画像処理部をプリンターやモ
ニターに出力するシステムに適用している。
Embodiment 1 FIG. 1 shows an example of a color image processing unit according to Embodiment 1. In FIG. 1, the color image processing unit is applied to a system for outputting to a printer or monitor.

【0017】図1は本発明の実施例に関わる、色画像処
理装置について画像データを入力し、プリンターやモニ
ターに出力する場合に利用した、画像入出力装置のブロ
ック構成例を表した物である。
FIG. 1 shows an example of a block configuration of an image input / output device used for inputting image data and outputting it to a printer or monitor in a color image processing device according to an embodiment of the present invention. .

【0018】01は環境照明光で原画像10や出力先の
プリント31、出力モニタ32を照明している。11は
入力画像信号で標準の照明光で得られた、例えばNTS
CのRGB信号の形で取り込まれた画像信号である。2
0は色画像処理部で、画像信号を観察環境照明下での出
力に適した信号とする処理を行う。この色画像処理部は
入力信号に補正パラメータを用い濃度補正やγ補正を行
い色度信号XYZに変換する入力信号処理部21、色度
信号に環境照明光情報などを加味して最適な補正を加え
る色補正処理部22、色補正した信号X′、Y′、Z′
をプリンタ出力に適した信号C、M、Y、Bkに変換す
るプリンタ色処理部23、同じく信号X′、Y′、Z′
をモニタ出力に適した信号R、G、B、に変換するモニ
タ色処理部24等から構成され、全体は図示しないCP
Uで制御される。
Reference numeral 01 denotes environmental illumination light that illuminates the original image 10, the print destination 31 and the output monitor 32. Reference numeral 11 denotes an input image signal obtained by standard illumination light, for example, NTS.
This is an image signal captured in the form of a C RGB signal. 2
Reference numeral 0 denotes a color image processing unit which performs processing for converting an image signal into a signal suitable for output under illumination of an observation environment. The color image processing unit 21 performs density correction and gamma correction using a correction parameter as an input signal and converts the input signal into a chromaticity signal XYZ. The input signal processing unit 21 performs optimal correction by adding environmental illumination light information to the chromaticity signal. Color correction processing unit 22 to be added, color-corrected signals X ', Y', Z '
Printer color processing unit 23 which converts the signals into signals C, M, Y, and Bk suitable for printer output, as well as signals X ', Y', Z '
Is converted to signals R, G, and B suitable for monitor output.
U controlled.

【0019】プリント物31は、C、M、Y、Bk信号
30に基づき図示しないプリンタ部によって形成され、
表示画像はR、G、B信号に基づきCRT等のモニタ3
2によって出力表示される。
A printed matter 31 is formed by a printer unit (not shown) based on the C, M, Y, and Bk signals 30.
The displayed image is displayed on a monitor 3 such as a CRT based on the R, G, and B signals.
2 is displayed.

【0020】色補正処理部22は環境照明光補正処理部
22aやスキャナ照明情報等から補正量信号を発する光
源補正テーブル22b、そしてルックアップテーブル2
2c、等からなる。40は環境照明光測定手段でプリン
ト物31やモニタ32を照らす環境照明光01を測定し
照明光に応じたデータをメモリ41に蓄えることができ
る。
The color correction processing section 22 includes an environment illumination light correction processing section 22a, a light source correction table 22b for generating a correction amount signal from scanner illumination information and the like, and a lookup table 2
2c, etc. Reference numeral 40 denotes an environment illumination light measuring unit which measures the environment illumination light 01 illuminating the printed matter 31 and the monitor 32 and can store data corresponding to the illumination light in the memory 41.

