JPH1192894A - Composite material of iron or iron-base alloy and graphite, and its production - Google Patents

Composite material of iron or iron-base alloy and graphite, and its production

Info

Publication number
JPH1192894A
JPH1192894A JP27382797A JP27382797A JPH1192894A JP H1192894 A JPH1192894 A JP H1192894A JP 27382797 A JP27382797 A JP 27382797A JP 27382797 A JP27382797 A JP 27382797A JP H1192894 A JPH1192894 A JP H1192894A
Authority
JP
Japan
Prior art keywords
iron
graphite
composite material
powder
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27382797A
Other languages
Japanese (ja)
Inventor
Shiyuuichi Shikai
修一 四海
Susumu Nishikawa
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP27382797A priority Critical patent/JPH1192894A/en
Publication of JPH1192894A publication Critical patent/JPH1192894A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To incorporate graphite in high proportion, to properly disperse graphite, and to provide high strength. SOLUTION: In the composite material of iron or iron-base alloy and graphite, fine graphite is contained by 30 to 70 vol.% in a matrix of iron or iron-base alloy and the graphite is uniformly dispersed. This composite material can be produced by adding a carbon powder by 30 to 70 vol.% to an iron or iron- base alloy powder, milling the resultant powder mixture, and carrying out sintering. A ball mill is used at the time of milling. Further, a powder of stainless steel is used as the iron-base alloy powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高温で使用され
るガラス成形用モールド材や高温摺動材等に用いられる
鉄と黒鉛との、又は鉄合金と黒鉛との複合材料およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material of iron and graphite, or an iron alloy and graphite, and a method for producing the same, which is used for a molding material for glass molding or a high-temperature sliding material used at a high temperature. .

【0002】[0002]

【従来の技術】従来のガラス成形用モールドには主に鋳
鉄を使用しているが、ガラスの濡れ性や離型性に問題が
あり、黒鉛量を増加させる必要がある。しかし、鋳鉄材
では黒鉛量を10〜15体積%程度までのものしか製造
できない。鋳鉄粉と黒鉛粉を混合し、成形・焼結して黒
鉛量が30体積%あるような材料は、強度が低く、かつ
表面が粗いため使用できない。そこで、鋳鉄表面に鉱油
を塗り加熱して炭化させたり、すすを付着させたりして
離型性が良くなるようにしている。
2. Description of the Related Art Conventionally, cast iron is mainly used in a glass molding mold. However, there is a problem in glass wettability and mold releasability, and it is necessary to increase the amount of graphite. However, cast iron materials can only be manufactured with a graphite content of up to about 10 to 15% by volume. A material in which cast iron powder and graphite powder are mixed, molded and sintered to have a graphite content of 30% by volume cannot be used because the strength is low and the surface is rough. In view of this, the surface of the cast iron is coated with mineral oil and heated to carbonize or soot is adhered to improve the releasability.

【0003】また別に、従来用いられている高温用の摺
動材料は、銅合金粉末、アルミ合金粉末、鉄合金粉末等
に黒鉛粒子または黒鉛粉末を混合し、加圧成形後に焼結
し、あるいは焼結後に圧延等を行い、摺動性がよい複合
材料を作製している。
[0003] Separately, conventionally used sliding materials for high temperature use include graphite particles or graphite powder mixed with copper alloy powder, aluminum alloy powder, iron alloy powder or the like, and then sintered after pressure molding. After sintering, rolling and the like are performed to produce a composite material having good slidability.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述した従来
の技術の前者は、すすを付着させたり、鉱油を炭化させ
たりするために、作業環境が悪くなる、均一に煤が付着
しない、人手が係る、といったような問題がある。ま
た、後者では、空孔が多く、強度上の問題から30体積
%前後しか黒鉛を添加できず、黒鉛量が多いものは低強
度であり、より摺動性および耐摩耗性の良い、強度の大
きいものが要求されている。このようなことから、この
発明は、高割合で黒鉛を含有し、かつ黒鉛が適切に分散
した高強度な複合材料を提供することを目的とする。
However, in the former of the above-mentioned prior art, the working environment is deteriorated because soot is attached or mineral oil is carbonized, soot is not uniformly attached, and manual operation is difficult. There is such a problem. Further, in the latter, there are many pores, and graphite can be added only at about 30% by volume due to a problem in strength, and those having a large amount of graphite have low strength, have better slidability and abrasion resistance, and have high strength. Large things are required. In view of the above, an object of the present invention is to provide a high-strength composite material containing graphite at a high ratio and appropriately dispersing graphite.

