JPH1192839A - Recovery of metal tin from sludge containing tin oxide - Google Patents

Recovery of metal tin from sludge containing tin oxide

Info

Publication number
JPH1192839A
JPH1192839A JP25518597A JP25518597A JPH1192839A JP H1192839 A JPH1192839 A JP H1192839A JP 25518597 A JP25518597 A JP 25518597A JP 25518597 A JP25518597 A JP 25518597A JP H1192839 A JPH1192839 A JP H1192839A
Authority
JP
Japan
Prior art keywords
sludge
metal
sno
reducing agent
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25518597A
Other languages
Japanese (ja)
Inventor
Kenji Osumi
研治 大隅
Yoshiaki Narushige
芳昭 成重
Kazuhiro Oe
和宏 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Metal Products Co Ltd filed Critical Kobe Steel Ltd
Priority to JP25518597A priority Critical patent/JPH1192839A/en
Publication of JPH1192839A publication Critical patent/JPH1192839A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently recovering metal Sn from sludge contg. the oxide of Sn removed by an acidic soln. from Sn plating metallic materials. SOLUTION: This method consists in recovering the metal Sn from the sludge contg. the SnO2 removed by the acidic soln. from the Sn plating metallic materials. On this method, the moisture content in the sludge contg. the SnO2 is confined to <=10% and such sludge 2 is brought into contact with massive carbon based solid reducing agents 3 in a phase state. The sludge is then heated to >=700 deg.C in a furnace 1 to reduce the SnO2 in the sludge to the metal Sn 4 and, thereafter, the reduced metal Sn is recovered from the sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、錫(Sn)めっき金属
材を化学的に処理して生じた、Snの酸化物を含むスラッ
ジから金属Snを回収する方法に関し、特に、電子材料な
どのSnめっき銅および銅合金材を化学的に処理して生じ
たSnの酸化物を含むスラッジから金属Snを回収する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering metal Sn from sludge containing Sn oxide, which is produced by chemically treating a tin (Sn) plated metal material, and more particularly to a method for recovering metal material such as electronic material. The present invention relates to a method for recovering metallic Sn from sludge containing Sn oxide generated by chemically treating Sn-plated copper and a copper alloy material.

【0002】[0002]

【従来の技術】Snめっきは、母材金属の耐食性やハンダ
付け性を向上させる目的などで、銅および銅合金材など
の表面処理に汎用されている。その一方で、Snめっきを
施した金属、例えば、Snめっき銅および銅合金材の廃材
をリサイクルする場合、Snめっきがついたままで溶解原
料として用いると、得られる溶銅中にSnが混入し、この
Snは不純物として、銅および銅合金材の製品規格から外
れた成分不良を生じる。そして、一旦溶銅中に混入した
Snを、溶解中の精錬などにより除去することは、非常な
困難を伴い、精錬効率の点からも非現実的である。した
がって、Snめっき金属の廃材をリサイクルする場合、Sn
めっきを剥離乃至分離した上で、母材金属として再利用
することが必要である。
2. Description of the Related Art Sn plating is widely used for surface treatment of copper and copper alloy materials for the purpose of improving the corrosion resistance and solderability of a base metal. On the other hand, when refining Sn-plated metal, for example, waste material of Sn-plated copper and copper alloy material, when used as a melting raw material with Sn plating attached, Sn is mixed into the obtained molten copper, this
Sn, as an impurity, causes a component defect out of the product standard of copper and copper alloy materials. And once mixed into the molten copper
It is extremely difficult to remove Sn by refining during melting or the like, and it is impractical from the point of refining efficiency. Therefore, when recycling waste material of Sn-plated metal,
It is necessary that the plating be separated or separated and then reused as the base metal.

【0003】このために、Snめっきを母材金属から分離
する場合、通常は、Snめっき金属材を弗酸や塩酸或いは
硝酸などの強酸酸性溶液に浸漬するなどして化学的に処
理し、これらの酸とSnめっきを反応させ、Snを酸化物(S
nO2)として剥離除去することが一般的である。ただ、剥
離除去されたSnの酸化物は、スラッジとして前記強酸酸
性溶液槽(Snめっき剥離処理槽)の底部に沈降し、蓄積
するため、Snの剥離工程の妨げとなり、一定期間を於い
て、このSnの酸化物を含むスラッジを排出する必要があ
る。そして、この排出されたスラッジの処理が新たな問
題となる。
For this reason, when the Sn plating is separated from the base metal, usually, the Sn plating metal material is chemically treated by dipping it in a strong acid solution such as hydrofluoric acid, hydrochloric acid or nitric acid. Acid and Sn plating to convert Sn into oxide (S
It is general to peel off and remove as nO 2 ). However, the stripped and removed Sn oxide settles and accumulates at the bottom of the strong acid acidic solution tank (Sn plating stripping treatment tank) as sludge, which hinders the Sn stripping process, and after a certain period of time, It is necessary to discharge sludge containing this Sn oxide. The treatment of the discharged sludge is a new problem.

【0004】従来この排出されたスラッジは、スラッジ
に含まれるSnが回収されるなど、有効利用やリサイクル
されることなく、単なる産業廃棄物として、埋め立て等
によりコストをかけて投棄乃至処理されていた。
Conventionally, the discharged sludge has not been effectively used or recycled, for example, by recovering Sn contained in the sludge, and has been dumped or treated as a mere industrial waste at a landfill or the like at a high cost. .