【0021】環境照明光測定手段は図3に示すような分
光感度特性を有するセンサが図2の様に配置されてい
る。各センサはシリコンフォトセルと干渉フィルタの組
み合わせにより選択された光が受光される構造となって
いる。光検出手段Gセンサは分光感度特性が蛍光灯の主
要輝線の546nmに最高感度を有し、光検出手段Bセ
ンサは主要輝線を含まない485nmに最高感度を有
し、光検出手段Rセンサはもう一つの主要輝線を含まな
い680nmに最高感度を有する。このような構成を取
ることにより環境照明光の輝線波長部分の光強度と輝線
を除いた波長部分の光強度を測定することができる。
In the environment illumination light measuring means, a sensor having a spectral sensitivity characteristic as shown in FIG. 3 is arranged as shown in FIG. Each sensor is configured to receive light selected by a combination of a silicon photocell and an interference filter. The light detection means G sensor has the highest sensitivity at 546 nm of the main emission line of the fluorescent lamp, the light detection means B sensor has the highest sensitivity at 485 nm not including the main emission line, and the light detection means R sensor has another spectral sensitivity characteristic. It has the highest sensitivity at 680 nm without one main emission line. With this configuration, it is possible to measure the light intensity at the emission line wavelength portion of the environmental illumination light and the light intensity at the wavelength portion excluding the emission line.

【0022】なお上述のセンサでは波長選択フィルター
はシリコンフォトセルと干渉フィルタの組み合わせを用
いたが、コスト的には干渉フィルタと色フィルタの組み
合わせ、もしくは色フィルタの組み合わせでも実現可能
である。
Although the wavelength selection filter used in the above-described sensor is a combination of a silicon photocell and an interference filter, it can also be realized by a combination of an interference filter and a color filter or a combination of color filters in terms of cost.

【0023】41は環境光特定手段で、明度、色温度、
演色性を特定して色画像処理部20へ信号として送る。
Reference numeral 41 denotes an ambient light specifying means, which includes lightness, color temperature,
The color rendering property is specified and sent to the color image processing unit 20 as a signal.

【0024】照明光源の特定方法は照明に含まれる輝線
波長部分の緑色の明るさと輝線部を除く青色光明るさや
赤色光明るさが図4や図5に示すように照明光源により
大きく変わるので、輝線波長部分の明るさと輝線部以外
の青色部、赤色部の出力を測定した後、それぞれの全体
光量に対するそれらの比を算出し、更に、照明の明るさ
等も加味し、予め環境光特定手段メモリに格納されてい
る光源データと比較して明度、色温度、演色性を特定す
ることになる。
The method of specifying the illumination light source is such that the brightness of green at the emission line wavelength portion included in the illumination and the brightness of blue light and red light excluding the emission line portion greatly vary depending on the illumination light source as shown in FIGS. After measuring the brightness of the emission line wavelength portion and the outputs of the blue portion and the red portion other than the emission line portion, calculate the ratio of each to the total light amount, and further take into account the brightness of the illumination, etc. Lightness, color temperature, and color rendering are specified by comparing with light source data stored in the memory.

【0025】図6は環境照明光測定手段の検出器3種の
総出力に対する、検出手段Bの出力比(同図の横軸)
と、検出手段Gと検出手段Rそれぞれの出力比の差(同
図の縦軸)を環境光の変化に応じてプロットしたもので
ある。
FIG. 6 shows the output ratio of the detecting means B to the total output of the three detectors of the environmental illumination light measuring means (horizontal axis in FIG. 6).
And the difference between the output ratios of the detection means G and the detection means R (vertical axis in the figure) is plotted in accordance with the change in ambient light.

【0026】演色性は図6の縦軸の大きさで決まり、例
えば、値が0.2以下であれば演色性が良いと判断し、
値が0.45以上であれば演色性が悪いと判断し、中間
の0.2から0.45であれば中間の演色性と判断す
る。図6の例では同じ蛍光灯照明でもF1点やD2点、
F3点等に位置付けられ区分けされる。F1は普通の蛍
光灯で演色性が悪く、F3は高演色性蛍光灯で演色性が
良く、D2は普通の蛍光灯に昼の屋外光が混じった照明
で中間の演色性と判断される。
The color rendering is determined by the size of the vertical axis in FIG. 6. For example, if the value is 0.2 or less, it is determined that the color rendering is good.
If the value is 0.45 or more, it is determined that the color rendering properties are poor. If the value is 0.2 to 0.45, the color rendering properties are determined to be intermediate. In the example of FIG. 6, even with the same fluorescent lamp illumination, points F1 and D2,
It is positioned and classified at the point F3 or the like. F1 is a normal fluorescent lamp and has poor color rendering properties, F3 is a high color rendering fluorescent lamp and has good color rendering properties, and D2 is an ordinary fluorescent lamp mixed with daylight outdoor light and judged to have an intermediate color rendering property.