【0005】[0005]

【課題を解決するための手段】本発明の鉄又は鉄合金と
黒鉛の複合材料は、鉄又は鉄合金の基地中に微細な黒鉛
を30〜70体積%含有し、且つその黒鉛が一様に分散
していることを特徴とする(請求項1)。
The composite material of iron or iron alloy and graphite of the present invention contains 30 to 70% by volume of fine graphite in the matrix of iron or iron alloy, and the graphite is uniformly dispersed. It is dispersed (claim 1).

【0006】この手段で、微細な黒鉛を30〜70体積
%含有させたことは、黒鉛が30体積%未満のものは、
従来の黒鉛含有材料と黒鉛含有量、離型性や耐摩耗性に
おいてあまり差異がないが、黒鉛が30〜70体積%の
ものは優れた離型性や耐摩耗性を呈し、黒鉛が70体積
%を越えると基地中に一様に分散したものとなりにく
く、脆弱なものになるからである。この手段では、基地
の鉄又は鉄合金中に微細な黒鉛が多量に分散しているか
ら、ガラス成形用モールドに用いると、すすを付着させ
たり鉱油を塗布し炭化させたりしないでも、そのまま使
用して離型性がよいものとすることができ、また、高温
摺動材に使用して摺動性が優れ耐摩耗性がよいものとす
ることができる。
[0006] The fact that fine graphite is contained in an amount of 30 to 70% by volume by this means means that graphite having less than 30% by volume is
Although there is not much difference in graphite content, releasability, and abrasion resistance from conventional graphite-containing materials, those containing 30 to 70% by volume of graphite exhibit excellent releasability and abrasion resistance, and 70% by volume of graphite. %, It is difficult for the base to be uniformly dispersed in the base, and the base is fragile. In this method, a large amount of fine graphite is dispersed in the iron or iron alloy of the base, so if it is used for a glass forming mold, it can be used as it is without attaching soot or applying mineral oil to carbonize it. In addition, it can be used as a high-temperature sliding material to have excellent slidability and good wear resistance.

【0007】このような複合材料をガラス成形用モール
ドに適用する場合には、実用的には鉄又は鉄合金の基地
中の微細な黒鉛の大きさを100μm以下、より好まし
くは50μm以下とするのがよく、高温摺動材料に適用
する場合には100μmをある程度越えても問題はな
い。また、ガラス成形用モールドに適用する場合、黒鉛
の量は30〜70体積%、より好ましくは30〜50体
積%とするのがよい。ガラス成形用モールドは十分な強
度を必要とし、更に耐久性も要求されるから、前記微細
な黒鉛が100μmを越えると強度が低いものとなり易
く、また、黒鉛の量が70体積%を越えると強度が低い
ものとなり易いとともに耐久性が低下するからである。
When such a composite material is applied to a glass molding mold, the size of fine graphite in the matrix of iron or iron alloy is practically 100 μm or less, more preferably 50 μm or less. When applied to a high-temperature sliding material, there is no problem even if it exceeds 100 μm to some extent. When applied to a glass molding mold, the amount of graphite is preferably 30 to 70% by volume, more preferably 30 to 50% by volume. Since the glass molding mold requires sufficient strength and also requires durability, if the fine graphite exceeds 100 μm, the strength tends to be low, and if the amount of graphite exceeds 70% by volume, the strength is low. Is likely to be low, and the durability is reduced.

