JPH1193825A - Gravity rotating machine - Google Patents

Gravity rotating machine

Info

Publication number
JPH1193825A
JPH1193825A JP31101597A JP31101597A JPH1193825A JP H1193825 A JPH1193825 A JP H1193825A JP 31101597 A JP31101597 A JP 31101597A JP 31101597 A JP31101597 A JP 31101597A JP H1193825 A JPH1193825 A JP H1193825A
Authority
JP
Japan
Prior art keywords
arm
gear
arms
gears
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31101597A
Other languages
Japanese (ja)
Inventor
Yukio Hirata
幸男 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31101597A priority Critical patent/JPH1193825A/en
Publication of JPH1193825A publication Critical patent/JPH1193825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the rotational force by making use of the gravity in which a body is dropped by the gravitational force. SOLUTION: In a gravity rotating machine, a plurality of arms 5-20, gears 21-36, springs, and claws are installed with equal intervals on the circumference at the center of rotatable disks 3, 4. The springs are expanded by dropping the arms 5-20 to store the energy, the gears 21-36 are rotated making use of the contraction of the springs, and the rotational force of the gears 21-36 is partially transmitted by partially toothless gears. The arms are supported in the prescribed positions by supporting rods and supporting surfaces. The whole balance is regulated by supporting the arms in the prescribed positions.