【0027】色温度は図6の横軸の大きさで決まり、例
えば、値が0.2以下であれば色温度が低く、0.2か
ら0.35の間は中間の色温度、0.35以上は高い色
温度と判断されグループ化される。図6の例では、A1
点が標準光源Aで低い色温度、F3点が高演色性蛍光灯
で中間の色温度、D1点が標準照明D65で高い色温度
と特定しグループ化される。
The color temperature is determined by the magnitude of the horizontal axis in FIG. 6. For example, when the value is 0.2 or less, the color temperature is low, and between 0.2 and 0.35, the intermediate color temperature is 0. 35 or more are judged to be high color temperatures and are grouped. In the example of FIG. 6, A1
The point is specified as a low color temperature of the standard light source A, the point F3 is specified as a medium color temperature of the high color rendering fluorescent lamp, and the point D1 is specified as a high color temperature of the standard illumination D65.

【0028】演色性や色温度は、この様に各々グループ
化され、環境光特定手段からの演色性及び色温度の属性
信号が色補正22に送られ、それぞれのグループ化に合
った係数が選択される。
The color rendering properties and color temperatures are grouped in this way, and the color rendering property and color temperature attribute signals from the ambient light specifying means are sent to the color correction 22, and the coefficients suitable for each grouping are selected. Is done.

【0029】尚、色温度は検出手段Bの代わりに公知の
色温度計を用いグループ分けしてもよい。また、演色性
や色温度を特定する閾値は各検出手段の特性に基づき設
定される値であり、各検出手段の特性で異なる。
The color temperature may be grouped using a known color thermometer instead of the detection means B. Further, the thresholds for specifying the color rendering property and the color temperature are values set based on the characteristics of each detection unit, and differ depending on the characteristics of each detection unit.

【0030】次に、図1を用いて動作を説明する。原画
像10は図示しないスキャナーで読みとられ、標準の照
明で得られた入力画像信号11としてRGB信号の形で
取り込まれ、入力信号処理部21で公知の濃度補正やγ
補正が施され色度信号XYZに変換される。
Next, the operation will be described with reference to FIG. The original image 10 is read by a scanner (not shown), is captured in the form of an RGB signal as an input image signal 11 obtained by standard illumination, and is known by an input signal processing unit 21 to perform known density correction and γ.
The correction is performed and converted into a chromaticity signal XYZ.

【0031】そして、各デバイス間の色再現範囲の違い
を調整する色空間圧縮処理がルックアップテーブルを用
いて行われ色度信号XF、YF、ZFに変換される。
Then, a color space compression process for adjusting the difference in the color reproduction range between the devices is performed using a look-up table, and is converted into chromaticity signals XF, YF, and ZF.

【0032】一方、環境光測定手段40は原稿10やプ
リント物31を観察する環境照明光01を測定し、環境
照明光情報として蓄えてる。図示していないCPUは測
定した環境照明光情報に応じて、明度42、色温度4
3、演色性44を特定し、予め実験で求められている外
光補正テーブル部22bから、補正すべき白色データの
三原色RWGWBW信号を環境照明光補正処理部に送
り、補正に使用される様にコントロールする。
On the other hand, the ambient light measuring means 40 measures the ambient illumination light 01 for observing the original 10 and the printed matter 31 and stores it as environmental illumination light information. The CPU (not shown) controls the brightness 42 and the color temperature 4 according to the measured environmental illumination light information.
3. The color rendering 44 is specified, and the three primary color RWGWBW signals of the white data to be corrected are sent to the environment illumination light correction processing unit from the external light correction table unit 22b which is obtained in advance by an experiment so that the signals are used for correction. Control.