【0008】この発明の鉄又は鉄合金と黒鉛の複合材料
の製造方法は、鉄又は鉄合金粉末に炭素粉末を30〜7
0体積%添加したものを摩砕した後、焼結することを特
徴とする(請求項2)。
The method for producing a composite material of iron or iron alloy and graphite according to the present invention is characterized in that carbon powder is added to iron or iron alloy powder in an amount of 30 to 7%.
It is characterized in that after adding 0% by volume, the material is ground and then sintered (claim 2).

【0009】この手段では、黒鉛粉末を用いないで炭素
粉末を用いることにより、摩砕する際に、潤滑性のよい
黒鉛粉末よりも潤滑性の悪い炭素粉末の作用により、摩
砕される鉄または鉄合金粉末と炭素粉末が摩砕する側と
の間で滑りにくく、摩砕能率が良くなる。鉄又は鉄合金
粉末に炭素粉末を添加したものを摩砕することにより、
粉砕及び混合が進行して微細な鉄又は鉄合金粉末粒子の
表面に微細化した炭素粉末が膜状に被着する。これを焼
結処理すると、通常の焼結と同じように加圧成形したと
きにマトリックス粉末粒子が接触し、加熱により一体化
し、その間にあった微細な炭素粉末が鉄の触媒作用によ
り黒鉛化すると共に幾らかがFe組織内にCとして進入
しする。そして冷却によりFe組織内に進入していたC
が黒鉛となって析出する。この析出した黒鉛は焼結体内
に空孔がある時は空孔を埋める。焼結体としては、基地
の鉄又は鉄合金中に微細な黒鉛が一様に分散した状態の
ものとなる。マトリックスを鉄又は鉄合金としたのは、
高強度であると共に前述の黒鉛化作用を得るためであ
る。マトリックスを鉄合金とする場合、使用する目的に
合った、例えば高温における耐食性、耐酸化性等に優れ
た鉄合金を選択使用できる。
According to this means, the carbon powder is used without using the graphite powder, and when the powder is ground, the action of the carbon powder having less lubricity than that of the graphite powder having good lubricity causes the iron or iron to be ground. It is hard to slip between the iron alloy powder and the side where the carbon powder is ground, and the grinding efficiency is improved. By grinding iron or iron alloy powder with carbon powder added,
As the pulverization and mixing proceed, the finely divided carbon powder adheres to the surface of the fine iron or iron alloy powder particles in a film form. When this is subjected to sintering, the matrix powder particles come into contact with each other when pressed and formed as in normal sintering, and are integrated by heating, and the fine carbon powder between them is graphitized by the catalytic action of iron and Some enter C in the Fe structure. Then, C that has entered the Fe structure by cooling
Precipitates as graphite. The precipitated graphite fills the pores when there are pores in the sintered body. The sintered body has a state in which fine graphite is uniformly dispersed in the iron or iron alloy of the matrix. The matrix was made of iron or iron alloy,
This is because it has high strength and obtains the above-described graphitizing action. When the matrix is made of an iron alloy, it is possible to select and use an iron alloy suitable for the purpose of use, for example, having excellent corrosion resistance and oxidation resistance at high temperatures.

【0010】前記製造方法において、前記摩砕に、ボー
ルミルを用いるのがよい(請求項3)。ボールミルには
振動ボールミル、高エネルギーボールミル等があるが、
いずれでも使用できる。原材料に黒鉛粉末を用いないで
炭素粉末を用いたことにより、鋼球と鉄又は鉄合金との
間の潤滑性が悪いため、摩砕作用が大きく、摩砕所要時
間を短縮できる。
In the manufacturing method, it is preferable that a ball mill is used for the grinding. Ball mills include vibration ball mills, high energy ball mills, etc.
Any can be used. By using carbon powder instead of graphite powder as a raw material, lubrication between the steel ball and iron or iron alloy is poor, so that the grinding action is large and the time required for grinding can be shortened.

【0011】前記製造方法において、前記鉄合金粉末は
ステンレス鋼の粉末とするのがよい(請求項4)。マト
リックスがステンレス鋼であるから、耐蝕性や高温での
耐酸化性に優れ、且つ焼結の際に硬質な炭化物を生成す
るから耐摩耗性も優れたものとなる。
In the manufacturing method, the iron alloy powder is preferably a stainless steel powder. Since the matrix is stainless steel, it has excellent corrosion resistance and oxidation resistance at high temperatures, and also has excellent wear resistance because it produces hard carbide during sintering.

【0012】[0012]

【発明の実施の形態】この発明の第1の実施の形態は、
鉄と黒鉛の複合材料であり、その製造方法について説明
する。100メッシュの篩を通り抜ける純鉄粉末(粒径
が150μm以下)に平均粒径420Åのカーボンブラ
ックを、夫々30、40、50、60体積%添加したも
のを準備し、各々を振動ボールミル装置により、20時
間摩砕処理し、純鉄粉末の粒径が20μm以下になるよ
うにした。得られた混合粉末は純鉄粉末の各粒子の表面
により微細な炭素粉末が膜状に付着している。この混合
粉末を、夫々黒鉛型内に充填して高周波加熱コイルによ
り1373Kまで加熱後、加圧成形して複合材とした。
加圧力は150kg/cm2 とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is as follows.
It is a composite material of iron and graphite, and its manufacturing method will be described. Pure iron powder (having a particle size of 150 μm or less) passing through a 100-mesh sieve and carbon black having an average particle size of 420 ° added at 30, 40, 50, and 60% by volume, respectively, were prepared. Milling was performed for 20 hours so that the particle size of the pure iron powder was 20 μm or less. In the obtained mixed powder, fine carbon powder adheres to the surface of each particle of the pure iron powder in a film form. Each of the mixed powders was filled in a graphite mold, heated to 1373 K by a high-frequency heating coil, and then press-formed to obtain a composite material.
The pressure was 150 kg / cm 2 .

【0013】この複合材の組織は、フェライトと黒鉛で
ある。フェライトは元の純鉄粉末の粒同士が部分的に繋
がって一体化しており、黒鉛は微細な炭素粉末が黒鉛化
して成長したものでフェライトが形成している空間部分
を埋める形で存在している。カーボンブラックを30体
積%添加した黒鉛が30体積%の鉄と黒鉛の複合材の顕
微鏡組織写真を図1(a)、(b)に示す。これによる
と白く見える基地のフェライト中に黒く見える微細な黒
鉛が一様に分散していることが分かる。
The structure of the composite material is ferrite and graphite. Ferrite is formed by connecting the grains of the original pure iron powder partially to each other, and graphite is a fine carbon powder grown by graphitization and filling the space where the ferrite is formed. I have. FIGS. 1A and 1B show micrographs of a composite material of iron and graphite containing 30% by volume of graphite to which 30% by volume of carbon black is added. According to this, it can be seen that fine graphite that looks black is uniformly dispersed in the ferrite of the base that looks white.

【0014】第2の実施の形態は、鉄合金粉末として1
00メッシュの篩を通り抜けるステンレス(JIS S
US304)粉末に、平均粒径420Åのカーボンブラ
ックを、夫々30、40、50体積%添加したものを準
備し、各々を振動ボールミル装置により、20時間摩砕
処理し、ステンレス粉末の粒径が20μm以下になるよ
うにした。得られた混合粉末は、第1の実施の形態と同
様にステンレス粉末の各粒子の表面により微細な炭素粉
末が膜状に付着している。この混合粉末を、夫々黒鉛型
内に充填して高周波加熱コイルにより1373Kまで加
熱後、150kg/cm2 で加圧成形して複合材とした。こ
の複合材の組織は、炭化物とオーステナイトと黒鉛であ
る。
In the second embodiment, 1 is used as the iron alloy powder.
Stainless steel passing through a 00 mesh sieve (JIS S
US304) A powder obtained by adding carbon black having an average particle diameter of 420 ° to each of 30, 40, and 50% by volume to a powder is prepared, and each of them is ground by a vibrating ball mill for 20 hours to obtain a stainless steel powder having a particle diameter of 20 μm. The following was made. In the obtained mixed powder, fine carbon powder adheres to the surface of each particle of the stainless steel powder in a film-like manner as in the first embodiment. Each of the mixed powders was filled in a graphite mold, heated to 1373 K by a high-frequency heating coil, and then pressed at 150 kg / cm 2 to obtain a composite material. The structure of the composite is carbide, austenite, and graphite.

【0015】第1の実施の形態の純鉄−黒鉛複合材は、
従来の鋳鉄材よりも黒鉛量が多く溶融ガラスの濡れ性や
離型性に優れ、ガラス成形用型材として用いることがで
きる。そして複合材の組織中の黒鉛の粒子が微細で均一
に分散しているため表面は滑らかであり、成形したガラ
ス表面に複合材の組織による模様が転写されるというこ
ともない。
The pure iron-graphite composite material of the first embodiment is:
It has a greater amount of graphite than conventional cast iron materials, and is excellent in wettability and mold releasability of molten glass, and can be used as a glass molding die. Since the graphite particles in the structure of the composite material are finely and uniformly dispersed, the surface is smooth, and the pattern due to the structure of the composite material is not transferred to the surface of the formed glass.

【0016】第1、第2の実施の形態の複合材、及び比
較材としての黒鉛の曲げ強さを表1に示す。従来は、高
Cの複合材を製作できなかったが、表1に見られるよう
に高強度な高C複合材を製作できるようになった。図2
は表1の純鉄−黒鉛のC量と曲げ強さの関係をグラフに
したものである。
Table 1 shows the flexural strengths of the composite materials of the first and second embodiments and graphite as a comparative material. Conventionally, a high-C composite material could not be manufactured, but as shown in Table 1, a high-strength high-C composite material can now be manufactured. FIG.
Is a graph showing the relationship between the C content of pure iron-graphite and the bending strength in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】第1、第2の実施の形態の複合材、及び比
較材としての黒鉛の耐摩耗性を摩耗試験機(大越式迅速
摩耗試験機)により評価した結果を表2に示す。相手材
には機械構造用炭素鋼(JIS S45C、組成重量%
C:O.45、Si:0.25、Mn:0.75、
P:0.03以下、S:0.035以下、残部Fe及び
不可避成分)を使用し、摩擦速度:0.65m/s、荷
重:6.5kgf、摩擦距離200m、無潤滑、室温の
条件で試験を行った。比較材の黒鉛には等方性高密度黒
鉛(かさ密度:1.77Mg/m3 、ショア硬さ:6
5、曲げ強さ47MPa)を用いた。表2に見られるよ
うに、純鉄−黒鉛複合材では黒鉛含有量が40体積%以
上になれば、黒鉛並みの耐摩耗性を有し、SUS304
−黒鉛複合材では複合体中に硬質な炭化物が生成しいる
ため良好な耐摩耗性を有している。図3は表2のSUS
304−黒鉛のC量と比摩耗量の関係をグラフにしたも
のである。
Table 2 shows the results of evaluating the wear resistance of the composite materials of the first and second embodiments and the graphite as a comparative material using a wear tester (Ogoshi type rapid wear tester). The opposite material is carbon steel for machine structure (JIS S45C, composition weight%
C: O. 45, Si: 0.25, Mn: 0.75,
P: 0.03 or less, S: 0.035 or less, balance Fe and unavoidable components), friction speed: 0.65 m / s, load: 6.5 kgf, friction distance 200 m, no lubrication, room temperature The test was performed. The comparative graphite was isotropic high-density graphite (bulk density: 1.77 Mg / m 3 , Shore hardness: 6)
5, a bending strength of 47 MPa) was used. As can be seen in Table 2, when the graphite content of the pure iron-graphite composite material becomes 40% by volume or more, it has the same abrasion resistance as graphite and SUS304.
-The graphite composite material has good wear resistance because hard carbide is not formed in the composite material. Figure 3 shows the SUS of Table 2
It is a graph of the relationship between the C content of 304-graphite and the specific wear.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】請求項1に記載の発明は、基地の鉄又は
鉄合金中に微細な黒鉛が多量に分散しているから、ガラ
ス成形用モールドに用いると、すすを付着させたり鉱油
を塗布し炭化させたりしないでも、そのまま使用して離
型性がよいものとすることができ、また、高温摺動材に
使用して摺動性が優れ耐摩耗性がよいものとすることが
できる効果を奏する。請求項2に記載の発明は、黒鉛粉
末を用いないで炭素粉末を用いることにより、摩砕能率
が良くなるから、製造上有利であり、マトリックスに鉄
又は鉄合金粉末を用いることにより焼結時に炭素粉末が
黒鉛化して目的の黒鉛を含むものとなると共に基地とし
ても高強度であるから複合材の強度を確保でき、Fe組
織内から析出する黒鉛が空孔を埋めてより緻密な組織と
なる効果を奏し、鉄合金粉末を用いるときは上記に加
え、鉄合金の持つ高温時における耐食性、耐酸化性等の
特性を持たせることができる効果を奏する。請求項3に
記載の発明は、摩砕作用が大きく、摩砕所要時間を短縮
できる効果を奏する。請求項4に記載の発明は、耐蝕性
や高温での耐酸化性に優れ、且つ焼結の際に硬質な炭化
物を生成するから耐摩耗性も優れたものとなる効果を奏
する。
According to the first aspect of the present invention, since a large amount of fine graphite is dispersed in the iron or iron alloy of the base, when used in a glass molding mold, soot is attached or mineral oil is applied. Even if it is not carbonized, it can be used as it is to have good releasability, and it can be used for high-temperature sliding material to have excellent slidability and good wear resistance. To play. The invention according to claim 2 is advantageous in production because the grinding efficiency is improved by using the carbon powder without using the graphite powder, and is advantageous in sintering by using iron or iron alloy powder for the matrix. The carbon powder becomes graphitized and contains the target graphite, and also has a high strength as a matrix, so that the strength of the composite material can be ensured, and the graphite precipitated from the Fe structure fills the pores and becomes a denser structure. When an iron alloy powder is used, in addition to the above, there is an effect that the iron alloy can have properties such as corrosion resistance and oxidation resistance at high temperatures. The invention described in claim 3 has an effect that the grinding action is large and the time required for grinding can be shortened. The invention described in claim 4 has an effect of being excellent in corrosion resistance and oxidation resistance at a high temperature, and also has excellent wear resistance since a hard carbide is generated during sintering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態の純鉄−30体積
%黒鉛の顕微鏡組織写真を示し、(a)は100倍、
(b)は400倍のものである。
FIG. 1 shows a microstructure photograph of pure iron-30% by volume graphite according to a first embodiment of the present invention.
(B) is 400 times.

【図2】この発明の第1の実施の形態の純鉄−黒鉛複合
材のC量と曲げ強さの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the C content and the bending strength of the pure iron-graphite composite according to the first embodiment of the present invention.

【図3】この発明の第1の実施の形態の純鉄−黒鉛複合
材のC量と比摩耗量の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a C amount and a specific wear amount of the pure iron-graphite composite material according to the first embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鉄又は鉄合金の基地中に微細な黒鉛を3
0〜70体積%含有し、且つその黒鉛が一様に分散して
いることを特徴とする鉄又は鉄合金と黒鉛の複合材料。
1. Fine graphite is placed in an iron or iron alloy matrix.
A composite material of iron or an iron alloy and graphite, wherein the composite material contains 0 to 70% by volume and the graphite is uniformly dispersed.
【請求項2】 鉄又は鉄合金粉末に炭素粉末を30〜7
0体積%添加したものを摩砕した後、焼結することを特
徴とする鉄又は鉄合金と黒鉛の複合材料の製造方法。
2. An iron or iron alloy powder containing 30 to 7 carbon powders.
A method for producing a composite material of iron or an iron alloy and graphite, which comprises crushing and sintering 0% by volume added.
【請求項3】 請求項2に記載の鉄又は鉄合金と黒鉛の
複合材料の製造方法において、前記摩砕に、ボールミル
を用いることを特徴とする鉄又は鉄合金と黒鉛の複合材
料の製造方法。
3. The method for producing a composite material of iron or iron alloy and graphite according to claim 2, wherein a ball mill is used for said grinding. .
【請求項4】 請求項2、又は請求項3に記載の鉄又は
鉄合金と黒鉛の複合材料の製造方法において、前記鉄合
金粉末がステンレス鋼の粉末であることを特徴とする鉄
合金と黒鉛の複合材料の製造方法。
4. The method for producing a composite material of iron or an iron alloy and graphite according to claim 2 or 3, wherein the iron alloy powder is a stainless steel powder. Of manufacturing a composite material.
JP27382797A 1997-09-19 1997-09-19 Composite material of iron or iron-base alloy and graphite, and its production Pending JPH1192894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27382797A JPH1192894A (en) 1997-09-19 1997-09-19 Composite material of iron or iron-base alloy and graphite, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27382797A JPH1192894A (en) 1997-09-19 1997-09-19 Composite material of iron or iron-base alloy and graphite, and its production

Publications (1)

Publication Number Publication Date
JPH1192894A true JPH1192894A (en) 1999-04-06

Family

ID=17533110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27382797A Pending JPH1192894A (en) 1997-09-19 1997-09-19 Composite material of iron or iron-base alloy and graphite, and its production

Country Status (1)

Country Link
JP (1) JPH1192894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277712A (en) * 2006-03-14 2007-10-25 Kobe Steel Ltd Mixed powder for powder metallurgy, green compact thereof and sintered compact
JP2016069734A (en) * 2014-09-30 2016-05-09 日本ピストンリング株式会社 Iron-based sintered alloy material for sliding member and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277712A (en) * 2006-03-14 2007-10-25 Kobe Steel Ltd Mixed powder for powder metallurgy, green compact thereof and sintered compact
JP2016069734A (en) * 2014-09-30 2016-05-09 日本ピストンリング株式会社 Iron-based sintered alloy material for sliding member and method for producing the same

Similar Documents

Publication Publication Date Title
JP2687125B2 (en) Sintered metal compact used for engine valve parts and its manufacturing method.
CN101530918B (en) Method for preparing composite component with strengthened TiB based on titanium alloy via powder metallurgy method
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
KR102350989B1 (en) A method for producing a sintered component and a sintered component
CN114807725B (en) High-entropy alloy-based nano superhard composite material enhanced by inlaid particles and preparation method thereof
CN109139755B (en) Preparation method of iron-copper-based composite friction material
CN110832049B (en) Sintered friction material and method for producing sintered friction material
JP2006063400A (en) Aluminum-based composite material
Kandavel et al. Experimental investigations on the microstructure and mechanical properties of sinter-forged Cu and Mo-alloyed low alloy steels
JP2009197270A (en) Iron-based alloy powder to be sintered
CN106811701A (en) A kind of preparation method of high-toughness heat-resistant VC steel bonded carbide
CN106811655A (en) A kind of preparation method of tough high abrasion VC steel bonded carbide high
JPH1192894A (en) Composite material of iron or iron-base alloy and graphite, and its production
JP5997075B2 (en) Alloy powder for blending sintered alloy and method for producing sintered alloy using the same
Chagnon et al. Effect of compaction temperature on sintered properties of high density P/M materials
JP4051167B2 (en) Wear-resistant iron-based sintered alloy
CN109136723B (en) Self-propagating synthesis and application of iron-based composite powder
JPH09235646A (en) Sintered sliding member and its production
CN106591674A (en) Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
CN106811654A (en) A kind of preparation method of tough ultra-high manganese steel base VC steel bonded carbide high
CN106811656A (en) A kind of preparation method of tough modified high manganese steel base VC steel bonded carbide high
Chen et al. Microstructure and Property of Sintered Fe-2Cu-0.8 C-0.6 Mo-2W Materials Prepared From Prediffused Powders
US20070292301A1 (en) Making Sintered, Iron-Based Alloy Parts By Using Boron-Containing Master Alloys
JPS61174354A (en) Manufacture of copper-containing sintered alloy excellent in high-temperature wear resistance
JP2790807B2 (en) Composite piston