Description

【発明の詳細な説明】 この発明は水平の回転軸に回転するように取り付けた回
転体を、中心軸を中心とする同心円上に円形状に等間隔
でアームを複数配列して、しかもアームも自由に回転で
きるようにし、アームは支持棒及び支持面によって特定
の位置で支えてアームが下へ垂れ下がらないようにす
る。回転体の中心の水平位置にあたる両端の一方のアー
ムを90度落下させて、その位置で支持棒によって支え
る、それによって生じる全体のバランスの崩れを利用し
て全体を回転させると共に、アームを90度加速させる
場合に生じる位置エネルギーを、車、歯車、バネ、ゴ
ム、ゼンマイ、等を利用して回転エネルギーに変換、貯
蔵し、その回転エネルギーを取り出して歯車及びベルト
を介して全体が回転するようにした回転機械である。こ
れを図面で説明すると、図1,図2,において支柱1に
中心軸2を水平に取り付ける.中心軸2に円板3,円板
4を回転するように取り付ける.円板3,円板4にアー
ム5,6,7,8,9,10,11,12,13,1
4,15,16,17,18,19 20を図2のよう
に円状に回転するように取り付ける。アームの回転中心
軸と同位置に歯車の中心が一致するように歯車21,2
2,23,24,25,26,27,28,29,3
0,31,32,33,34,35,36,をアームの
中心軸と連結しないように支持台37に取り付ける.各
支持台37に各小歯車38を図2のように円状に設置す
る.中心軸2に欠歯歯車39を設置し、欠歯歯車39は
中心軸2に固定し、中心軸2は支柱1に固定する。図3
はB−B断面図である.図3においてアームの状態を説
明すると、アーム5はアーム5′の位置の約垂直状態よ
り水平状態まで落下して支持棒40によって支えられ下
へ垂れ下がることなく水平の状態に維持されている.同
様にアーム6,7もそれぞれの支持棒40によって支え
られ図3のように下へ垂れ下がることはない.アーム8
は支持面42によって支えられる.同様にアーム9,1
011,12も支持面42によって支えられ下へ垂直に
垂れ下がることはない.支持面42から離れた位置にあ
るアーム13は支持棒41によって支える.同様にアー
ム14,15,16,17,18,19,20もアーム
支持棒41によって支える。アーム先端にベアリング5
4を取り付け支持面42との接触部の摩擦損失を小さく
すると共に重りの代りとする、アームの状態は以上の如
くとなる。図4はC−C断面図である.図4において各
歯車に図のようにバネ43を設置する.各アームの回転
軸44に棒45をそれぞれ固定する.そして各歯車部に
も棒46を固定する.アーム5の位置ではアーム5′の
位置から約90度アームは落下するのでアーム5の棒4
5で歯車21の棒46を押して歯車21を約90度回転
させる.故にバネ43は延ばされて43′の状態とな
る.歯車23,25のバネも延びた状態に維持する.歯
車25の位置でバネが縮みはじめるようにして歯車25
を回転させる.歯車25の位置の小歯車38と欠歯歯車
39がこの位置でかみ合い始めるようにすれば、歯車2
5の回転力が小歯車38を通して欠歯歯車39に伝わ
る.しかし欠歯歯車39は固定されているので歯車25
の回転力は歯車25を設置している円板3円板4を回転
させる.このことは歯車25の回転力で全体が回転する
ということである.同様に歯車27及び図2の歯車2
6,28の部分もバネの縮みによる回転力が欠歯歯車3
9に伝わりつつある部位であり全体を回転させる力に変
換される.そして歯車29の位置でバネは延びる前の状
態に縮み回転力も0となる.この位置で小歯車38と欠
歯歯車39のかみ合いがはずれるようにする.このよう
に小歯車と欠歯歯車のかみ合いがはずれた状態の歯車は
図2でみてみると歯車30,31,32,33,34,
35 36,そして21,22,23,24である。図
5は図2の円板の下半円部分を拡大した図である.図5
においてバネ43が延びた状態を維持する方法と、バネ
が縮む場合に回転力を発生させる方法を説明する。まず
各歯車の中心軸57は支持台37に固定する.各中心軸
57に、つめ47を固定する.つめ47にスライドして
かみ合うようにしたスライド式つめ48を各歯車21〜
36に設置する.つめ48をスライドさせる為にバネ5
0をスライド式つめ48に取り付ける.歯車21の部分
においてアーム5が約90度落下した場合に、歯車21
も約90度回転するのでスライド式つめ48も約90度
回転して、つめ47と図のようにかみ合う.この歯車2
1の部分のバネ43も延びてバネ43′の状態となり縮
もうとする力が働くが、かみ合ったつめ47と48でバ
ネ43′は縮むことはない.この状態は歯車22,2
3,24も同様となる.しかも小歯車と欠歯歯車がかみ
合っていないので全体が回転しても同じ状態を保つこと
ができる.歯車25の位置において支柱1に取り付けた
車輪51にスライド式つめ48の突出部56が下へ押さ
れてスライド式つめ48は下方へスライドして、つめ4
7とのかみ合いがはずれる.つめ47とスライド式つめ
48のかみ合わせがはずれれば、延びた状態のバネ4
3′の縮もうとする力で歯車25は回転しようとする.
その歯車25の回転力が小歯車38に伝えられ、さらに
小歯車と欠歯歯車39とがかみ合い始めるようにすれ
ば、この位置でバネの縮む力ぎ回転力として欠歯歯車3
9に伝わるようになる.しかし欠歯歯車39は固定され
ているので歯車25の回転力は円板3,4を回転させよ
うとする力に変換される.故に全体が回転する。歯車2
6ではバネ43′が歯車の角度22.5度分回転した状
態まで縮んでいる.歯車27ではバネ43′が歯車の角
度45度分回転した状態まで縮んでいる.歯車28では
バネ43′が歯車の角度67.5度分回転した状態まで
縮んでいる.そして歯車29ではバネ43′が延びる前
の状態に戻り回転力は0となる.歯車ももとの状態に戻
る.このように歯車25,26,27,28では歯車の
回転力(バネの縮む力)が全体を回転させる力として働
いている。歯車21,22,23,24はエネルギーを
貯えた状態であり、小歯車と欠歯ははかみ合っていな
い.歯車25,26,27,28はエネルギーを放出し
ている状態であり、小歯車と欠歯歯車はかみ合ってい
る.歯車29はエネルギーを放出し終った状態であり、
この時点で小歯車と欠歯歯車のかい合いがはずれる.歯
車30,31,32,33,34,35,36はエネル
ギーが放出されておらず、小歯車と欠歯歯車もかみ合っ
ていない。以上の如くアームの落下する力を回転力に変
換し、貯蔵して再びその回転力を取り出して全体を回転
させようとするものである.しかも図2についてみると
歯車25,26,27,28,の回転力で全体を22.
5度回転させれば歯車36が歯車21の位置に移動して
アーム20が約90度落下する.そうすればバネが延び
て歯車36に回転力が貯蔵される。さらに図6のように
円板3,4を歯車状にして、それとかみ合うように歯車
52を設置し歯車52の回転軸53を通して回転機械を
多数連結する.歯車52と回転軸53を固定すれば連結
した回転機械の回転力がお互いに作用し合う.そして歯
車21〜36の中心が少しづつずれるようにすれば、エ
ネルギーを放出する部分の歯車の数が増えると共に全体
をより小さい角度、回転させるだけで次々とアームが落
下して回転力が貯蔵されることになる。次に図3におい
てアームのバランスを説明すると、アーム5とアーム1
3の部分で水平中心線を天秤棒としてみてみると円板の
回転中心を中心としてアーム5′のアーム13ならば、
ほとんど左右対称で均り合った状態であるが、アーム5
の状態とアーム13とでは左右対称とならず、アーム5
の方が下がる.アーム6とアーム14についても同様で
あり、左回転しようとする力が働く.アーム8とアーム
16及びアーム9とアーム17も左右対称とならず右回
転しようとする力が働く.これらの位置は左右のバラン
スが崩れた状態にある.アーム7とアーム15は左右対
称ではないが均り合っている。アーム10とアーム1
8,アーム11とアーム19,アーム12とアーム20
は左右対称ではあるがこれらの均り合いをみると左回転
しようとする力が働く.但しアーム10,11,12が
下へ垂直に垂れ下がれば右回転しようとする力が働く。
アームの先端にベアリング54を取り付ければアームの
先端の重りの代りとなり、さらに全体が回転する際にア
ーム8,9,10,11,12と支持面42との摩擦損
失も小さくなる。図7はアームの長さを長くした場合の
略図である.但しアームの長さは回転軸2の中心からア
ームの回転軸44の中心までの長さより短くした方が左
右のバランスが都合がよくなる.そしてアームの落下す
る高さHがより大きくなる.よって位置エネルギーも
大きくなり、大きい回転力が得られる。図8はアームの
支持をスライド式(スライド式支持棒55)にしたもの
である.こうすればスライド式支持棒55はアーム7の
位置でアーム7が支持面42に支えられてスライド式支
持棒55が斜め下方へスライドしてアーム7を支えるよ
うになる.こうしてこの位置でアーム7が下へ垂れ下が
るのを防げば全体が右回転しようとするのを防ぐことが
できる.歯車23以外の歯車の位置ではスライド式支持
棒がどの位置にあってもアームの動きに影響を与えるこ
とはない。図8においてはアームは約170度落下す
る.故にアームの落下する高さHは図7のHよりさ
らに大きくなるのでより大きい回転力が得られる.この
場合は歯車25,26,27,28,29,30,3
1,32,の位置でバネの縮む力が回転力に変換され全