【0033】照明光色温度と明るさの補正は基準白色点
が変化するとみなして、例えば(VonKries)の
色順応予測式を使用して求める。
The correction of the illumination light color temperature and the brightness is determined by using, for example, a (VonKries) color adaptation prediction formula, assuming that the reference white point changes.

【0034】フォン・クリースの方法はマトリックスを
作成した標準照明光を例えば前述した蛍光灯照明で作成
され、観察される環境照明光も同じ場合のプリント紙や
モニタ白色点の三刺激値FX、FY、FZより、公知の
変換方法で求められる三原色FRFGFBとし、標準と
異なった環境光で照明されたプリント等の補正される値
は三刺激値X′Y′Z′とするとフォン・クリースの式
によれば以下のように表せる。
In the method of von Cries, the standard illuminating light in which a matrix has been created is created by, for example, the above-described fluorescent lighting, and the tristimulus values FX and FY of the white point of the monitor or the monitor paper when the observed environmental illuminating light is the same. , FZ, the three primary colors FRFGFB determined by a known conversion method, and the corrected value of a print or the like illuminated with ambient light different from the standard is a tristimulus value X'Y'Z '. It can be expressed as follows.

【0035】[0035]

【外1】 [Outside 1]

【0036】ここで(M)は基本原色から定義される3
×3のマトリックスで表せる常数で(D)は白色点のシ
フト量であり、以下の様に表せる。
Here, (M) is 3 defined from the basic primary colors.
(D) is a constant that can be represented by a matrix of 3 and is a shift amount of the white point, and can be represented as follows.

【0037】[0037]

【外2】 ここで Rk=RW/FR Gk=GW/FG Bk=BW/FB である。[Outside 2] Here, Rk = RW / FR Gk = GW / FG Bk = BW / FB.

【0038】更に、演色性の補正は演色性に応じた演色
性変換マトリックスを使用して行う。これは補正の係数
は、例えば、多数の色票を演色性の良い標準照明D65
で測色し、各色票のX1、Y1、Z1、を求め、次いで
演色性グループを代表する光源で同じ色票を測色し、各
色票の色度値X2、Y2、Z2を求め、多数の色度値か
ら変換に最適な係数を3×3のマトリックスの形で最小
二乗法で求めることにより得ることができる。メモリに
はこの様にして作成された、各演色性に応じた変換の係
数が蓄えられている。
Further, the color rendering property is corrected by using a color rendering property conversion matrix corresponding to the color rendering property. This is because the correction coefficient is, for example, a standard illumination D65 having a good color rendering property,
To determine X1, Y1, Z1 of each color chart, and then measure the same color chart with a light source representative of the color rendering group, obtain chromaticity values X2, Y2, Z2 of each color chart, and It can be obtained by obtaining a coefficient optimal for conversion from the chromaticity value by a least square method in the form of a 3 × 3 matrix. In the memory, conversion coefficients corresponding to each color rendering property created in this way are stored.

【0039】当然ながら濃度(明度)や色域が再現出力
範囲を越える物に対しては、公知の方法で更に補正を加
えることも可能である。
Naturally, for a substance whose density (brightness) or color gamut exceeds the reproduction output range, further correction can be made by a known method.

【0040】この様な補正を加え色補正部で補正された
三刺激値信号X′、Y′、Z′をプリンタ色処理部23
でプリンタ出力に適したC、M、Y、Bk信号30に変
換し、モニタ色処理部22cでモニタの表示に最適な
R′、G′、B′に変換される。これらの変換は公知の
方法を用いて行われ、出力画像としてのプリント物31
や、モニタ画像を得る。
The tristimulus value signals X ', Y', and Z 'corrected by the color correction section by applying such correction are output to the printer color processing section 23.
The C / M / Y / Bk signals 30 suitable for printer output are converted to R ', G', and B 'which are optimal for monitor display by the monitor color processing unit 22c. These conversions are performed using a known method, and the printed matter 31 as an output image is printed.
Or, a monitor image is obtained.