【0005】[0005]

【発明が解決しようとする課題】しかし、これら従来の
処理では、コストがかかる上に環境保全上も問題があ
り、しかもSnを資源としての再利用ができていないとい
う根本的な問題がある。そして、資源として再利用する
ためには、Snの酸化物を含むスラッジから金属Snを効率
的に回収する方法がどうしても必要になる。しかも、金
属Snを回収する場合は、当然、回収された金属Snが再利
用できる純度 (具体的には90% 以上の純度)でなければ
ならず、また金属Snの回収率が高くなければ (具体的に
は90% 以上の回収率) 回収方法として工業的に成立しえ
ない。言い換えると、この技術分野では、Snの酸化物を
含むスラッジから金属Snを前記のようなレベルで効率的
に回収する方法が無かったために、従来では産業廃棄物
としてしか処理できなかったものである。
However, these conventional processes have a fundamental problem that they are costly and have a problem in terms of environmental conservation, and that Sn cannot be reused as a resource. Then, in order to reuse as resources, a method of efficiently recovering metal Sn from sludge containing oxides of Sn is absolutely necessary. Moreover, when recovering the metal Sn, the recovered metal Sn must be of a purity that can be reused (specifically, a purity of 90% or more), and if the recovery rate of the metal Sn is not high ( (Specifically, a recovery rate of 90% or more)) A recovery method cannot be industrially established. In other words, in this technical field, there has been no method for efficiently recovering metal Sn from the sludge containing the oxide of Sn at the above-described level, so that conventionally, it could only be treated as industrial waste. .

【0006】本発明はこれら従来技術の問題点に鑑み、
Snめっき金属材を化学的に処理して生じたSnの酸化物
(以下単にSnO2と言う) を含むスラッジから、金属Snを
効率的に回収する方法を提供することを目的とする。
The present invention has been made in view of these problems of the prior art,
Sn oxide generated by chemically treating Sn plated metal material
It is an object of the present invention to provide a method for efficiently recovering metal Sn from sludge containing (hereinafter simply referred to as SnO 2 ).

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る方法は、Snめっき金属材を、酸性溶
液などで化学的に処理して生じた、SnO2を含むスラッジ
から金属Snを回収する方法であって、SnO2を含むスラッ
ジと塊状のカーボン系固体還元剤を層状態で接触させ、
好ましくは、スラッジ上に塊状のカーボン系固体還元剤
を載置して接触させ、これを大気乃至酸化雰囲気下で、
700 ℃以上に加熱してスラッジ中のSnO2を金属Snに還元
した後、この還元して得られた溶融金属Snを、溶融状態
で若しくは固化した後に、スラッジより分離することを
要旨とする。
Means for Solving the Problems To achieve the above object, a method according to the present invention provides a method for treating a Sn-plated metal material from a sludge containing SnO 2 which is produced by chemically treating the material with an acidic solution or the like. A method of recovering metal Sn, in which a sludge containing SnO 2 and a massive carbon-based solid reducing agent are brought into contact in a layer state,
Preferably, a massive carbon-based solid reducing agent is placed on and contacted with the sludge, and is contacted under air or oxidizing atmosphere.
The gist of the present invention is to reduce the SnO 2 in the sludge to metal Sn by heating to 700 ° C. or higher, and to separate the molten metal Sn obtained by the reduction in a molten state or after solidification from the sludge.

【0008】通常、Snの鉱石はSnO2を含む酸化鉱である
ため、Snの精錬は、基本的にこのSn酸化鉱を還元して行
われる。この還元反応は、コークスを還元剤として用
い、1400K 前後の温度で電気炉精錬を行い、生成した溶
融金属Snを比重差で分離し荒Snを得る。
Usually, Sn ore is an oxidized ore containing SnO 2, and therefore, the refining of Sn is basically performed by reducing this Sn oxidized ore. In this reduction reaction, coke is used as a reducing agent, electric furnace refining is performed at a temperature of about 1400 K, and the generated molten metal Sn is separated at a specific gravity difference to obtain rough Sn.

【0009】本発明においても、SnO2を含むスラッジ
を、還元剤を用い高温で還元反応させて、SnO2を金属Sn
とする点において、その原理は、前記Sn鉱石より金属Sn
を得る精錬方法と同じである。
In the present invention, the sludge containing SnO 2 is also subjected to a reduction reaction at a high temperature using a reducing agent to convert SnO 2 into metallic Sn.
In that respect, the principle is that the Sn
Is the same as the refining method for obtaining

【0010】しかし、一方で、本発明においては、Snめ
っき金属材から酸性溶液などで化学的に処理して生じた
SnO2を含むスラッジを対象にしており、前記Sn鉱石の精
錬方法とは対象が異なるため、具体的な還元方法が相違
するし、回収金属Snの回収率と純度を90% 以上の高いレ
ベルとするためには、独自の工夫が必要である。以下こ
の点について詳しく説明する。
However, on the other hand, in the present invention, it is generated by chemically treating a Sn-plated metal material with an acidic solution or the like.
Intended for sludge containing SnO 2, since the target is different from the refining process of the Sn ore, to specific reduction method is different, the recovery rate and purity of 90% or higher level of recovery metal Sn In order to do that, you need a unique twist. Hereinafter, this point will be described in detail.