体を回転させる力となる.しかも図7と同様に全体を2
2.5度回転させる丈で新たにアームが落下して歯車に
回転力が貯蔵されることになる。この回転機械の特長は
アームの支持棒及び支持面を利用してアームの位置を調
節し回転機械のバランスを維持したり、崩したりして回
転機械を静止させたり回転させたりすると共にアームを
落下させることによって位置エネルギーを発生させ、そ
の位置エネルギーを回転エネルギーに変換、貯蔵し、貯
蔵した回転エネルギーを利用して全体を回転させようと
するものである.以上のことは位置エネルギーも回転体
のバランスを保ったり、崩したりするのも地球の引力い
わゆる重力によって発生する この回転機械は重力を回
転力に変換するものであり回転に際しては外部よりエネ
ルギーを導入する必要がない。回転軸53に発電機を連
結すれば発電することができる.そしてアームの位置エ
ネルギーを回転エネルギーとして伝達するには図9,図
10のようにベルト(チェーン)及びかさ歯車を利用す
る方法があり、そうすれば遊園地の観覧車のように回転
機械全体をより大きくすることができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rotating body mounted on a horizontal rotating shaft, and a plurality of arms arranged at equal intervals on a concentric circle centered on a center axis. The arm can be freely rotated, and the arm is supported at a specific position by the support bar and the support surface so that the arm does not hang down. One arm at both ends corresponding to the horizontal position of the center of the rotating body is dropped by 90 degrees, and is supported by a support rod at that position, and the entire arm is rotated by utilizing the overall imbalance caused thereby, and the arm is rotated by 90 degrees. The potential energy generated when accelerating is converted into rotational energy using a car, gear, spring, rubber, spring, etc., stored, and the rotational energy is taken out so that the whole rotates through gears and belts. Rotating machine. This will be described with reference to the drawings. In FIGS. The disk 3 and the disk 4 are attached to the center shaft 2 so as to rotate. Arms 5, 6, 7, 8, 9, 10, 11, 12, 13, 1 on disks 3 and 4
4, 15, 16, 17, 18, 1920 are attached so as to rotate in a circle as shown in FIG. The gears 21 and 22 are arranged so that the center of the gear coincides with the rotation center axis of the arm.
2,23,24,25,26,27,28,29,3
0, 31, 32, 33, 34, 35, 36 are attached to the support 37 so as not to be connected to the central axis of the arm. Each small gear 38 is set in a circular shape on each support base 37 as shown in FIG. The toothless gear 39 is installed on the central shaft 2, the toothless gear 39 is fixed to the central shaft 2, and the central shaft 2 is fixed to the column 1. FIG.
Is a BB sectional view. Referring to FIG. 3, the state of the arm 5 will be described. The arm 5 drops from the vertical position at the position of the arm 5 'to a horizontal state, is supported by the support rod 40, and is maintained in a horizontal state without hanging down. Similarly, the arms 6 and 7 are also supported by the respective support rods 40 and do not hang down as shown in FIG. Arm 8
Is supported by a support surface 42. Similarly, arm 9,1
011 and 12 are also supported by the support surface 42 and do not hang vertically downward. The arm 13 at a position away from the support surface 42 is supported by the support rod 41. Similarly, the arms 14, 15, 16, 17, 18, 19, and 20 are also supported by arm support rods 41. Bearing 5 at arm tip
The state of the arm is as described above, wherein 4 is used as a substitute for the weight while reducing the friction loss at the contact portion with the mounting support surface 42. FIG. 4 is a sectional view taken along the line CC. In FIG. 4, a spring 43 is installed on each gear as shown. A rod 45 is fixed to the rotation shaft 44 of each arm. The rod 46 is also fixed to each gear. At the position of the arm 5, the arm falls approximately 90 degrees from the position of the arm 5 ′.
5 pushes the rod 46 of the gear 21 to rotate the gear 21 by about 90 degrees. Therefore, the spring 43 is extended to the state of 43 '. The springs of the gears 23 and 25 are also maintained in an extended state. At the position of the gear 25, the gear 25
Rotate. If the pinion gear 38 at the position of the gear 25 and the toothless gear 39 start engaging at this position, the gear 2
The torque of 5 is transmitted to the toothless gear 39 through the small gear 38. However, since the toothless gear 39 is fixed, the gear 25
Rotates the disk 3 and the disk 4 on which the gear 25 is installed. This means that the whole is rotated by the torque of the gear 25. Similarly, the gear 27 and the gear 2 in FIG.