【0041】この様な処理を行うことで標準照明光と比
べて違う色に再現され、変動した環境照明光に合う様に
補正される。
By performing such processing, a different color is reproduced as compared with the standard illumination light, and the color is corrected so as to match the fluctuating environmental illumination light.

【0042】本実施形態では環境光測定手段の分光感度
特性が蛍光灯の主要輝線の546nmに最高感度を有す
る光検出手段Gと、最高感度が680nmの赤色に感度
を有する光検出手段Rと、最高感度が485nmの赤色
に感度を有する光検出手段Bとで構成されるようにした
が、最高感度波長は前記の波長に厳密に限定されるもの
ではない。また、色温度特定手段を別に設けるか、最高
感度が490nmの青色に感度を有する光検出手段Rの
代わりに色温度特定手段を設けても良い。この場合の色
画像補正処理は上記実施形態とほとんど同じである。
In this embodiment, the ambient light measuring means has a spectral sensitivity characteristic having the highest sensitivity at 546 nm of the main emission line of the fluorescent lamp, and the light detecting means R having a maximum sensitivity of 680 nm in red. Although the maximum sensitivity is constituted by the photodetector B having a sensitivity of 485 nm to red, the wavelength of the maximum sensitivity is not strictly limited to the above-mentioned wavelength. Further, a color temperature specifying unit may be provided separately, or a color temperature specifying unit may be provided instead of the light detection unit R having a maximum sensitivity of 490 nm and having sensitivity to blue. The color image correction process in this case is almost the same as in the above embodiment.

【0043】また最高感度が490nmの青色に感度を
有する光検出手段Bの代わりに色温度特定手段を設けて
も可能であり、この場合は色温度をグループ化せずに補
正を行い、演色性の特定は光検出手段Gと光検出手段R
の出力比で行うことになる。処理のプロセスと結果は上
記実施形態とほぼ同じである。
It is also possible to provide a color temperature specifying means in place of the light detecting means B having a maximum sensitivity of 490 nm and having a sensitivity to blue light. In this case, the color temperature is corrected without being grouped, and the color rendering property is improved. The light detection means G and the light detection means R
Is performed at the output ratio. The process and result of the processing are almost the same as in the above embodiment.

【0044】以上述べた本実施形態によれば、環境照明
光測定手段により照明光の変化に応じた明度、色温度、
演色性が正確に特定することができ、環境照明光に応じ
た色補正を行うことができる。
According to the present embodiment described above, the brightness, color temperature,
Color rendering can be accurately specified, and color correction can be performed in accordance with ambient illumination light.

【0045】よって、プロファイルデータを作成した標
準照明光と観察する環境照明光が異なっても、入力画像
に色味がマッチした出力画像を得ることができる。
Therefore, even if the standard illumination light for which the profile data is created and the environmental illumination light to be observed are different, it is possible to obtain an output image whose color matches the input image.

【0046】<他の実施形態>本発明は複数の機器(た
とえばホストコンピュータ、インタフェース機器、リー
ダ、プリンタ等)から構成されるシステムに適用しても
一つの機器(たとえば複写機、ファクシミリ装置)から
なる装置に適用してもよい。
<Other Embodiments> Even if the present invention is applied to a system including a plurality of devices (for example, a host computer, an interface device, a reader, a printer, etc.), a single device (for example, a copying machine or a facsimile machine) can be used. May be applied to such a device.

【0047】また前述した実施形態の機能を実現する様
に各種のデバイスを動作させる様に該各種デバイスと接
続された装置あるいはシステム内のコンピュータに、前
記実施形態機能を実現するためのソフトウエアのプログ
ラムコードを供給し、そのシステムあるいは装置のコン
ピュータ(CPUあるいはMPU)を格納されたプログ
ラムに従って前記各種デバイスを動作させることによっ
て実施したものも本発明の範疇に含まれる。
Further, software for realizing the functions of the above-described embodiment is installed in an apparatus or a computer in the system connected to the various devices so as to operate the various devices so as to realize the functions of the above-described embodiment. The present invention also includes a program code supplied and executed by operating the various devices according to a stored program in a computer (CPU or MPU) of the system or apparatus.

【0048】またこの場合、前記ソフトウエアのプログ
ラムコード自体が前述した実施形態の機能を実現するこ
とになり、そのプログラムコード自体、及びそのプログ
ラムコードをコンピュータに供給するための手段、例え
ばかかるプログラムコードを格納した記憶媒体は本発明
を構成する。
In this case, the software program code itself realizes the functions of the above-described embodiment, and the program code itself and means for supplying the program code to a computer, such as the program code The storage medium storing the information constitutes the present invention.

【0049】かかるプログラムコードを格納する記憶媒
体としては例えばフロッピーディスク、ハードディス
ク、光ディスク、光磁気ディスク、CD−ROM、磁気
テープ、不揮発性のメモリカード、ROM等を用いるこ
とが出来る。
As a storage medium for storing such a program code, for example, a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM, magnetic tape, nonvolatile memory card, ROM or the like can be used.

【0050】またコンピュータが供給されたプログラム
コードを実行することにより、前述の実施形態の機能が
実現されるだけではなく、そのプログラムコードがコン
ピュータにおいて稼働しているOS(オペレーティング
システム)、あるいは他のアプリケーションソフト等と
共同して前述の実施形態の機能が実現される場合にもか
かるプログラムコードは本発明の実施形態に含まれるこ
とは言うまでもない。
When the computer executes the supplied program code, not only the functions of the above-described embodiment are realized, but also the OS (operating system) running on the computer or another program. Needless to say, the program code is included in the embodiment of the present invention even when the functions of the above-described embodiment are realized in cooperation with application software or the like.

【0051】更に供給されたプログラムコードが、コン
ピュータの機能拡張ボードやコンピュータに接続された
機能拡張ユニットに備わるメモリに格納された後そのプ
ログラムコードの指示に基づいてその機能拡張ボードや
機能格納ユニットに備わるCPU等が実際の処理の一部
または全部を行い、その処理によって前述した実施形態
の機能が実現される場合も本発明に含まれることは言う
までもない。
Further, the supplied program code is stored in a memory provided in a function expansion board of a computer or a function expansion unit connected to the computer, and then stored in the function expansion board or the function storage unit based on an instruction of the program code. It is needless to say that the present invention includes a case where a provided CPU or the like performs part or all of the actual processing, and the processing realizes the functions of the above-described embodiments.

【0052】[0052]

【発明の効果】本願第1の発明によれば色再現に影響を
与える環境光の演色正を簡単に高精度に求めることがで
きる。
According to the first aspect of the present invention, it is possible to easily and accurately determine the color rendering of environmental light which affects color reproduction.

【0053】また、本願第2の発明によれば、環境光を
簡単な構成で測定することができる環境光測定装置を提
供することができる。
Further, according to the second aspect of the present invention, it is possible to provide an ambient light measuring device capable of measuring ambient light with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】画像処理装置の1例を示す図。FIG. 1 is a diagram illustrating an example of an image processing apparatus.

【図2】環境光測定手段の構成を示す図。FIG. 2 is a diagram showing a configuration of an ambient light measuring unit.

【図3】蛍光灯の相対分光強度と環境光測定手段の分光
感度を示す図。
FIG. 3 is a diagram showing the relative spectral intensity of a fluorescent lamp and the spectral sensitivity of an ambient light measuring unit.

【図4】標準の照明光の相対分光強度を示す図。FIG. 4 is a diagram showing the relative spectral intensity of standard illumination light.

【図5】蛍光灯に外光が混じった場合の相対分光強度を
示す図。
FIG. 5 is a diagram showing relative spectral intensity when external light is mixed in a fluorescent lamp.

【図6】環境光特定手段で色温度と演色性を特定を説明
する図。
FIG. 6 is a view for explaining the specification of the color temperature and the color rendering by the ambient light specifying unit.