【0011】まず、本発明では、溶融還元において、金
属Snの回収率を高くするためには、SnO2を含むスラッジ
の含水率はできるだけ低い方が好ましい。そして、この
ために、SnO2を含むスラッジの含水率が高い場合は、積
極的に脱水するのが好ましい。なお、本発明で言うスラ
ッジの含水率とは、スラッジ重量に対する、スラッジに
含まれる水分乃至めっき剥離液の含有率である。図2 に
SnO2を含むスラッジの含水率と金属Snとの回収率との関
係を示す。図2 は、Snめっき純Cu材より酸性溶液 (弗
酸、硝酸の混酸溶液) にて除去されたSnO2を含むスラッ
ジの含水率を意図的に変えて、各々黒鉛るつぼに500g投
入し、スラッジの表面をカーボン系固体還元剤である木
炭により、充分被覆し、これを1300℃に加熱して還元反
応を行い、得られた溶融金属Snを抽出し、抽出金属Sn重
量とスラッジ中のSnO2重量に対するから、金属Snとの回
収率を求めたものである。図2 から明らかな通り、スラ
ッジの含水率は金属Snの回収率に大きく影響している。
より具体的には、この図2 の例では、スラッジの含水率
が20% 以下であれば、80% 以上の回収率が得られ、スラ
ッジの含水率が10% 以下であれば、90% 以上の回収率が
得られるものの、スラッジの含水率の増加とともに、金
属Snの回収率は急激に低下してしまう。この理由は、ス
ラッジ中に水分が多量に存在すると、水分とカーボン系
固体還元剤から発生するCOとの反応が優先的に進行して
しまうため、SnO2を還元するカーボン系固体還元剤乃至
COの量が不足するからである。したがって、本発明では
90% 以上の金属Snの回収率を保証するためには、SnO2
含むスラッジの含水率はできるだけ低い方が良く、好ま
しくはスラッジの含水率を20% 以下、より好ましくはス
ラッジの含水率を10% 以下とする。SnO2を含むスラッジ
を脱水し、含水率を下げる方法は、特に制約は無く、公
知の遠心分離や加圧圧搾などの脱水機により、機械的に
行っても良く、また、ヒータや高温ガスによる加熱によ
り行っても良い。これらの脱水手段は、スラッジの粘性
などの物性やその他の条件により適宜選択される。
First, in the present invention, in the smelting reduction, in order to increase the recovery rate of metal Sn, the water content of the sludge containing SnO 2 is preferably as low as possible. For this reason, when the water content of the sludge containing SnO 2 is high, it is preferable to actively dehydrate the sludge. In addition, the water content of the sludge referred to in the present invention is the content of the water contained in the sludge or the plating stripping solution with respect to the weight of the sludge. Figure 2
4 shows the relationship between the water content of sludge containing SnO 2 and the recovery of metallic Sn. 2, Sn-plated pure Cu material from acidic solutions intentionally changing the water content of the sludge containing SnO 2 which is removed by (hydrofluoric acid, mixed acid solution of nitric acid), were each 500g charged into a graphite crucible, sludge Is sufficiently coated with charcoal, a carbon-based solid reducing agent, and heated to 1300 ° C. to perform a reduction reaction.The obtained molten metal Sn is extracted, and the extracted metal Sn weight and SnO 2 in the sludge are extracted. The recovery rate with metal Sn was determined based on the weight. As is clear from FIG. 2, the water content of the sludge has a great effect on the recovery of metallic Sn.
More specifically, in the example of FIG. 2, if the water content of the sludge is 20% or less, a recovery rate of 80% or more is obtained, and if the water content of the sludge is 10% or less, 90% or more. However, the recovery of metal Sn sharply decreases as the water content of the sludge increases. The reason is that if a large amount of water is present in the sludge, the reaction between water and CO generated from the carbon-based solid reducing agent proceeds preferentially, so that the carbon-based solid reducing agent that reduces SnO 2 or
This is because the amount of CO is insufficient. Therefore, in the present invention
In order to guarantee a recovery rate of metal Sn of 90% or more, the water content of the sludge containing SnO 2 is preferably as low as possible, preferably the water content of the sludge is 20% or less, more preferably the water content of the sludge. 10% or less. The method of dewatering the sludge containing SnO 2 and lowering the water content is not particularly limited, and may be performed mechanically by a known dehydrator such as centrifugal separation or pressure squeezing, or by a heater or a high-temperature gas. It may be performed by heating. These dehydrating means are appropriately selected depending on physical properties such as viscosity of sludge and other conditions.

【0012】次に、本発明では、この含水率を低下させ
たスラッジに対し、SnO2の還元反応を促進するために、
塊状の固体還元剤を層状態で接触させて、大気乃至酸素
や酸化剤を含む酸化雰囲気下で、還元することが必要で
ある。本発明で言う層状態とは、スラッジと塊状の固体
還元剤とが、個々の粒子が均一に混合した状態ではな
く、スラッジ層と塊状の固体還元剤層とが、互いに面同
士でマクロ的に接触している状態を言う。また、固体還
元剤の粒が細かい微粉ほど、還元反応は進みにくいの
で、固体還元剤の粒は大きい塊状とすることが必要であ
る。図3 に、スラッジとカーボン系固体還元剤との接触
状態と、金属Snとの回収率との関係を示す。図3 の横軸
に示すA は、黒鉛るつぼに、Snめっき純Cu材より酸性溶
液( 弗酸、硝酸の混酸溶液) にて除去されたSnO2を含む
スラッジを500g投入するとともに、カーボン系固体還元
剤である微粉の木炭を添加して、かつ微粉の木炭がスラ
ッジ中に均一に混合するように混ぜ合わせたものであ
る。これに対し、図3 の横軸に示すB は、黒鉛るつぼに
前記A と同じSnO2を含む加熱脱水スラッジ (含水率5%)
を投入するとともに、塊状の木炭をスラッジの表面に単
に載置して上層を木炭、下層をスラッジとして、スラッ
ジを木炭により充分被覆したものである。そして、これ
らを同じく1300℃に加熱して還元反応を行い、得られた
溶融金属Snを抽出し、この抽出金属Sn重量とスラッジ中
のSnO2重量とから、金属Snとの回収率を求めたものであ
る。図3 から明らかな通り、塊状の木炭をスラッジの表
面に単に載置したB では90% 以上の金属Snの回収率が得
られるものの、微粉の木炭をスラッジ中に均一に混合し
たA では、金属Snの回収率は殆ど0 % 程度でしかない。
Next, in the present invention, in order to promote the SnO 2 reduction reaction with respect to the sludge having a reduced water content,
It is necessary to bring a massive solid reducing agent into contact in a layer state and reduce it in the air or in an oxidizing atmosphere containing oxygen or an oxidizing agent. The layer state referred to in the present invention means that the sludge and the massive solid reducing agent are not in a state where individual particles are uniformly mixed, but the sludge layer and the massive solid reducing agent layer are macroscopically face to face with each other. The state of contact. Further, the finer the particles of the solid reducing agent are, the more difficult the reduction reaction will be. Therefore, it is necessary to make the particles of the solid reducing agent into a large lump. FIG. 3 shows the relationship between the state of contact between the sludge and the carbon-based solid reducing agent and the rate of recovery of metallic Sn. A shown on the horizontal axis of FIG. 3, a graphite crucible, the acidic solution from the Sn-plated pure Cu material sludge containing SnO 2 as well as 500g charged removed by (hydrofluoric acid, mixed acid solution of nitric acid), carbon-based solid Fine charcoal as a reducing agent is added and mixed so that the fine charcoal is uniformly mixed in the sludge. On the other hand, B shown on the horizontal axis of FIG. 3 is a heated dewatered sludge containing the same SnO 2 as A in the graphite crucible (water content 5%).
And the lump of charcoal is simply placed on the surface of the sludge, and the upper layer is made of charcoal and the lower layer is made of sludge, and the sludge is sufficiently covered with charcoal. Then, these were also heated to 1300 ° C. to perform a reduction reaction, and the obtained molten metal Sn was extracted.From the extracted metal Sn weight and the SnO 2 weight in the sludge, the recovery of metal Sn was determined. Things. As is evident from Fig. 3, although the collection of metal Sn was more than 90% in B where lump charcoal was simply placed on the surface of the sludge, in A where pulverized charcoal was uniformly mixed in the sludge, The recovery rate of Sn is only about 0%.

【0013】還元反応の常識からすれば、スラッジと固
体還元剤との接触表面積を大きくするため、固体還元剤
を微粉化し、かつ均一に混合した方が反応効率が良いは
ずである。にもかかわらず、本発明が対象とする、Snめ
っき金属材から酸性溶液にて除去されたSnO2を含むスラ
ッジでは、むしろ、スラッジと塊状の固体還元剤とを層
状態で接触させた方が金属Snの回収率が良い。この理由
は、SnO2の還元反応が、カーボン系の固体還元剤の直接
還元により生じるのではなく、カーボン系の固体還元剤
と大気中の酸素との反応により生じる一酸化炭素によっ
て還元されるものと考えられる。したがって、固体還元
剤を微粉化し、かつ均一に混合した場合、確かに接触効
率は良くなるものの、逆にスラッジ層中に混合されたカ
ーボン系の固体還元剤の回りには大気が少なくなる。こ
の結果、前記大気中の酸素との反応により生じる一酸化
炭素自体が少なくなり、この一酸化炭素によるSnO2の還
元反応が起こらず、カーボン系の固体還元剤による直接
還元の反応しか生じなくなる。この固体還元剤による直
接還元の反応速度は遅く、かつ、微粉化した固体還元剤
の近傍でしか生じないため、得られる金属Snも少なく、
またカーボン系の固体還元剤粉の大きさに応じた微粉状
態で還元溶融Snが生成する。そして、この微粉状の金属
Snは、量的にも少なく、かつ大きさも比重も小さいた
め、スラッジ中に残存したままとなり、スラッジの底部
に密度差により落下集合しないため、スラッジとの分離
効率乃至回収効率が低下するものと考えられる。
From the common sense of the reduction reaction, the reaction efficiency should be better if the solid reducing agent is finely divided and uniformly mixed in order to increase the contact surface area between the sludge and the solid reducing agent. Nevertheless, in the sludge containing SnO 2 removed from the Sn-plated metal material with an acidic solution, which is the object of the present invention, it is rather preferable to contact the sludge with the massive solid reducing agent in a layer state. Good recovery of metal Sn. The reason is that the SnO 2 reduction reaction is not caused by the direct reduction of the carbon-based solid reducing agent, but is reduced by carbon monoxide generated by the reaction of the carbon-based solid reducing agent with atmospheric oxygen. it is conceivable that. Therefore, when the solid reducing agent is pulverized and uniformly mixed, the contact efficiency is certainly improved, but conversely, the atmosphere decreases around the carbon-based solid reducing agent mixed in the sludge layer. As a result, the amount of carbon monoxide itself generated by the reaction with the oxygen in the atmosphere is reduced, and the reduction reaction of SnO 2 by the carbon monoxide does not occur, but only the direct reduction reaction by the carbon-based solid reducing agent occurs. Since the reaction rate of the direct reduction by this solid reducing agent is slow and occurs only in the vicinity of the finely divided solid reducing agent, the obtained metal Sn is also small,
Also, reduced molten Sn is generated in a fine powder state according to the size of the carbon-based solid reducing agent powder. And this fine powder metal
Since Sn is small in quantity and small in size and specific gravity, it remains in the sludge and does not fall and aggregate due to a density difference at the bottom of the sludge. Conceivable.

【0014】これに対し、本発明のように、前記したカ
ーボン系の固体還元剤と大気中の酸素により生じる一酸
化炭素によるSnO2の還元反応状態であれば、スラッジ中
に分布するSnO2に対し、スラッジ中を一酸化炭素ガスが
浸透する。したがって、還元反応自体がスラッジ中で全
面的に生じ、還元される金属Sn量も多量になり、かつ還
元された溶融金属Snが集合し易く、得られる金属Snは大
きな液滴状となり、スラッジの底部に密度差により落下
集合し、スラッジとの分離効率乃至回収効率、また回収
金属Snの純度が上がる。したがって、スラッジとの分離
効率乃至回収効率上、回収金属Snの回収率を90% 以上お
よび回収金属Snの純度を90% 以上とするためには、スラ
ッジと塊状の固体還元剤とを層状態でかつ大気雰囲気下
で接触させることが必要である。
On the other hand, as in the present invention, if SnO 2 is reduced by the carbon-based solid reducing agent and carbon monoxide generated by oxygen in the atmosphere, SnO 2 distributed in the sludge is converted to SnO 2 . On the other hand, carbon monoxide gas permeates the sludge. Therefore, the reduction reaction itself occurs entirely in the sludge, the amount of reduced metal Sn also becomes large, and the reduced molten metal Sn easily aggregates, and the obtained metal Sn becomes large droplets, and Drops and gathers at the bottom due to the density difference, and the efficiency of separation and recovery from sludge and the purity of recovered metal Sn increase. Therefore, in order to achieve a recovery rate of the recovered metal Sn of 90% or more and a purity of the recovered metal Sn of 90% or more in terms of separation efficiency or recovery efficiency from the sludge, the sludge and the massive solid reducing agent are layered. In addition, it is necessary to make contact under an air atmosphere.

【0015】更に、本発明では、回収金属Snの回収率を
90% 以上および回収金属Snの純度を90% 以上とするため
には、スラッジの還元温度を700 ℃以上とすることが必
要である。図4 に、スラッジの還元温度と金属Snとの回
収率との関係を示す。図4 は、黒鉛るつぼにSnめっき純
Cu材より酸性溶液( 弗酸、硝酸の混酸溶液) にて除去さ
れたSnO2を含む加熱脱水スラッジ (含水率5%) を500g投
入するとともに、塊状の木炭を該スラッジの表面に単に
載置して上層を木炭、下層をスラッジとして、スラッジ
を木炭により充分被覆し、加熱温度を変えて30分還元
し、得られた金属Snを抽出し、この抽出金属Sn重量とス
ラッジ中のSnO2重量とから、金属Snとの回収率を求めた
ものである。図4 から明らかな通り、還元温度が700 ℃
以上で、90% 以上の金属Snの回収率と90% 以上の回収金
属Snの純度が得られる。ただ、図4から明らかな通り、
あまり還元( 加熱) 温度が高くても、それ以上金属Snの
回収率と純度は向上しない。したがって、還元温度の上
限は経済性を考慮すると1300℃であることが好ましい。
Further, in the present invention, the recovery rate of the recovered metal Sn
In order to make the purity of the recovered metal Sn 90% or more and 90% or more, the reduction temperature of the sludge needs to be 700 ° C or more. FIG. 4 shows the relationship between the reduction temperature of sludge and the recovery rate of metallic Sn. Fig. 4 shows Sn plating pure on a graphite crucible.
500 g of heated dewatered sludge (water content: 5%) containing SnO 2 removed from the Cu material with an acidic solution (a mixed acid solution of hydrofluoric acid and nitric acid), and lump charcoal was simply placed on the surface of the sludge. The upper layer was charcoal, the lower layer was sludge, the sludge was sufficiently covered with charcoal, reduced for 30 minutes by changing the heating temperature, and the resulting metal Sn was extracted.The extracted metal Sn weight and the SnO 2 weight in the sludge were extracted. From this, the recovery rate with metal Sn was determined. As is evident from Fig. 4, the reduction temperature is 700 ° C.
As described above, a recovery rate of metal Sn of 90% or more and a purity of recovered metal Sn of 90% or more can be obtained. However, as is clear from FIG.
Even if the reduction (heating) temperature is too high, the recovery rate and purity of metal Sn will not be further improved. Therefore, the upper limit of the reduction temperature is preferably 1300 ° C. in consideration of economy.

【0016】[0016]

【発明の実施の形態】図1(A)、(B) に本発明の一実施態
様を示す。まず図1(A)に示すように、脱水して含水率を
低くしたスラッジ2 を、大気雰囲気としやすい上部が開
口したルツボ形状の加熱炉1 中に投入する。そして、ス
ラッジ2 の表面に塊状の木炭3 を載置してスラッジ2 の
表面を被覆する。そしてこの状態で炉を加熱し、スラッ
ジ中のSnO2の還元を行う。このようにすると、図1(B)に
示すように、スラッジ2 の体積は水分なり揮発分の飛散
により減少し、残渣のみとなる。一方還元された溶融金
属Snは、比重差により加熱炉1 底部にたまる。この加熱
炉1 底部にたまった金属Snを、溶融状態乃至冷却して固
体状態で底部から抜き出すなり、上部のスラッジ残渣を
取り出すなりして、スラッジ( 残渣) と分離する。
1A and 1B show an embodiment of the present invention. First, as shown in FIG. 1 (A), sludge 2 whose water content has been reduced by dehydration is put into a crucible-shaped heating furnace 1 having an open upper part which is easily opened to the atmosphere. Then, a lump of charcoal 3 is placed on the surface of the sludge 2 to cover the surface of the sludge 2. In this state, the furnace is heated to reduce SnO 2 in the sludge. In this way, as shown in FIG. 1 (B), the volume of the sludge 2 decreases due to the scattering of water and volatile components, leaving only the residue. On the other hand, the reduced molten metal Sn accumulates at the bottom of the heating furnace 1 due to a difference in specific gravity. The metal Sn accumulated at the bottom of the heating furnace 1 is separated from sludge (residue) by extracting the metal Sn from the bottom in a solid state by melting or cooling, or removing the sludge residue on the upper part.

【0017】分離された金属Snの純度を更に上げる場合
は、この金属Snを更に溶解し、カーボン系など適当な還
元剤により還元する。また、これら回収金属Snは、銅合
金などの金属材の合金溶解原料として再利用することが
好ましい。
In order to further increase the purity of the separated metal Sn, the metal Sn is further dissolved and reduced with a suitable reducing agent such as carbon. Further, it is preferable that these recovered metals Sn are reused as an alloy melting raw material of a metal material such as a copper alloy.

【0018】[0018]

【実施例】次に、本発明の実施例を説明する。純銅系銅
板にSnめっきしたスクラップ、Cu-Fe 銅合金板にSnめっ
きしたスクラップ、Cu-Fe 銅合金板およびCu-Ni 銅合金
板にSnめっきした混合スクラップと、銅の種類が異なる
スクラップを、各々弗酸、硝酸の混酸酸性溶液に浸漬し
て、これの酸とSnめっきを反応させ、錫(Sn)を酸化物(S
nO2)として剥離除去した。生成したSnO2と酸性溶液を含
むスラッジを120 ℃で加熱して脱水し、含水率の異なる
スラッジを作成した。なお、表1 の発明例No.7のスラッ
ジは、前記生成ままのスラッジ (含水率50%)であり、加
熱による脱水は行っていない。これら含水率の異なるス
ラッジの固形分中のSnO2量を測定後、スラッジを各々図
1 に示すルツボ形状の加熱炉1 に50kg/ch 投入し、この
投入スラッジ表面に塊状の木炭を20kg/ch 載置し、1200
℃に加熱して30分間保持する還元処理を行った。その後
スラッジ残渣を廃棄して、るつぼ底部に溜まった金属Sn
を分離・回収し、この金属Snの純度と回収率を求めた。
これらの結果を、表1 に示す。
Next, embodiments of the present invention will be described. Scraps with different types of copper, such as scraps plated with Sn on pure copper-based copper plates, scraps plated with Sn on Cu-Fe copper alloy plates, mixed scraps plated with Sn on Cu-Fe copper alloy plates and Cu-Ni copper alloy plates, Each was immersed in a mixed acid solution of hydrofluoric acid and nitric acid, and the acid was reacted with Sn plating to convert tin (Sn) to oxide (S
It was peeled off as nO 2 ). The sludge containing the generated SnO 2 and the acidic solution was heated at 120 ° C. and dewatered to prepare sludges having different moisture contents. The sludge of Invention Example No. 7 in Table 1 was the sludge as produced (water content: 50%), and was not dehydrated by heating. After measuring the amount of SnO 2 in the solid content of these sludges with different moisture contents,
50 kg / ch is charged into the crucible-shaped heating furnace 1 shown in Fig. 1, and lump of charcoal is placed on the surface of the input sludge at 20 kg / ch and
A reduction treatment was performed by heating to 30 ° C. and holding for 30 minutes. After that, the sludge residue was discarded, and the metal Sn accumulated at the bottom of the crucible
Was separated and recovered, and the purity and recovery of this metal Sn were determined.
Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1 から明らかな通り、スラッジの含水率
を10% 以下とし、カーボン系固体還元剤を塊状として、
スラッジと層状態で接触させた発明例No.1〜4 は、金属
Snの回収率と純度がいずれも90% 以上である。これに対
し、カーボン系固体還元剤を塊状として、スラッジと層
状態で接触させているものの、スラッジ含水率が20%で
ある発明例No.5は、金属Snの回収率が80% および純度が
91% 程度で発明例No.1〜4 よりも劣っている。また、ス
ラッジ含水率が20% を越える発明例No.6、7 は、特に金
属Snの回収率が48〜69% と極端に低く、純度も63〜84%
と低くなっている。この結果、実用化した場合の高効率
化 (コストと採算など) を考慮すると、金属Snの回収率
乃至純度は高い方が良く、発明例No.1〜5 のようなスラ
ッジの含水率が10% 乃至20% 以下の低含水率が好まし
い。しかし、一方、金属Snの回収自体が図り難い従来技
術に比べると、金属Snの相当量の回収が可能という点で
は、前記発明例No.6、7 のような低回収率でも、充分意
義を有する。なお、本実施例は実機規模での例であり、
前記図2 の実験室レベルでの、スラッジ含水率と金属Sn
の回収率との関係とは、特に含水率が高い部分で必ずし
も数値が対応しない点もあるが、傾向は同じである。そ
して、特にスラッジの含水率が低い部分では、図2 と同
様に、含水率10% 以下であれば、90% 以上の高回収率と
90% 以上の高純度が得られているし、含水率20% 以下で
も、80% 程度の回収率と90% 程度の純度が得られてい
る。
As is apparent from Table 1, the water content of the sludge is set to 10% or less, and the carbon-based solid reducing agent is
Invention Examples Nos. 1 to 4 in contact with sludge in a layer state
Both the recovery rate and purity of Sn are 90% or more. On the other hand, although the carbon-based solid reducing agent is in a lump and is in contact with the sludge in a layer state, the invention example No. 5 in which the sludge moisture content is 20%, the recovery rate of metal Sn is 80% and the purity is low.
About 91% is inferior to Invention Examples Nos. 1-4. In addition, in Invention Examples Nos. 6 and 7 in which the sludge moisture content exceeds 20%, the recovery rate of metal Sn is extremely low, particularly 48 to 69%, and the purity is 63 to 84%.
And lower. As a result, considering higher efficiency (cost and profitability) in practical use, the higher the recovery or purity of metal Sn, the better, and the water content of sludge as in Invention Examples 1 to 5 is 10%. A low water content of from 20% to 20% is preferred. However, on the other hand, compared with the prior art in which the recovery of metal Sn is difficult, recovery of a considerable amount of metal Sn is possible, even at a low recovery rate as in Invention Examples Nos. 6 and 7, which is sufficiently significant. Have. Note that this embodiment is an example of an actual machine scale,
The sludge moisture content and metallic Sn at the laboratory level in FIG.
The relationship with the recovery rate is that the numerical value does not always correspond to a portion having a particularly high water content, but the tendency is the same. In particular, in the portion where the water content of the sludge is low, as in FIG. 2, if the water content is 10% or less, a high recovery rate of 90% or more is obtained.
High purity of 90% or more is obtained, and even with a water content of 20% or less, a recovery of about 80% and a purity of about 90% are obtained.

【0021】また、比較のために、還元溶融時に、微粉
化した木炭を添加するとともに、この微粉の木炭が加熱
炉中のスラッジに均一に混合するようによく攪拌した以
外は、前記発明例No.1、2 と同じ条件として各々溶融還
元を行って金属Snの回収を試みた。しかし、その結果、
これら比較例では、いずれも、前記図3 と同様に、金属
Snの回収は殆どできなかった。したがって、これらの結
果から、カーボン系固体還元剤を塊状として、スラッジ
と層状態で接触させる本発明要件の意義が裏付けられ
る。
For comparison, in the case of the above-mentioned invention example, except that the pulverized charcoal was added at the time of reduction melting, and that the pulverized charcoal was thoroughly mixed so as to be uniformly mixed with the sludge in the heating furnace. Under the same conditions as in 1. and 2, smelting reduction was performed to recover metallic Sn. But as a result,
In each of these comparative examples, as in FIG.
The recovery of Sn was almost impossible. Therefore, these results support the significance of the requirements of the present invention in which the carbon-based solid reducing agent is made into a bulk and is in contact with sludge in a layered state.

【0022】因みに、発明例No.1〜4 の回収金属Snを、
Cu-Sn 系銅合金の合金溶解用原料として用い、Cu-Sn 系
銅合金鋳塊を溶製した。なお、発明例No.1、3 の回収金
属Snは純度が高いので回収金属Snのまま、発明例No.2、
4 の回収金属Snは純度が若干低いので、るつぼ内で回収
金属Sn45kgに対し、還元剤として20kgの木炭を錫表面に
添加して1200℃で再溶解および再精錬 (還元) し、純度
99% の金属Snの溶解用原料とした。この鋳塊を熱間加工
および冷間加工して、厚さ1mm のCu-Sn 系銅合金板およ
び厚さ1.2mm で19.0mmφと25.4 mm φの銅合金管にした
ところ、この銅合金板および銅合金管の品質に異常はな
く、機械的性質や表面性状とも要求特性を満足してお
り、各々電子材料用などの銅合金板および熱交換器用な
どの銅合金管として使用することができた。
Incidentally, the recovered metal Sn of Invention Examples Nos. 1 to 4 was
Cu-Sn based copper alloy ingot was used as a raw material for melting Cu-Sn based copper alloy. In addition, the recovered metal Sn of Invention Examples Nos. 1 and 3 is high in purity, so that the recovered metal Sn remains as it is, and the recovered metal Sn of Invention Examples No.
Since the recovered metal Sn of 4 is slightly low in purity, 20 kg of charcoal as a reducing agent is added to the tin surface in a crucible, and then re-dissolved and re-refined (reduced) at 1200 ° C.
It was used as a raw material for dissolving 99% of metal Sn. The ingot was hot-worked and cold-worked into a 1 mm thick Cu-Sn based copper alloy plate and a 1.2 mm thick 19.0 mmφ and 25.4 mmφ copper alloy tube. The quality of the copper alloy tube was not abnormal, satisfying the required properties in terms of mechanical properties and surface properties, and each could be used as a copper alloy plate for electronic materials and copper alloy tubes for heat exchangers. .

【0023】[0023]

【発明の効果】以上説明したように、本発明の金属Sn回
収方法によれば、Snめっき金属材から酸性溶液にて除去
されたSnO2を含むスラッジから金属Snを、回収金属Snの
回収率と純度がいずれも90% 以上の高さで、効率的に回
収することが可能となる。しかも、その方法も、大規模
な設備や複雑な方法ではなく、比較的簡単な設備や方法
で行うことができ、その結果、SnO2を含むスラッジから
資源として金属Snを回収する道を開いた点で工業的な意
義は大きい。
As described above, according to the metal Sn recovery method of the present invention, the metal Sn is recovered from the sludge containing SnO 2 removed from the Sn-plated metal material by the acidic solution, and the recovery rate of the recovered metal Sn is improved. And a purity of 90% or more, which enables efficient recovery. Moreover, also the method, rather than a large-scale facilities and complicated methods, can be performed with relatively simple equipment and methods, as a result, opened the way to recover metallic Sn as resources from sludge comprising SnO 2 In this respect, industrial significance is significant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様を示し、図1(a)はスラ
ッジの加熱(還元)時、図1(b)はスラッジの加熱
(還元)後を示す説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention. FIG. 1 (a) is an explanatory diagram showing heating (reduction) of sludge, and FIG. 1 (b) is an explanatory diagram showing heating (reduction) of sludge.

【図2】スラッジの含水率と金属Snの回収率との関係を
示す説明図である。
FIG. 2 is an explanatory diagram showing the relationship between the water content of sludge and the recovery of metal Sn.

【図3】スラッジとカーボン系還元剤との接触状態と金
属Snの回収率との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a contact state between sludge and a carbon-based reducing agent and a recovery rate of metal Sn.

【図4】スラッジの還元温度と金属Snの回収率との関係
を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between a reduction temperature of sludge and a recovery rate of metal Sn.

【符号の説明】[Explanation of symbols]

1:加熱炉 2:スラッジ 3:木炭 4:金属Sn 1: heating furnace 2: sludge 3: charcoal 4: metal Sn

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成重 芳昭 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 大江 和宏 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshiaki Narishige 14-1, Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Inside the Kofu Steel Works Chofu Works (72) Inventor Kazuhiro Oe 141-1, Nagafuminatocho, Shimonoseki City, Yamaguchi Prefecture Kobe Steel, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Snめっき金属材を化学的に処理して生じ
た、SnO2を含むスラッジから金属Snを回収する方法であ
って、SnO2を含むスラッジと塊状のカーボン系固体還元
剤を互いに層状態で接触させるとともに、700 ℃以上に
加熱してスラッジ中のSnO2を金属Snに溶融還元した後、
この還元して得られた溶融金属Snをスラッジより分離す
ることを特徴とするSnO2を含むスラッジから金属Snを回
収する方法。
1. A method for recovering metal Sn from a SnO 2 -containing sludge produced by chemically treating a Sn-plated metal material, wherein the SnO 2 -containing sludge and the massive carbon-based solid reducing agent are combined with each other. After contacting in a layered state and heating to 700 ° C or higher to melt-reduce SnO 2 in sludge to metallic Sn,
A method for recovering metal Sn from sludge containing SnO 2 , wherein the molten metal Sn obtained by the reduction is separated from the sludge.
【請求項2】 前記スラッジの含水率を20% 以下として
溶融還元を行う請求項1に記載のSnO2を含むスラッジか
ら金属Snを回収する方法。
2. The method for recovering metal Sn from a sludge containing SnO 2 according to claim 1, wherein the smelting reduction is performed with the water content of the sludge being 20% or less.
【請求項3】 前記スラッジの含水率を10% 以下として
溶融還元を行う請求項1または2に記載のSnO2を含むス
ラッジから金属Snを回収する方法。
3. The method for recovering metallic Sn from SnO 2 -containing sludge according to claim 1, wherein the smelting reduction is performed with the water content of the sludge being 10% or less.
【請求項4】 スラッジ上に塊状のカーボン系固体還元
剤を載置する請求項1乃至3のいずれか1項に記載のSn
O2を含むスラッジから金属Snを回収する方法。
4. The Sn according to claim 1, wherein a massive carbon-based solid reducing agent is placed on the sludge.
A method for recovering metal Sn from sludge containing O 2 .
【請求項5】 前記カーボン系還元剤として、木炭およ
び/ またはコークスを用いる請求項1乃至4のいずれか
1項に記載のSnO2を含むスラッジから金属Snを回収する
方法。
5. The method for recovering metal Sn from sludge containing SnO 2 according to claim 1, wherein charcoal and / or coke is used as the carbon-based reducing agent.
【請求項6】 前記金属Snの回収率が90% 以上である請
求項1乃至5のいずれか1項に記載のSnO2を含むスラッ
ジから金属Snを回収する方法。
6. The method for recovering metal Sn from sludge containing SnO 2 according to claim 1, wherein the recovery rate of the metal Sn is 90% or more.
【請求項7】 前記回収金属Snの純度が90% 以上である
請求項1乃至6のいずれか1項に記載のSnO2を含むスラ
ッジから金属Snを回収する方法。
7. The method for recovering metal Sn from sludge containing SnO 2 according to any one of claims 1 to 6, wherein the purity of the recovered metal Sn is 90% or more.
【請求項8】 前記スラッジより分離した金属Snを更に
溶解し、この溶解Snを還元剤により還元し、金属Snの純
度を95% 以上とする請求項1乃至7のいずれか1項に記
載のSnO2を含むスラッジから金属Snを回収する方法。
8. The method according to claim 1, wherein the metal Sn separated from the sludge is further dissolved, and the dissolved Sn is reduced by a reducing agent to make the purity of the metal Sn 95% or more. method of recovering metallic Sn from sludge comprising SnO 2.
【請求項9】 前記スラッジより分離した金属Snを、銅
合金の合金原料とする請求項1乃至8のいずれか1項に
記載のSnO2を含むスラッジから金属Snを回収する方法。
9. The method for recovering metal Sn from sludge containing SnO 2 according to any one of claims 1 to 8, wherein the metal Sn separated from the sludge is used as an alloy raw material for a copper alloy.
JP25518597A 1997-09-19 1997-09-19 Recovery of metal tin from sludge containing tin oxide Withdrawn JPH1192839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25518597A JPH1192839A (en) 1997-09-19 1997-09-19 Recovery of metal tin from sludge containing tin oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25518597A JPH1192839A (en) 1997-09-19 1997-09-19 Recovery of metal tin from sludge containing tin oxide

Publications (1)

Publication Number Publication Date
JPH1192839A true JPH1192839A (en) 1999-04-06

Family

ID=17275224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25518597A Withdrawn JPH1192839A (en) 1997-09-19 1997-09-19 Recovery of metal tin from sludge containing tin oxide

Country Status (1)

Country Link
JP (1) JPH1192839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058674A (en) * 2000-06-23 2000-10-05 김주형 The method of extracting tin of high purity from dregs
KR101169925B1 (en) 2012-02-21 2012-08-06 (주)에이원엔지니어링 Method for withdraing tin by dry refining from tin residue
KR101169927B1 (en) 2012-02-21 2012-08-06 (주)에이원엔지니어링 Method for withdraing tin by dry refining from tin sludge
KR20160110842A (en) * 2015-03-13 2016-09-22 한국생산기술연구원 Recovery method of Sn from Sn based anode slime
CN115125388A (en) * 2022-07-19 2022-09-30 昆明理工大学 Method for recovering valuable metals by directly reducing tin alloy slag through aluminum electrolysis waste carbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058674A (en) * 2000-06-23 2000-10-05 김주형 The method of extracting tin of high purity from dregs
KR101169925B1 (en) 2012-02-21 2012-08-06 (주)에이원엔지니어링 Method for withdraing tin by dry refining from tin residue
KR101169927B1 (en) 2012-02-21 2012-08-06 (주)에이원엔지니어링 Method for withdraing tin by dry refining from tin sludge
KR20160110842A (en) * 2015-03-13 2016-09-22 한국생산기술연구원 Recovery method of Sn from Sn based anode slime
CN115125388A (en) * 2022-07-19 2022-09-30 昆明理工大学 Method for recovering valuable metals by directly reducing tin alloy slag through aluminum electrolysis waste carbon

Similar Documents

Publication Publication Date Title
JP4219947B2 (en) How to recover lead
CN112458288A (en) Method for recovering and preparing silver material from silver-containing waste material
JP4505843B2 (en) Copper dry refining method
CN101497944B (en) Process for recycling lead and silver by lead silver slag pyrogenic process
CN111549233B (en) Method for recovering lead and bismuth from copper anode mud smelting slag
JPH1192839A (en) Recovery of metal tin from sludge containing tin oxide
KR101169925B1 (en) Method for withdraing tin by dry refining from tin residue
CN115465842B (en) 4N tellurium casting method
WO2011000051A1 (en) Smelting method
WO1998058879A1 (en) A process for the manufacture of pure metallic lead from exhausted batteries
CN107312931B (en) Method that is a kind of while recycling noble metal and prepare HIGH-PURITY SILICON
CN115572083A (en) Aluminum ash resource utilization process and cement clinker
JP4979751B2 (en) Electrolysis method of lead (1)
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
CN113860314A (en) Method for producing industrial silicon by using silicon-containing solid waste
CN112593026A (en) Method for aggregating and separating high-melting-point phase in high-temperature melt
KR101863086B1 (en) Manufacturing method of crude copper and pig iron from low-grade copper sludge
US1967053A (en) Method of refining lead bismuth alloy
Wu et al. The Latest Development of oxygen bottom blowing lead smelting technology
RU2790720C1 (en) Method for producing cathode copper from recyclables
CN117385163B (en) Recovery process of tin in waste circuit board
CN117923435A (en) Tellurium purification method
US4518423A (en) Method for preparing a low residual alloy steel charge from scrap metal
JPS6342335A (en) Treatment of slag concentrate of copper converter
CN115109944A (en) Production process for extracting high-strength brass from copper-containing waste

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207