The gears 6 and 28 also lack rotational gear due to the contraction of the spring.
It is a part that is being transmitted to 9, and is converted into a force that rotates the whole. At the position of the gear 29, the spring contracts to a state before being extended, and the rotational force becomes zero. At this position, the engagement between the small gear 38 and the toothless gear 39 is disengaged. As shown in FIG. 2, the gears in the state in which the small gear and the toothless gear are out of mesh with each other are gears 30, 31, 32, 33, 34,
3536, and 21, 22, 23, 24. FIG. 5 is an enlarged view of the lower semicircular portion of the disk of FIG. FIG.
A method for maintaining the state where the spring 43 is extended and a method for generating a rotational force when the spring contracts will be described. First, the center shaft 57 of each gear is fixed to the support 37. The pawl 47 is fixed to each central shaft 57. Sliding pawls 48 that slide into engagement with pawls 47 are provided with respective gears 21 to 21.
Install at 36. Spring 5 to slide claws 48
0 is attached to the slide pawl 48. When the arm 5 falls about 90 degrees at the gear 21, the gear 21
Is also rotated by about 90 degrees, so that the slide pawl 48 also rotates by about 90 degrees and engages with the pawl 47 as shown in the figure. This gear 2
The spring 43 of the portion 1 also extends and becomes a state of the spring 43 ', and a force for contracting is applied. However, the springs 43' are not contracted by the engaged pawls 47 and 48. This state is the gear 22,2
The same applies to 3, 24. In addition, since the small gear and the missing gear do not mesh, the same state can be maintained even if the whole rotates. At the position of the gear 25, the protruding portion 56 of the slide-type pawl 48 is pushed downward by the wheel 51 attached to the column 1, and the slide-type pawl 48 slides downward, and the pawl 4
The engagement with 7 is lost. If the engagement between the pawl 47 and the slide pawl 48 is released, the spring 4
The gear 25 tries to rotate with the 3 'contracting force.
If the rotational force of the gear 25 is transmitted to the small gear 38 and the small gear and the toothless gear 39 start to mesh with each other, at this position, the missing gear 3
It will be transmitted to 9. However, since the toothless gear 39 is fixed, the rotational force of the gear 25 is converted into a force for rotating the disks 3 and 4. Therefore, the whole rotates. Gear 2
In 6, the spring 43 'has contracted to a state where it has been rotated by the gear angle of 22.5 degrees. In the gear 27, the spring 43 'is contracted to a state in which the spring 43' is rotated by an angle of 45 degrees of the gear. In the gear 28, the spring 43 'has contracted to a state in which it is rotated by the gear angle of 67.5 degrees. Then, the gear 29 returns to the state before the spring 43 'is extended, and the rotational force becomes zero. The gears also return to their original state. As described above, in the gears 25, 26, 27, and 28, the rotational force of the gears (the contraction force of the spring) acts as a force for rotating the entire gear. The gears 21, 22, 23, and 24 store energy, and the small gear and the missing tooth are not engaged. The gears 25, 26, 27, and 28 are in a state of emitting energy, and the small gear and the toothless gear are engaged. The gear 29 has finished emitting energy,
At this point, the meshing between the pinion and the missing gear has come off. No energy is emitted from the gears 30, 31, 32, 33, 34, 35, 36, and neither the small gear nor the toothless gear is engaged. As described above, the falling force of the arm is converted into a rotational force, stored and then taken out again to rotate the whole. In addition, referring to FIG.
If rotated 5 degrees, the gear 36 moves to the position of the gear 21 and the arm 20 drops by about 90 degrees. Then, the spring is extended and the rotational force is stored in the gear 36. Further, as shown in FIG. 6, the discs 3 and 4 are formed in a gear shape, and a gear 52 is installed so as to mesh with the gears, and a number of rotating machines are connected through a rotating shaft 53 of the gear 52. If the gear 52 and the rotating shaft 53 are fixed, the rotating forces of the connected rotating machines act on each other. If the centers of the gears 21 to 36 are slightly displaced, the number of gears in the part that emits energy increases, and the arm is dropped one after another just by rotating the whole at a smaller angle, and the rotational force is stored. Will be. Next, the balance of the arms will be described with reference to FIG.
Looking at the horizontal center line as a balance bar at the part 3, if the arm 13 of the arm 5 'is centered on the rotation center of the disk,
It is almost symmetric and balanced, but the arm 5
Is not symmetrical with the arm 13 and the arm 5
Goes down. The same applies to the arm 6 and the arm 14, and a force for turning to the left is applied. The arm 8 and the arm 16 and the arm 9 and the arm 17 are not bilaterally symmetric, and a force to rotate rightward is applied. These positions are left and right imbalanced. The arms 7 and 15 are not symmetrical but are balanced. Arm 10 and arm 1
8, arm 11 and arm 19, arm 12 and arm 20
Is symmetrical, but when these equilibriums are observed, a force to turn to the left acts. However, when the arms 10, 11, and 12 hang down vertically, a force for right rotation acts.
If the bearing 54 is attached to the tip of the arm, it can be used instead of the weight of the tip of the arm, and the friction loss between the arms 8, 9, 10, 11, 12 and the support surface 42 when the whole is rotated is reduced. FIG. 7 is a schematic diagram when the length of the arm is increased. However, when the length of the arm is shorter than the length from the center of the rotating shaft 2 to the center of the rotating shaft 44 of the arm, the balance between the left and right becomes more convenient. The greater the height H 1 Gayori falling of the arm. Therefore, the potential energy also increases, and a large rotational force is obtained. FIG. 8 shows a case where the arm is supported by a slide type (slide type support rod 55). In this way, the slide-type support bar 55 is supported by the support surface 42 at the position of the arm 7, and the slide-type support bar 55 slides obliquely downward to support the arm 7. In this way, if the arm 7 is prevented from hanging down at this position, it is possible to prevent the whole from turning right. In the positions of the gears other than the gear 23, the movement of the arm is not affected regardless of the position of the slide type support rod. In FIG. 8, the arm drops about 170 degrees. Thus the height H 2 of falling of the arm is greater than the rotational force is obtained since the greater than H 1 of FIG. In this case, the gears 25, 26, 27, 28, 29, 30, 3
At positions 1, 32, the force of contraction of the spring is converted into a rotational force, which is a force for rotating the whole. Moreover, as in FIG.
The arm is dropped anew so that the arm rotates by 2.5 degrees, and the torque is stored in the gear. The feature of this rotating machine is to adjust the position of the arm by using the support rod and the supporting surface of the arm to maintain the balance of the rotating machine, to break down, to stop or rotate the rotating machine, and to drop the arm By generating potential energy, the potential energy is converted into rotational energy, stored, and the whole is rotated using the stored rotational energy. The above-mentioned thing is that the potential energy also keeps the balance of the rotating body or breaks it down because of the attraction of the earth, so-called gravity. No need to do. If a generator is connected to the rotating shaft 53, power can be generated. In order to transmit the potential energy of the arm as rotational energy, there is a method using a belt (chain) and a bevel gear as shown in FIGS. 9 and 10, so that the entire rotary machine can be used like a ferris wheel in an amusement park. Can be larger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 側面図 A−A断面FIG. 1 Side view AA cross section

【図2】 正面図FIG. 2 is a front view

【図3】 アームの状態を示す図面 B−B断面FIG. 3 is a drawing showing a state of an arm, and is a BB cross section

【図4】 バネの状態を示す図面 C−C断面FIG. 4 is a drawing showing a state of a spring.

【図5】 つめの状態を示す図面.FIG. 5 is a view showing a state of a pawl.

【図6】 回転機械の連結を示す図面FIG. 6 is a drawing showing the connection of rotating machines.

【図7】 アームを長くした場合の動作を示す略図FIG. 7 is a schematic view showing the operation when the arm is elongated.

【図8】 アームの落差を大きくした場合の動作を示す
略図
FIG. 8 is a schematic diagram showing the operation when the head of the arm is increased.

【図9】 回転エネルギーの伝達方法にベルトを利用し
た場合の略図
FIG. 9 is a schematic diagram of a case where a belt is used for transmitting rotational energy.

【図10】 回転エネルギーの伝達方法にかさ歯車を利
用した場合の略図
FIG. 10 is a schematic diagram of a case where a bevel gear is used for transmitting rotational energy.

【符号の説明】[Explanation of symbols]

1は支柱.2は中心軸.3,4は円板.5,6,7,
8,9,10,11,12,13,14,15,16,
17,18,19,20はアーム.21,22,23,
24 25 26 27 28 29 30 31 3
2 33 3435 36は歯車.37は支持台.38
は小歯車.39は欠歯歯車.40,41は支持棒.42
は支持面.43はバネ.44はアーム回転軸.45はア
ーム回転軸に固定された棒.46は歯車に固定された
棒.47はつめ.48はスライド式つめ.49はスライ
ド式つめの保持部.50はバネ.51は車輪.52は連
結用歯車.53は連結用歯車の回転軸.54はベアリン
グ兼重り.55はスライド式支持棒.56は突出部.5
7は歯車中心軸.58はベルト.59はかさ歯車.60
はかけ歯かさ歯車.61は回転軸.5′はアームの仮の
位置.43′は延びた状態のバネ.A,Aは断面.B,
Bは断面.C,Cは断面.H,Hはアームの落差。
1 is a support. 2 is the central axis. 3 and 4 are disks. 5,6,7,
8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19 and 20 are arms. 21, 22, 23,
24 25 26 27 28 29 30 31 3
2 333 3435 36 is a gear. 37 is a support stand. 38
Is a small gear. 39 is a toothless gear. 40 and 41 are support rods. 42
Is the support surface. 43 is a spring. 44 is an arm rotation shaft. 45 is a rod fixed to the arm rotation shaft. 46 is a rod fixed to the gear. 47 is the nail. 48 is a sliding pawl. 49 is a holding part of a slide type nail. 50 is a spring. 51 is a wheel. 52 is a connecting gear. 53 is a rotating shaft of the connecting gear. 54 is a bearing and weight. 55 is a slide type support rod. 56 is a protrusion. 5
7 is a gear center shaft. 58 is a belt. 59 is a bevel gear. 60
Is a bevel gear. 61 is a rotating shaft. 5 'is the temporary position of the arm. 43 'is an extended spring. A, A is a cross section. B,
B is a cross section. C, C are cross sections. H 1 and H 2 are heads of the arm.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年1月5日[Submission date] January 5, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図9】 FIG. 9

【図10】 FIG. 10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水平の中心軸に回転するように取り付けた
回転体にアームを水平の中心軸を中心とする円周上に複
数配列して、アームも自由に回転できるようにし、アー
ムは支持棒及び支持面によって特定の位置で支えて、ア
ームが下へ垂れ下がらないようにした回転機械。
1. A plurality of arms are arranged on a rotating body attached to a horizontal center axis so as to rotate around a horizontal center axis so that the arms can freely rotate, and the arms are supported. A rotating machine supported at a specific position by a rod and a support surface so that the arm does not hang down.
【請求項2】回転体の中心の水平位置にあたる両端の一
方のアームを落下させるようにしアームが落下したとこ
ろでは支持棒で支え、下部のアームは支持面で支えて、
アームが下へ垂直にたれさがらないようにする.それに
よって生じる全体のバランスの崩れを利用し、全体を回
転させるようにした回転機械。
2. One of the arms at both ends corresponding to the horizontal position of the center of the rotating body is dropped. When the arm falls, it is supported by a support rod, and the lower arm is supported by a support surface.
Make sure the arm does not sag vertically down. A rotating machine that uses the resulting overall imbalance to rotate the entire machine.
【請求項3】回転体の中心の水平位置にあたる両端の一
方のアームを落下させる場合に生じる位置エネルギー
を、歯車、車、バネ(又は伸縮性のもの)を利用して回
転エネルギーに変換、貯蔵し、その回転エネルギーを取
り出して歯車を利用して全体が回転するようにした回転
機械。
3. The potential energy generated when one of the arms at both ends corresponding to the horizontal position of the center of the rotating body is dropped is converted into rotational energy by using a gear, a car, or a spring (or elastic), and stored. A rotating machine that extracts the rotational energy and uses a gear to rotate the entire machine.
JP31101597A 1997-09-24 1997-09-24 Gravity rotating machine Pending JPH1193825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31101597A JPH1193825A (en) 1997-09-24 1997-09-24 Gravity rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31101597A JPH1193825A (en) 1997-09-24 1997-09-24 Gravity rotating machine

Publications (1)

Publication Number Publication Date
JPH1193825A true JPH1193825A (en) 1999-04-06

Family

ID=18012101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31101597A Pending JPH1193825A (en) 1997-09-24 1997-09-24 Gravity rotating machine

Country Status (1)

Country Link
JP (1) JPH1193825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166856A1 (en) * 2014-04-27 2015-11-05 株式会社リード Rotation drive device
WO2020040440A1 (en) * 2018-08-21 2020-02-27 성열원 Power generating apparatus using gravity or buoyancy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166856A1 (en) * 2014-04-27 2015-11-05 株式会社リード Rotation drive device
JP2015222072A (en) * 2014-04-27 2015-12-10 株式会社リード Rotating drive unit
WO2020040440A1 (en) * 2018-08-21 2020-02-27 성열원 Power generating apparatus using gravity or buoyancy

Similar Documents

Publication Publication Date Title
JP6121635B2 (en) Hand-held yo-yo ball that can store energy manually
CN104737081B (en) Timepiece
US4637152A (en) Rotary drive mechanism for energizing toys, kinetic sculptures, or the like
US5890400A (en) Apparatus for generating a propulsion force
JPH1193825A (en) Gravity rotating machine
US5078386A (en) Ornamental carousel assembly
CA1318796C (en) Apparatus for converting extrinsic useless oscillation motions into useful torque
US6523646B1 (en) Spring driven apparatus
US5203743A (en) Ornamental carousel assembly
JP2010284490A (en) Multilayer gyro motor top
JP2002250781A (en) Anit-shock transmission for driving generator with vibration bob especially in watch
US7329167B2 (en) Multi-axle running toy and multi-axle running toy set
US2572146A (en) Target with irregular motion
US20170284507A1 (en) Gear System
US5655321A (en) Water ball structure
CN210495227U (en) Toy ball rotating mechanism
US6601471B2 (en) Main block of drop-power station
US3768199A (en) Ball passing toy
CN109289205B (en) Dish ball
JP2004301636A (en) Timepiece structure and timepiece
JP2020531773A (en) Centrifugal collision type transmission
JP4981757B2 (en) Robot toy
US1723656A (en) Rotating toy
JPH11173255A (en) Semi-perpetual motion machine
CN214388860U (en) Time light tunnel amusement equipment