【図7】蛍光灯の相対分光強度と従来の環境測定手段の
分光感度を示す図。
FIG. 7 is a diagram showing the relative spectral intensity of a fluorescent lamp and the spectral sensitivity of a conventional environment measuring means.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 主たる分光感度特性が蛍光灯の主要輝線
付近に感度を有する第1のセンサと、 主たる分光感度特性が前記蛍光灯の主要輝線を含まない
第2のセンサと、 前記第1のセンサおよび前記第2のセンサの出力に基づ
き、環境光の演色性を求める手段を有することを特徴と
する画像処理装置。
A first sensor having a main spectral sensitivity characteristic near a main emission line of the fluorescent lamp; a second sensor having a main spectral sensitivity characteristic not including the main emission line of the fluorescent lamp; An image processing apparatus comprising: means for obtaining color rendering properties of ambient light based on outputs from a sensor and the second sensor.
【請求項2】 前記第2のセンサは青色成分を検出する
青センサと、赤色成分を検出する赤センサを有すること
を特徴とする請求項1記載の画像処理装置。
2. The image processing apparatus according to claim 1, wherein the second sensor has a blue sensor that detects a blue component and a red sensor that detects a red component.
【請求項3】 さらに、前記環境光の演色性に応じた色
処理を行うことを特徴とする請求項1記載の画像処理装
置。
3. The image processing apparatus according to claim 1, further comprising performing a color process according to a color rendering property of the ambient light.
【請求項4】 前記色処理は、色順応変換処理を行うこ
とを特徴とする請求項3記載の画像処理装置。
4. The image processing apparatus according to claim 3, wherein the color processing performs a color adaptation conversion process.
【請求項5】 前記環境光の演色性を求める手段は、前
記環境光の明度および色温度を求めることを特徴とする
請求項1記載の画像処理装置。
5. The image processing apparatus according to claim 1, wherein said means for calculating the color rendering property of the environment light calculates brightness and color temperature of the environment light.
【請求項6】 主たる分光感度特性が蛍光灯の主要輝線
である546nm波長付近感度を有する第1の光検出手
段と、 主たる分光感度特性が前記主要輝線を含まない650n
mより長い波長帯および480nm付近に感度を有する
第2の光検出手段とを有することを特徴とする環境光測
定装置。
6. A first light detecting means having a sensitivity near a wavelength of 546 nm whose main spectral sensitivity characteristic is a main emission line of a fluorescent lamp, and 650n whose main spectral sensitivity characteristic does not include said main emission line.
an ambient light measuring device, comprising: a second light detecting means having a wavelength band longer than m and having a sensitivity near 480 nm.
【請求項7】 主たる分光感度特性が蛍光灯の主要輝線
である546nm波長付近感度を有する第1の光検出手
段と、 主たる分光感度特性が前記主要輝線を含まない650n
mより長い波長帯に感度を有する第2の光検出手段と、 環境光の色温度を測定する色温度測定手段とを有するこ
とを特徴とする環境光測定装置。
7. A first light detecting means having a sensitivity near a wavelength of 546 nm whose main spectral sensitivity characteristic is a main emission line of a fluorescent lamp, and 650n whose main spectral sensitivity characteristic does not include said main emission line.
An ambient light measuring device comprising: a second light detecting unit having sensitivity in a wavelength band longer than m; and a color temperature measuring unit for measuring a color temperature of ambient light.
【請求項8】 主たる分光感度特性が蛍光灯の主要輝線
付近に感度を有する第1のセンサからの出力および主た
る分光感度特性が前記蛍光灯の主要輝線を含まない第2
のセンサからの出力を入力し、環境光の演色性を求める
ことを特徴とする画像処理方法。
8. An output from a first sensor whose main spectral sensitivity characteristic has sensitivity near a main emission line of a fluorescent lamp and a second output whose main spectral sensitivity characteristic does not include the main emission line of the fluorescent lamp.
An image processing method comprising: inputting an output from a sensor of (1) to obtain color rendering of ambient light.
【請求項9】 プログラムをコンピュータにより読取り
可能な状態に記憶した記録媒体であって、 主たる分光感度特性が蛍光灯の主要輝線付近に感度を有
する第1のセンサからの出力および主たる分光感度特性
が前記蛍光灯の主要輝線を含まない第2のセンサからの
出力を入力し、環境光の演色性を求めるプログラムを記
録する記録媒体。
9. A recording medium storing a program in a computer-readable state, wherein a main spectral sensitivity characteristic is an output from a first sensor having a sensitivity near a main bright line of a fluorescent lamp and a main spectral sensitivity characteristic. A recording medium which receives an output from a second sensor that does not include a main emission line of the fluorescent lamp and records a program for obtaining color rendering of ambient light.
JP25205197A 1996-10-01 1997-09-17 Image processing apparatus, method, and recording medium Expired - Fee Related JP3748482B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25205197A JP3748482B2 (en) 1997-09-17 1997-09-17 Image processing apparatus, method, and recording medium
US08/941,303 US6567543B1 (en) 1996-10-01 1997-09-30 Image processing apparatus, image processing method, storage medium for storing image processing method, and environment light measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25205197A JP3748482B2 (en) 1997-09-17 1997-09-17 Image processing apparatus, method, and recording medium

Publications (2)

Publication Number Publication Date
JPH1198371A true JPH1198371A (en) 1999-04-09
JP3748482B2 JP3748482B2 (en) 2006-02-22

Family

ID=17231891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25205197A Expired - Fee Related JP3748482B2 (en) 1996-10-01 1997-09-17 Image processing apparatus, method, and recording medium

Country Status (1)

Country Link
JP (1) JP3748482B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194644A (en) * 1997-09-24 1999-04-09 Canon Inc Measuring device, and calculating device and method for light source characteristic value
WO2011061954A1 (en) * 2009-11-20 2011-05-26 シャープ株式会社 Image processing device and image processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194644A (en) * 1997-09-24 1999-04-09 Canon Inc Measuring device, and calculating device and method for light source characteristic value
WO2011061954A1 (en) * 2009-11-20 2011-05-26 シャープ株式会社 Image processing device and image processing method
JP5296889B2 (en) * 2009-11-20 2013-09-25 シャープ株式会社 Image processing apparatus and image processing method
US8890884B2 (en) 2009-11-20 2014-11-18 Sharp Kabushiki Kaisha Image processing device converting a color represented by inputted data into a color within a color reproduction range of a predetermined output device and image processing method thereof

Also Published As

Publication number Publication date
JP3748482B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US6567543B1 (en) Image processing apparatus, image processing method, storage medium for storing image processing method, and environment light measurement apparatus
US6453066B1 (en) Image processing method and image processing apparatus
CN100596206C (en) Projector color correcting method
US7158144B2 (en) Image processing apparatus and method for converting data dependent on a first illuminating light into data dependent on a second illuminating light
US5956015A (en) Method and system for correcting color display based upon ambient light
JP2001128021A (en) Picture processor, computer readable storage medium and picture processing method
EP1450146B1 (en) Optical sensor, optical sensing method, program and recording medium
JP4830359B2 (en) Color monitor calibration method, color monitor calibration program, color monitor color management system, etc.
JP3658104B2 (en) Environment lighting light identification device
JP4145888B2 (en) Display device and display method
US5791781A (en) Method of determining color temperature for color display device
JP3412996B2 (en) Image processing apparatus and method
JP3658435B2 (en) Mutual conversion system and mutual conversion method of color display emission control signal and object color tristimulus value
JPH0946535A (en) Color image processing unit
JP3412985B2 (en) Image processing apparatus and method
JP3658141B2 (en) Image processing apparatus and image processing method
JPH10108031A (en) Device and method for processing image and recording medium
JP3748482B2 (en) Image processing apparatus, method, and recording medium
JPH09219800A (en) Color image processor
JP2008177783A (en) Color conversion device and program
JPH1141478A (en) Method and device for processing image and recording medium
JP3720485B2 (en) Image processing apparatus and method
JP4082166B2 (en) Photodetection device, projector, photodetection method, program, and recording medium
JP2007209025A (en) Picture processing system, apparatus and method for reception, apparatus and method for transmission, and recording medium
JP2004064112A (en) Color processing apparatus and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees