JPH1194780A - Work function measuring method, apparatus therefor and sample holder - Google Patents
Work function measuring method, apparatus therefor and sample holderInfo
- Publication number
- JPH1194780A JPH1194780A JP9273582A JP27358297A JPH1194780A JP H1194780 A JPH1194780 A JP H1194780A JP 9273582 A JP9273582 A JP 9273582A JP 27358297 A JP27358297 A JP 27358297A JP H1194780 A JPH1194780 A JP H1194780A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- movable electrode
- work function
- potential difference
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、材料の特性や状
態、特に仕事関数を測定する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring properties and states of materials, particularly work functions.
【0002】[0002]
【従来の技術】特定の機能を備えた材料の開発などにお
いては、材料の特性を判定する手段として仕事関数を求
めることが行なわれる。このような仕事関数の測定に
は、通常、試料表面に対して一定の振幅で振動する電極
を対向させ、試料と電極との間の電位差を零位法で測定
する表面電位測定装置や、特開平1-138450号公報に示さ
れたような、一端が開口された陰極Aの内部に陽極Bを
配設し、これら両極間に電界を掛けた状態で、陰極Aの
開口部に試料Sを配設し、この表面に順次波長を変えな
がら光Lを照射し、光電子放出闇値以上の光が照射され
たときに光のエネルギを検出する光電子放出閾値測定装
置などが用いられている。2. Description of the Related Art In the development of a material having a specific function, a work function is obtained as a means for judging the characteristics of a material. In order to measure such a work function, an electrode oscillating with a constant amplitude is usually opposed to the sample surface, and a surface potential measuring device for measuring a potential difference between the sample and the electrode by a zero-point method, An anode B is provided inside a cathode A having one end opened as shown in Japanese Unexamined Patent Publication No. 1-138450, and a sample S is placed in the opening of the cathode A in a state where an electric field is applied between these two electrodes. A photoelectron emission threshold measurement device is provided which irradiates the surface with light L while sequentially changing the wavelength, and detects the energy of light when the surface is irradiated with light having a photoelectron emission dark value or more.
【0003】[0003]
【発明が解決しようとする課題】前者の装置によれば、
可動電極を試料に対向させるという簡単な操作で測定が
可能であるものの、測定結果が可動電極に付着した気体
分子に大きく左右されるため、試料自体の特性を正確に
把握することが困難であるという問題があり、また後者
の装置によれば、気体分子の影響をほとんど受けず、材
料自体の仕事関数を正確に把握できるものの、半導体物
質のように仕事関数がフェルミ準位に左右される物質に
あっては、材料を構成している元素や分子の仕事関数を
測定することができないという問題を抱えている。本発
明は、このような問題に鑑みてなされたものであって、
その目的とするところは試料の種類や、気体分子の付着
の如何に関わりなく、試料の特性を正確に測定する方法
を提案することである。また、本発明の他の目的は、上
記測定方法を実施するための装置を提供することであ
る。According to the former device,
Although the measurement can be performed by a simple operation of facing the movable electrode to the sample, it is difficult to accurately grasp the characteristics of the sample itself because the measurement result largely depends on the gas molecules attached to the movable electrode. According to the latter device, the work function of the material itself is almost unaffected by gas molecules and the work function of the material itself can be accurately grasped. However, there is a problem that the work function of the elements and molecules constituting the material cannot be measured. The present invention has been made in view of such a problem,
The aim is to propose a method for accurately measuring the properties of a sample, irrespective of the type of sample or the adhesion of gas molecules. Another object of the present invention is to provide an apparatus for performing the above-mentioned measuring method.
【0004】[0004]
【課題を解決するための手段】このような問題を解決す
るために本発明においては、可動電極の表面に順次波長
を走査しながら励起光を照射して、前記可動電極の表面
から光電子が放出した時の光エネルギを求める工程と、
試料の表面に対して進退するように一定の周波数で可動
電極を振動させ、前記可動電極と前記試料との電位差を
測定する工程と、前記電位差に前記光エネルギを加算し
た値を求める工程とを備え、可動電極自体の仕事関数を
補正できるようにした。According to the present invention, in order to solve such a problem, the surface of the movable electrode is irradiated with excitation light while sequentially scanning the wavelength, and photoelectrons are emitted from the surface of the movable electrode. Obtaining light energy at the time of
Vibrating the movable electrode at a constant frequency so as to advance and retreat with respect to the surface of the sample, measuring a potential difference between the movable electrode and the sample, and obtaining a value obtained by adding the light energy to the potential difference. In addition, the work function of the movable electrode itself can be corrected.
【0005】[0005]
【発明の実施の形態】そこで以下に本発明の詳細を図示
した実施例に基づいて説明する。図1は、本発明の一実
施例を示すものであって、図中符号1は、振動型表面電
位測定装置であり、また符号2は光電子放出閾値測定装
置である。、この実施例においては試料ホルダ3に一体
に組み込まれている。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a first embodiment of the present invention. FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 denotes a vibration-type surface potential measuring device, and reference numeral 2 denotes a photoelectron emission threshold measuring device. In this embodiment, they are integrated into the sample holder 3.
【0006】表面電位測定装置1は、励振器11に取り
付けられた可動電極12と、可動電極12と試料との間
の電位差を検出する電位差測定回路13とから構成され
ていて、可動電極12は、この実施例では試料ホルダ3
に一体に組み込まれている。The surface potential measuring device 1 comprises a movable electrode 12 attached to an exciter 11 and a potential difference measuring circuit 13 for detecting a potential difference between the movable electrode 12 and the sample. In this embodiment, the sample holder 3
It is integrated into one.
【0007】光電子放出閾値測定装置2は、下部に開口
21aを備えた筒状陰極21の内部空間に、不平等電界
を形成するための陽極22と、放電を制御する第1格子
電極23、第2格子電極24が上下関係となるように配
置された検出部25を備えている。The photoemission threshold value measuring device 2 includes an anode 22 for forming an uneven electric field, a first grid electrode 23 for controlling discharge, and a first grid electrode 23 in an inner space of a cylindrical cathode 21 having an opening 21a at a lower portion. The detection unit 25 includes a two-grating electrode 24 arranged in a vertical relationship.
【0008】陽極22には開口21aに光電子が進入し
たときに陰極21との間で放電を生じさせるに足る高電
圧が高抵抗Rを介して放電電圧発生回路26から供給さ
れ、また直流阻止用コンデンサCを介して放電検出回路
27が接続されている。A high voltage sufficient to generate a discharge between the anode 22 and the cathode 21 when photoelectrons enter the opening 21a is supplied from a discharge voltage generating circuit 26 through a high resistance R. The discharge detection circuit 27 is connected via the capacitor C.
【0009】第1格子電極23は第1パルス発生器28
が、また第2格子電極24は第2パルス発生器29が接
続されおり、図2に示したように第1格子電極23には
常時は100V程度の電圧を、また光電子に基づいて放
電(図2(a))が生じて発生した場合には、一定時間
Te継続する400V程度の電圧が印加され(図2
(b))、また第2格子電極24には常時は80V程度
の電圧を、また放電によるパルスが検出された段階では
マイナス30V程度の電圧(図2(c))が印加されて
いる。The first grid electrode 23 is connected to a first pulse generator 28
However, a second pulse generator 29 is connected to the second grid electrode 24, and a voltage of about 100 V is normally applied to the first grid electrode 23 as shown in FIG. 2 (a)), a voltage of about 400 V which is continued for a certain time Te is applied (FIG. 2).
(B)) Also, a voltage of about 80 V is applied to the second grid electrode 24 at all times, and a voltage of about −30 V (FIG. 2C) is applied when a pulse due to discharge is detected.
【0010】これにより試料からの光電子を第2格子電
極24の電位により陽極22に引き込んで、光電子の数
に相当する放電を一定時間Te生じさせる一方、過剰な
光電子の侵入を防止して火花放電への発展を防止するよ
うになっている。Thus, photoelectrons from the sample are drawn into the anode 22 by the potential of the second grid electrode 24, and a discharge corresponding to the number of photoelectrons is generated for a certain time Te. To prevent the development of
【0011】そして、検出部25の近傍には光ビーム発
生装置30が配置されている。この光ビーム発生装置3
0は、光源31と、波長切換回路32からの信号により
制御を受ける分光器33とから構成されていて、試料等
に波長の異なる光を照射できるようになっている。A light beam generator 30 is arranged near the detector 25. This light beam generator 3
Numeral 0 is composed of a light source 31 and a spectroscope 33 controlled by a signal from a wavelength switching circuit 32, so that a sample or the like can be irradiated with light having a different wavelength.
【0012】34は、エネルギ検出回路で、放電検出回
路27から信号が出力した時に、試料に照射している光
ビームのスペクトルエネルギを検出するものである。Numeral 34 denotes an energy detection circuit for detecting the spectral energy of the light beam irradiating the sample when a signal is output from the discharge detection circuit 27.
【0013】試料ホルダ3は、試料をアースに接続し、
試料の表面が可動電極12に対して平行となるよう、こ
の実施例では水平に保持する支持部35を備え、リード
線を介して電位差測定回路13に接続されている。The sample holder 3 connects the sample to ground,
In this embodiment, a support section 35 is provided to hold the sample horizontally so that the surface of the sample is parallel to the movable electrode 12, and is connected to the potential difference measuring circuit 13 via a lead wire.
【0014】36は、仕事関数演算回路で、電位差測定
回路13により測定された試料との電位差Vsに、エネ
ルギ検出回路34により測定された可動電極12の仕事
関数V0を加算して出力するものである。Reference numeral 36 denotes a work function calculation circuit which adds the work function V0 of the movable electrode 12 measured by the energy detection circuit 34 to the potential difference Vs from the sample measured by the potential difference measurement circuit 13 and outputs the result. is there.
【0015】つぎにこのように構成した装置の動作につ
いて説明する。図3(イ)に示したように、可動電極1
2をその試料対向面が光電子放出閾値測定装置2の検出
部25に対向するように陰極21の開口21aの下方に
配置して、光ビーム発生装置31、33の光Lλを波長
を変えながら照射する。Next, the operation of the apparatus configured as described above will be described. As shown in FIG.
2 is arranged below the opening 21a of the cathode 21 such that the sample facing surface faces the detecting section 25 of the photoemission threshold value measuring device 2, and irradiates the light Lλ of the light beam generating devices 31 and 33 while changing the wavelength. I do.
【0016】可動電極12が、これを構成している材料
の仕事関数、つまり光電子放出閥値を越えるエネルギを
持つ波長の光Lλの照射を受けると、その表面から光電
子を放出する。When the movable electrode 12 is irradiated with light Lλ having a wavelength having an energy exceeding the work function of the material constituting the movable electrode 12, that is, the photoelectron emission threshold, the movable electrode 12 emits photoelectrons from its surface.
【0017】この光電子は、陽極22に移動して放電を
起させるから、この時の光エネルギをエネルギ検出回路
34により検出すれば、可動電極12の仕事関数V0が
判明する。Since the photoelectrons move to the anode 22 to cause a discharge, if the light energy at this time is detected by the energy detection circuit 34, the work function V0 of the movable electrode 12 is determined.
【0018】このようにして可動電極12の仕事関数V
0が判明した段階で、図3(ロ)に示したように試料ホ
ルダ3に試料Sを載置して可動電極12と間隙を持たせ
て対向させ、可動電極12を試料に対して進退するよう
に振動させる。Thus, the work function V of the movable electrode 12
At the stage when 0 is found, the sample S is placed on the sample holder 3 and opposed to the movable electrode 12 with a gap as shown in FIG. Vibrate as follows.
【0019】もとより、可動電極12と試料Sとの間に
は半導体物理の分野でいう接触帯電現象が生じていて両
者の間には仕事関数の差に相当する電位差Vsが誘起さ
れ、また可動電極12と試料Sとの間にコンデンサが形
成されるため、一種の静電発電機を構成する。Naturally, a contact charging phenomenon referred to in the field of semiconductor physics occurs between the movable electrode 12 and the sample S, and a potential difference Vs corresponding to a work function difference is induced between the two, and Since a capacitor is formed between the sample 12 and the sample S, it forms a kind of electrostatic generator.
【0020】したがって、可動電極12と試料Sとの仕
事関数に相当する電位差VSを超高入力インピーダンス
の測定手段からなる仕事関数演算回路36により検出す
ることにより、試料Sの仕事関数を測定することができ
る。Therefore, the work function of the sample S can be measured by detecting the potential difference VS corresponding to the work function between the movable electrode 12 and the sample S by the work function calculation circuit 36 comprising measuring means of an ultra-high input impedance. Can be.
【0021】このように振動型表面電位測定装置1によ
れば、可動電極自体の仕事関数が判明していれば、試料
の種類に関わりなく仕事関数を求められるから、光電子
放出の閾値が仕事関数に一致しない半導体等の試料であ
っても、試料の組成に基づく仕事関数を正確に測定する
ことができる。As described above, according to the vibration type surface potential measuring device 1, if the work function of the movable electrode itself is known, the work function can be obtained regardless of the type of the sample. The work function based on the composition of the sample can be accurately measured even for a sample such as a semiconductor that does not match the above.
【0022】なお、上述の実施例においては、可動電極
の仕事関数を検出してから、試料を測定するようにして
いるが、試料を測定した後に、可動電極の仕事関数を検
出して補正するようにしても同様の作用効果を奏するこ
とは明らかである。In the above embodiment, the sample is measured after the work function of the movable electrode is detected. However, after the sample is measured, the work function of the movable electrode is detected and corrected. It is apparent that the same operation and effect can be obtained even if this is done.
【0023】また、上述の実施例のおいては可動電極の
仕事関数を直接測定するようにしているが、標準試料を
介して測定することもできる。すなわち、光電子放出閾
値測定装置2により仕事関数が測定されている標準試料
を、振動型表面電位測定装置1により仕事関数を求め、
両測定値の差分を可動電極のガス吸着等に起因する補正
値として記憶しておく。In the above-described embodiment, the work function of the movable electrode is directly measured. However, the work function can be measured through a standard sample. That is, the work function of the standard sample whose work function is measured by the photoemission threshold measurement device 2 is determined by the vibration-type surface potential measurement device 1,
The difference between the two measured values is stored as a correction value due to gas adsorption of the movable electrode or the like.
【0024】そして振動型表面電位測定装置1により試
料を測定し、これにより得た値を前記補正値で補正する
ことにより、可動電極12のガス吸着等に起因する誤差
を補正することができる。By measuring the sample with the vibration-type surface potential measuring device 1 and correcting the obtained value with the correction value, it is possible to correct an error caused by gas adsorption of the movable electrode 12 or the like.
【0025】さらに上述の実施例においては、試料ホル
ダ3を光電子放出閾値測定装置2の陰極21の開口21
aに対向させて配置しているが、搬送手段に取り付けて
移動できるようにしてもよい。Further, in the above-described embodiment, the sample holder 3 is connected to the opening 21 of the cathode 21 of the photoemission threshold measuring device 2.
Although it is arranged so as to face a, it may be attached to a transport means so as to be movable.
【0026】すなわち図4は、上述の仕事関数測定方法
を利用した仕事関数測定装置の一実施例を示すものであ
り、また図5は、測定領域を拡大して示すものであっ
て、高インピーダンス電圧測定手段を内蔵した本体ケー
ス40の上面にフレーム41を設けて測定機構を配置
し、またフレーム41の前方側に試料の位置を確認する
ための顕微鏡43が、測定に障害とならないように転倒
により退避、または取り外し可能に設けられている。FIG. 4 shows an embodiment of a work function measuring apparatus utilizing the above-described work function measuring method, and FIG. 5 shows an enlarged view of a measuring region, showing a high impedance. A frame 41 is provided on an upper surface of a main body case 40 having a built-in voltage measuring means, and a measuring mechanism is arranged. A microscope 43 for confirming a position of a sample is positioned in front of the frame 41 so as not to obstruct measurement. It is provided so as to be retractable or removable.
【0027】フレーム41は、制御パネル44が設けら
れた正面、及び切欠き部41aにより側方が開放されて
いて、試料の挿脱を可能に構成され、フレーム41に囲
まれた領域にノブ45により試料を上下動可能とする試
料載置台47と、試料の上面に位置するように振動型表
面電位測定ユニット48が配置され、制御パネル44に
は、標準試料で測定された電位を設定するダイヤル56
と、電位表示パネル57が配置されている。The frame 41 has a front surface on which the control panel 44 is provided and a lateral side opened by a notch portion 41a so that a sample can be inserted and removed. A knob 45 is provided in an area surrounded by the frame 41. A sample mounting table 47 that allows the sample to be moved up and down, and a vibration-type surface potential measurement unit 48 are arranged so as to be located on the upper surface of the sample. The control panel 44 has a dial for setting the potential measured with the standard sample. 56
And a potential display panel 57.
【0028】振動型表面電位測定ユニット48は、図6
に示したようにユニットケース49の表面に、測定電位
のリード部を兼ねる片持梁状に固定された板バネ50の
自由端側に導電性針状アーム51を介して電極板52を
固定して構成された振動電極を備えている。電極板52
は、少なくとも試料と対向する面(図中、上面)を大気
に対して安定で、かつガス吸着の少ない材料、金(A
u)やタングステン(W)の板材により構成されてい
る。The vibration type surface potential measuring unit 48 is shown in FIG.
The electrode plate 52 is fixed on the surface of the unit case 49 via the conductive needle arm 51 to the free end side of a leaf spring 50 fixed in a cantilever shape also serving as a lead portion of the measurement potential as shown in FIG. And a vibrating electrode configured as described above. Electrode plate 52
Means that at least the surface facing the sample (the upper surface in the figure) is a material, gold (A
u) and tungsten (W).
【0029】再び図4、5に戻って、振動型表面電位測
定ユニット48は、電極板52を下方にして取付け基板
53を介してフレーム41に固定され、電極板52の下
方への最大変位点よりも若干下方に下面54が位置し、
かつ図7に示したように電極板52を露出させる窓5
5、及び顕微鏡43による確認のための視野確保用の切
欠き部56とを備えた位置決め用の基板57が配置され
ている。Referring back to FIGS. 4 and 5, the vibration type surface potential measuring unit 48 is fixed to the frame 41 via the mounting board 53 with the electrode plate 52 facing downward, and the maximum displacement point below the electrode plate 52 The lower surface 54 is located slightly below,
And a window 5 for exposing the electrode plate 52 as shown in FIG.
5 and a notch portion 56 for ensuring a visual field for confirmation by the microscope 43 are provided.
【0030】窓55には、下面から上面に拡開する斜面
55aが形成され、かつ少なくとも試料に対向する面、
及び窓55の領域に大気に対して安定な材料、この実施
例で金のメッキ層が形成されている。The window 55 is formed with a slope 55a extending from the lower surface to the upper surface, and at least a surface facing the sample,
Further, a material that is stable against the atmosphere, that is, a gold plating layer in this embodiment, is formed in the region of the window 55.
【0031】この実施例において、ノブ45を一方の方
向に回動して試料載置台47を降下させ、前述したよう
に光電子放出閾値測定装置により仕事関数が予め測定さ
れた標準試料Sを試料載置台47の所定位置に載置する
(図8(イ))。In this embodiment, the knob 45 is rotated in one direction to lower the sample mounting table 47, and the standard sample S whose work function has been measured in advance by the photoemission threshold measuring device as described above is mounted on the sample. It is mounted on a predetermined position of the mounting table 47 (FIG. 8A).
【0032】ついで、標準試料Sの表面が位置決め基板
57に接触するまでノブ45を他方向に回動すると、標
準試料Sの上面が位置決め用基板57の下面に当接し、
電極板52に対して一定の間隙gで位置決めされる(図
8(ロ))。Next, when the knob 45 is rotated in the other direction until the surface of the standard sample S contacts the positioning substrate 57, the upper surface of the standard sample S contacts the lower surface of the positioning substrate 57,
It is positioned at a fixed gap g with respect to the electrode plate 52 (FIG. 8B).
【0033】この状態で、振動型表面電位測定ユニット
48を作動させると、電極板52は、基板57の窓55
の範囲で上下に一定の振幅、この実施例においては0.
5mm以下で振動する。When the vibration-type surface potential measuring unit 48 is operated in this state, the electrode plate 52
, A constant amplitude up and down in the range of 0. In this embodiment, the amplitude is 0.1.
Vibrates at 5 mm or less.
【0034】この測定過程においては、電極板52の側
方が安定な金の表面層を備えた基板57の窓55に囲ま
れているため、電極板52は外乱を受けることなく、標
準試料Sの電位を発生する。このようにして検出された
標準試料Sの電位は、表示パネル57に表示されるの
で、予め測定した値となるようにダイヤル45により電
極板52に印加する電位を調整すると、校正作業が終了
する。In this measurement process, since the side of the electrode plate 52 is surrounded by the window 55 of the substrate 57 provided with the stable gold surface layer, the electrode plate 52 is not subject to disturbance and the standard sample S Generates a potential of The potential of the standard sample S detected in this manner is displayed on the display panel 57. Therefore, when the potential applied to the electrode plate 52 is adjusted by the dial 45 so that the potential becomes a value measured in advance, the calibration operation is completed. .
【0035】標準試料の測定が終了した段階で、ノブ4
5を操作して標準試料を取出し、前述と同様の過程によ
り目的の試料をセットする。これにより、試料の表面と
振動型表面電位測定ユニット48の電極板52との間隙
gが標準試料Sの測定時と同一の値に設定されるから、
試料の仕事関数を、真空環境を必要とすることなく大気
中で正確に測定することができる。When the measurement of the standard sample is completed, the knob 4
5 is operated to take out a standard sample, and a target sample is set in the same manner as described above. Thereby, the gap g between the surface of the sample and the electrode plate 52 of the vibration-type surface potential measurement unit 48 is set to the same value as when the standard sample S was measured.
The work function of a sample can be accurately measured in the atmosphere without requiring a vacuum environment.
【0036】ところで、標準試料Sは安定な金の薄板に
より構成されているが、長期間の間には大気中のイオン
などが付着して電位が変化する虞があるので、図9に示
したように金属板60の中央に標準試料Sの表面を突出
させて位置決めすることができる凹部61を形成し、他
方の金属板62には少なくとも標準試料Sの測定領域と
間に間隙を形成できる凹部63を形成したものを用意
し、標準試料Sを2枚の金属板60、62で挟んでネジ
64、64などの締め付け手段により挟持させるホルダ
65に収容すると、標準試料Sの測定面と大気との接触
を断つことができ、校正電位を長期間維持することがで
きる。そして金属板60、62の対向面には金などの安
定な金属の層を形成しておくのが望ましい。The standard sample S is composed of a stable thin gold plate. However, there is a possibility that ions in the atmosphere may adhere to the sample for a long period of time and the potential may change. In the center of the metal plate 60, a recess 61 is formed in which the surface of the standard sample S can be projected and positioned, and the other metal plate 62 has a recess capable of forming a gap between at least the measurement region of the standard sample S. When a standard sample S is prepared and accommodated in a holder 65 in which a standard sample S is sandwiched between two metal plates 60 and 62 and fastened by fastening means such as screws 64, 64, the measurement surface of the standard sample S and the atmosphere are removed. Can be disconnected, and the calibration potential can be maintained for a long time. It is desirable to form a stable metal layer such as gold on the opposing surfaces of the metal plates 60 and 62.
【0037】[0037]
【発明の効果】以上、説明したように本発明によれば、
可動電極の表面に順次波長を走査しながら励起光を照射
して、可動電極の表面から光電子が放出した時の光エネ
ルギを求める工程と、試料の表面に対して進退するよう
に一定の周波数で可動電極を振動させ、可動電極と試料
との電位差を測定する工程と、電位差に前記光エネルギ
を加算した値を求める工程とを備えたので、可動電極の
状態の如何に関わりなく、試料の仕事関数を大気中で正
確に測定することができる。As described above, according to the present invention,
A step of irradiating excitation light while sequentially scanning the wavelength of the surface of the movable electrode to obtain light energy when photoelectrons are emitted from the surface of the movable electrode, and at a constant frequency so as to advance and retreat with respect to the surface of the sample. The method includes the steps of vibrating the movable electrode to measure a potential difference between the movable electrode and the sample, and obtaining a value obtained by adding the light energy to the potential difference, so that the work of the sample is performed regardless of the state of the movable electrode. The function can be measured accurately in the atmosphere.
【図1】本発明のー実施例を示す装置の構成図である。FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention.
【図2】光電子放出閾値測定装置の各電極の電圧変化を
示す波形図、FIG. 2 is a waveform chart showing a voltage change of each electrode of the photoelectron emission threshold measurement device.
【図3】図(イ)、(ロ)は、それぞれ同上装置の動作
を示す説明図である。FIGS. 3A and 3B are explanatory diagrams illustrating the operation of the above device.
【図4】図(イ)、(ロ)は、それぞれ振動型表面電位
測定法による装置の一実施例を示す正面図と、側面図で
ある。FIGS. 4A and 4B are a front view and a side view, respectively, showing an embodiment of an apparatus using a vibration-type surface potential measurement method.
【図5】同上装置の測定領域を拡大して示す図である。FIG. 5 is an enlarged view showing a measurement area of the same device.
【図6】図(イ)、(ロ)は、それぞれ振動型表面電位
測定ユニットの一実施例を示す上面図と側面図である。FIGS. 6A and 6B are a top view and a side view, respectively, showing one embodiment of a vibration-type surface potential measuring unit.
【図7】図(イ)、(ロ)は、それぞれ同上装置の試料
位置決め用基板の一実施例を示す正面図と、A−A線に
おける断面図である。FIGS. 7 (a) and 7 (b) are a front view and a cross-sectional view taken along line AA, respectively, showing an embodiment of a sample positioning substrate of the above apparatus.
【図8】図(イ)、(ロ)は、それぞれ同上装置の動作
を、試料セット前の状態と、測定可能状態とで示す図で
ある。FIGS. 8A and 8B are diagrams showing the operation of the above-described apparatus in a state before setting a sample and in a measurable state, respectively.
【図9】図(イ)乃至(ハ)は、それぞれ同上装置に適
した標準試料ホルダの一実施例を、ホルダを構成する金
属板、及び試料を収容した状態で示す図である。FIGS. 9A to 9C are views showing one embodiment of a standard sample holder suitable for the above-described apparatus, respectively, in a state in which a metal plate constituting the holder and a sample are accommodated.
1 振動型表面電位測定装置 2 光電子放出閾値測定装置 3 試料ホルダ 11 励振器 12 可動電極 25 測定部 S 試料 DESCRIPTION OF SYMBOLS 1 Vibration type surface potential measuring device 2 Photoelectron emission threshold measuring device 3 Sample holder 11 Exciter 12 Movable electrode 25 Measuring part S Sample
Claims (7)
ら励起光を照射して、前記可動電極の表面から光電子が
放出した時の光エネルギを求める工程と、試料の表面に
対して進退するように一定の周波数で可動電極を振動さ
せ、前記可動電極と前記試料との電位差を測定する工程
と、 前記電位差に前記光エネルギを加算した値を求める工程
とからなる仕事関数測定方法。1. A step of irradiating excitation light while sequentially scanning the surface of a movable electrode with a wavelength to obtain light energy when photoelectrons are emitted from the surface of the movable electrode, and moving back and forth with respect to the surface of the sample. A work function measuring method comprising the steps of: vibrating a movable electrode at a constant frequency to measure a potential difference between the movable electrode and the sample; and obtaining a value obtained by adding the light energy to the potential difference.
光を照射して、前記標準試料から光電子が放出した時の
光エネルギを求める工程と、 前記標準試料の表面に対して進退するように一定の周波
数で可動電極を振動させ、前記可動電極と前記標準試料
との電位差を測定する工程と、 試料の表面に対して進退するように一定の周波数で可動
電極を振動させ、前記可動電極と前記試料との電位差を
測定する工程と、 前記電位差に前記光エネルギを加算した値を求める工程
とからなる仕事関数測定方法。A step of irradiating the standard sample with excitation light while sequentially scanning the wavelength to obtain light energy when photoelectrons are emitted from the standard sample; Vibrating the movable electrode at a constant frequency to measure a potential difference between the movable electrode and the standard sample; and vibrating the movable electrode at a constant frequency so as to advance and retreat with respect to the surface of the sample. A work function measuring method comprising: a step of measuring a potential difference from the sample; and a step of obtaining a value obtained by adding the light energy to the potential difference.
の周波数で振動する可動電極と、前記可動電極と前記試
料との電位差を測定する手段とからなる表面電位計測手
段と、 試料に順次波長を走査しながら励起光を照射する光ビー
ム発生手段と、前記試料からの光電子を検出する光電子
検出手段と、該光電子検出手段により光電子が検出され
た時の前記励起光のエネルギを検出する手段とからなる
光電子放出閾値測定手段と、 前記電位差と前記エネルギとの差分を求める手段と、 前記可動電極と前記光電子検出手段とに対向させるよう
に試料を支持する試料ホルダとからなる仕事関数測定装
置。3. A surface potential measuring means comprising: a movable electrode vibrating at a constant frequency so as to advance and retreat with respect to a surface of a sample; a surface potential measuring means comprising means for measuring a potential difference between the movable electrode and the sample; A light beam generating means for irradiating excitation light while scanning a wavelength, a photoelectron detection means for detecting photoelectrons from the sample, and a means for detecting the energy of the excitation light when photoelectrons are detected by the photoelectron detection means A work function measuring device comprising: a photoelectron emission threshold measuring unit comprising: a unit for obtaining a difference between the potential difference and the energy; and a sample holder for supporting a sample so as to face the movable electrode and the photoelectron detecting unit. .
固定された弾性板の自由端側に電極板を固定した振動型
表面電位測定手段と、前記電極板の下方への最大変位点
よりも若干下方に下面が位置し、かつ電極板を露出させ
る窓を備えた位置決め用の基板と、前記基板に対して昇
降可能で、試料表面を前記基板に当接させる位置決め手
段とからなる仕事関数測定装置。4. A vibrating surface potential measuring means in which an electrode plate is fixed to a free end side of an elastic plate fixed in a cantilever shape also serving as a lead portion of a measured potential, and a maximum displacement point below said electrode plate. A work comprising: a positioning substrate whose lower surface is located slightly below and has a window that exposes the electrode plate; and positioning means that can move up and down with respect to the substrate and contact the sample surface with the substrate. Function measurement device.
されている請求項4に記載の仕事関数測定装置。5. The work function measuring apparatus according to claim 4, wherein a stable metal layer is formed on the surface of the substrate.
ることができる凹部を備えた第1の金属板と、少なくと
も試料の測定領域と間に間隙を形成できる凹部を形成し
た第2の金属板と、試料を挟んで前記金属板を挟持する
手段とからなる試料ホルダ。6. A first metal plate having a concave portion capable of projecting and positioning a surface of a standard sample, and a second metal plate having a concave portion capable of forming a gap between at least a measurement region of the sample. And a means for holding the metal plate across the sample.
形成されている請求項6に記載の試料ホルダ。7. The sample holder according to claim 6, wherein a stable metal layer is formed on the opposing surface of the metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27358297A JP3419662B2 (en) | 1997-09-19 | 1997-09-19 | Work function measuring method, work function measuring device, and sample holder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27358297A JP3419662B2 (en) | 1997-09-19 | 1997-09-19 | Work function measuring method, work function measuring device, and sample holder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1194780A true JPH1194780A (en) | 1999-04-09 |
JP3419662B2 JP3419662B2 (en) | 2003-06-23 |
Family
ID=17529816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27358297A Expired - Fee Related JP3419662B2 (en) | 1997-09-19 | 1997-09-19 | Work function measuring method, work function measuring device, and sample holder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3419662B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2495998A (en) * | 2012-02-24 | 2013-05-01 | Kp Technology Ltd | Dual measurement of work function properties |
US9502201B2 (en) | 2008-12-08 | 2016-11-22 | A.L.M.T. Corp. | Tungsten electrode material and thermionic emission current measuring device |
JP2021032706A (en) * | 2019-08-23 | 2021-03-01 | 国立大学法人 東京大学 | electronic microscope |
-
1997
- 1997-09-19 JP JP27358297A patent/JP3419662B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9502201B2 (en) | 2008-12-08 | 2016-11-22 | A.L.M.T. Corp. | Tungsten electrode material and thermionic emission current measuring device |
GB2495998A (en) * | 2012-02-24 | 2013-05-01 | Kp Technology Ltd | Dual measurement of work function properties |
WO2013124663A1 (en) * | 2012-02-24 | 2013-08-29 | Kp Technology Ltd. | Measurement apparatus |
GB2495998B (en) * | 2012-02-24 | 2013-09-25 | Kp Technology Ltd | Measurement apparatus |
US8866505B2 (en) | 2012-02-24 | 2014-10-21 | Kp Technology Ltd. | Measurement apparatus |
JP2021032706A (en) * | 2019-08-23 | 2021-03-01 | 国立大学法人 東京大学 | electronic microscope |
Also Published As
Publication number | Publication date |
---|---|
JP3419662B2 (en) | 2003-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4637684B2 (en) | Charged particle beam application equipment | |
EP0225969B1 (en) | Apparatus and method for controlling irradiation of electron beam at fixed position in electron beam tester system | |
JP2954492B2 (en) | Method for Determining the Life Constant of Surface Recombination of Minority Carriers in a Sample of Semiconductor Materials | |
US5742172A (en) | Scanning probe microscope and method for obtaining topographic image, surface potential image, and electrostatic capacitance distribution image | |
JPH11265676A (en) | Method and device for testing substrate | |
US6369591B1 (en) | Apparatus and method using photoelectric effect for testing electrical traces | |
EP0395447A2 (en) | Surface potential measuring system | |
JPH1194780A (en) | Work function measuring method, apparatus therefor and sample holder | |
JP2965739B2 (en) | Focused ion beam equipment | |
WO2008029696A1 (en) | Electron beam dimension measuring device and electron beam dimension measuring method | |
JP4144035B2 (en) | TFT array inspection system | |
JP3334750B2 (en) | Sample inspection apparatus and method | |
JP2002042709A (en) | Calibration method of scanning electron microscope | |
JP6335376B1 (en) | Quadrupole mass spectrometer and determination method for sensitivity reduction thereof | |
JP3804046B2 (en) | Circuit board inspection apparatus and inspection method | |
JPH0394175A (en) | Measuring sample for surface potential and measuring device therefor | |
JPS6028151A (en) | Scanning type strobo ion microscope | |
JP2002043269A (en) | Laser cleaning completion judging apparatus and method | |
JPH09204898A (en) | Cantilever and particle beam alignment assisting mechanism using the same | |
JP2002170812A (en) | Method and device for detecting endpoint of plasma etching, and plasma etching apparatus | |
JP2012057994A (en) | Array inspection apparatus | |
JP2005009986A (en) | Substrate inspection apparatus | |
JP3384663B2 (en) | Focused ion beam processing equipment | |
JPH0136668B2 (en) | ||
JPS5848347A (en) | Strobe scan type electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030402 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150418 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |