JPH1192765A - Method for preventing evolution of black smoke from stack of coke oven - Google Patents

Method for preventing evolution of black smoke from stack of coke oven

Info

Publication number
JPH1192765A
JPH1192765A JP25554397A JP25554397A JPH1192765A JP H1192765 A JPH1192765 A JP H1192765A JP 25554397 A JP25554397 A JP 25554397A JP 25554397 A JP25554397 A JP 25554397A JP H1192765 A JPH1192765 A JP H1192765A
Authority
JP
Japan
Prior art keywords
coal
black smoke
coking
content
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25554397A
Other languages
Japanese (ja)
Other versions
JP3943205B2 (en
Inventor
Atsushi Furusawa
厚 古澤
Mitsuhiro Okazaki
光弘 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP25554397A priority Critical patent/JP3943205B2/en
Publication of JPH1192765A publication Critical patent/JPH1192765A/en
Application granted granted Critical
Publication of JP3943205B2 publication Critical patent/JP3943205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing evolution of black smoke from coke oven stacks which can retard the evolution of black smoke from the stacks by one action in a short period of time. SOLUTION: In the carbonization of a raw coal in coke ovens constituting a group of ovens, the raw coal charged to carbonization rooms is changed to a raw coal having a higher content of powdered coal than usual for only a short period of time, when black smoke evolves or is expected to evolve from the stacks of the coke ovens. Thus, part of the raw coal is filled in the cracks of masonry joints of bricks in the wall of the carbonization rooms, so that the gas sealing properties between the carbonization room and the combustion room is improved. In consequence, it becomes possible to improve the respondability to environmental pollution, such as reduction of dust evolution, reduction of NOx discharge, and reduction of carbon dioxide discharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコークス炉煙突から
の黒煙発生防止方法、特に大幅な設備改造の必要がな
く、一度のアクションで煙突黒煙の発生を短期間に抑制
できるコークス炉煙突からの黒煙発生防止方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing the generation of black smoke from a coke oven chimney. And a method for preventing black smoke from being generated.

【0002】[0002]

【従来の技術】コークス炉は、炭化室(窯)と下部に蓄
熱室を有する燃焼室とが仕切壁を介して交互に多数並列
に配置して炉団(通常45〜70門/炉団)を形成して
いる。各炭化室に装入された原料炭は、隣接する左右燃
焼室内からの伝導伝熱を受け、約1000〜1100℃
程度まで昇温され約16〜22時間かけて乾留されコー
クス化する。その昇温乾留過程で原料炭中の揮発分はガ
ス化され、通常はガスは上昇管からドライメーンを経て
冷却されつつ、凝縮タール分や微粉炭・微粉コークス等
を分離してからブロワーにてコークス炉ガス精製工程に
移送し回収している。一方、燃焼室からの高温廃ガスは
下部の蓄熱室でその保有熱を燃焼用空気の予熱という形
で回収され、低温となって煙道の排気ラインを経由して
煙突から大気に排出されている。
2. Description of the Related Art In a coke oven, a coke oven (kiln) and a combustion chamber having a heat storage chamber in the lower part are alternately arranged in parallel through a partition wall in a large number of furnace groups (normally 45 to 70 gates / furnace group). Is formed. Coking coal charged to each coking chamber receives conduction heat transfer from the adjacent left and right combustion chambers, and is subjected to about 1000 to 1100 ° C.
The temperature is raised to a level and carbonized over about 16 to 22 hours to form coke. Volatile components in the raw coal are gasified during the heating and distillation process, and the gas is usually cooled from the riser through the dry main, while separating the condensed tar components, pulverized coal and fine coke, etc., and then using a blower. It is transferred to the coke oven gas purification process and collected. On the other hand, the high-temperature waste gas from the combustion chamber is recovered in the lower heat storage chamber in the form of preheating the combustion air, cooled down, and discharged to the atmosphere from the chimney via the flue exhaust line. I have.

【0003】このようなコークス炉の煙突から黒煙がし
ばしば発生することがある。これは、コークス炉での炉
体劣化(炉齢進行)、温度変化、コークス押出時の機械
的な外力摩擦による損傷・変形等が原因となって、仕切
壁煉瓦の目地に亀裂部又は局部的な欠損部等の隙間が生
じて、炭化室で発生した揮発分が可燃ガスとして該隙間
から燃焼室内へ漏れ込み燃焼室で不完全燃焼が生じる結
果、煙突からの黒煙発生となるものであると言われてい
る。特に乾留ガスが大量に発生する乾留初期段階では炭
化室と燃焼室との圧力差が大きいことから黒煙の発生が
一気に高まることが認められ、これによって可燃ガスが
燃焼室側へ漏れている箇所がある程度は特定できる。し
かし装入される原料炭中の含有水分が増減したり、揮発
成分が通常よりも減少したりして原料炭性状が変動する
と黒煙の発生が頻繁に起こり、しかも炉団内すべての炭
化室に及ぶために、可燃ガスが燃焼室側へ漏れている箇
所が特定困難となることである。
[0003] Black smoke is often generated from the chimney of such a coke oven. This is due to cracks or localized crack joints in the partition wall bricks due to deterioration of the furnace body (furnace aging) in the coke oven, temperature change, damage or deformation due to mechanical external friction during coke extrusion. A gap such as a broken portion is generated, and volatile matter generated in the carbonization chamber leaks from the gap as a combustible gas into the combustion chamber, causing incomplete combustion in the combustion chamber, resulting in black smoke generation from the chimney. It is said that. Especially in the initial stage of carbonization where a large amount of carbonized gas is generated, the pressure difference between the carbonization chamber and the combustion chamber is large, and it is recognized that the generation of black smoke increases at a stretch, and this is where the combustible gas leaks to the combustion chamber side. Can be specified to some extent. However, if the properties of the coking coal fluctuate due to fluctuations in the water content in the coking coal charged or the volatile components decrease more than usual, black smoke frequently occurs, and all the coking chambers in the furnace Therefore, it is difficult to specify the location where the combustible gas leaks to the combustion chamber.

【0004】これまでの煙突黒煙の発生抑制方法として
は、(1)ドライシーリング、炉壁目地へのモルタル吹
き付け等の炉体補修法(例えば、特公昭63−1667
6号、特開昭62−288686号等)、(2)装炭毎
に燃料ガス及び排気ガス量を一定時間閉する装炭時の管
理アクション(例えば、特開平6−256764号)、
(3)燃料ガスのカット又は燃焼用空気量の増加等の燃
焼管理アクション(例えば、特開昭63−27591
号)、(4)燃焼室からの廃ガスを、煤塵濃度計の検出
により煙道系と集塵系に切り替える廃ガス管理アクショ
ン(例えば、特開平6−63334号)等が提案されて
いる。
[0004] Conventional methods for suppressing the generation of black smoke from a chimney include (1) furnace body repair methods such as dry sealing and mortar spraying on a furnace wall joint (for example, Japanese Patent Publication No. 63-1667).
6, Japanese Patent Application Laid-Open No. 62-288686, etc.), (2) Management action at the time of coal loading for closing fuel gas and exhaust gas amount for each coal loading for a certain period of time (for example, Japanese Patent Application Laid-Open No. 6-256768),
(3) Combustion management actions such as cutting off fuel gas or increasing the amount of combustion air (for example, Japanese Patent Application Laid-Open No. 63-27591)
(4) A waste gas management action for switching waste gas from a combustion chamber to a flue system and a dust collection system by detection of a dust concentration meter (for example, Japanese Patent Application Laid-Open No. 6-63334) has been proposed.

【0005】しかしながら、(1)の炉体補修法は、窯
単位の補修、燃焼室へのガスリーク防止を目的としたも
のであるが、全炉団の目地切れ発生箇所のチェック及び
補修を短期間で行うには相当な日数と人手、装置が必要
である。又、ドライシーリングは装入口1箇所から炭化
室全体に吹き付ける方法であり、時間的制約もあるため
目地埋め材が全目地に行き渡らない可能性がある。また
ドライシーリング実施時は空窯状態であり、炉内の温度
変化が大きく、新たな亀裂発生、目地開きの原因ともな
りうる。更に吹き付け設備、モルタル等の材料費が必要
となる。従って炉団全体から黒煙発生が予測されるよう
な事態には到底対応は不可能である。
[0005] However, the furnace body repair method (1) is aimed at repairing the furnace unit and preventing gas leakage into the combustion chamber. It takes a considerable number of days, manpower, and equipment to perform it. In addition, dry sealing is a method of spraying the entire carbonization chamber from one location of the charging inlet, and there is a possibility that the joint filling material may not reach all joints due to time restrictions. In addition, when dry sealing is performed, the furnace is in an empty kiln state, and the temperature inside the furnace changes greatly, which may cause new cracks and joints to open. Further, material costs such as spray equipment and mortar are required. Therefore, it is impossible to cope with a situation in which black smoke is predicted from the entire furnace group.

【0006】一方、(2)の装炭時の燃料管理アクショ
ンや(3)の燃焼管理アクションでは、個々の窯に対し
て燃料ガスや排気ガスの調節弁を設置した自動燃焼制御
装置を取り付ける必要があるなど大幅な設備改造費用が
必要である。また燃料ガス供給量の減少(ガスカット)
及び燃焼用空気量の増加(空気比アップ)では燃焼室/
炭化室内の温度分布の乱れが懸念され、火落ちバラツ
キ、乾留不良を引き起こす。また、通常の燃焼管理自動
制御装置(ACC)がOFFになり、マニュアルアクシ
ョンになる等の欠点もある。更に(4)の廃ガス管理ア
クションも、個々の窯に対する廃気ガスの煙道系切換と
集塵系切換を頻繁に行うための制御装置や、これらの切
換弁及び集塵装置等の新たな設備新設・ダクトの改造等
も必要である。
[0006] On the other hand, in the fuel management action at the time of coal charging (2) and the combustion management action of (3), it is necessary to attach an automatic combustion control device having a control valve for fuel gas or exhaust gas to each kiln. Significant equipment renovation costs are required. Reduction of fuel gas supply (gas cut)
And the combustion air volume (increased air ratio)
Disturbance in the temperature distribution in the carbonization chamber is feared, causing fire fall-out and poor carbonization. In addition, there is a disadvantage that the normal combustion management automatic control device (ACC) is turned off and manual action is performed. Further, the waste gas management action of (4) includes a new control device for frequently switching the flue gas system and the dust collection system of the waste gas for each kiln, and a new switching valve and a new dust collection device. It is also necessary to install new equipment and remodel ducts.

【0007】さらに上記した(2)〜(4)の各管理ア
クションは、炭化室で発生した揮発分が仕切り壁の煉瓦
目地の亀裂部を通じて可燃ガスとして燃焼室内へ漏れ込
むのは避けられないとの前提でなされた黒煙防止法であ
り、煉瓦目地の亀裂部の拡大と炉体劣化の促進等の問題
が懸念されることから、根本的な黒煙防止対策とは言え
ない。最近、省エネの観点から原料炭の水分(通常8〜
10%)を予備乾燥して一定水準以下(6%前後)に保
持させる石炭調湿設備(CMC)の導入が殆どのコーク
ス炉に採用されてきているが、そのCMCの定修時や突
発故障時、或いは大雨等により原料炭中の水分が大幅に
増減する変動要因があった時に煙突黒煙の発生が特に目
立つようになってきている。この場合は、炉団内の全炭
化室から煙突黒煙が発生するため、上記した従来の対策
では、短期間での対応は非常に困難であり、これに対す
る根本的な黒煙防止対策が強く望まれてきている。
[0007] Further, in each of the above management actions (2) to (4), it is inevitable that volatile matter generated in the carbonization chamber leaks as combustible gas into the combustion chamber through a crack portion of a brick joint of the partition wall. It is a black smoke prevention method based on the premise described above, and cannot be said to be a fundamental black smoke prevention measure because there are concerns about problems such as expansion of cracks in brick joints and acceleration of furnace body deterioration. Recently, from the viewpoint of energy saving, the moisture of coking coal (usually 8 ~
10%) has been adopted in most coke ovens by introducing a pre-drying system that keeps it below a certain level (around 6%) by pre-drying it. The occurrence of chimney smoke has become particularly noticeable at times, or when there is a fluctuation factor in which the water content in the raw coal greatly increases or decreases due to heavy rain or the like. In this case, chimney black smoke is generated from the entire coking chamber in the furnace group, so it is extremely difficult to respond in a short period of time with the above-mentioned conventional measures. It has been desired.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、かか
る現状に鑑みて、特に炉団の全炭化室への装炭時に一斉
に煙突黒煙が発生した場合又は予測される場合であって
も、一度のアクションで炭化室の気密性を向上させて発
生する可燃ガスの燃焼室への漏れ込みを防止し、煙突黒
煙の発生を短期間に抑制できるコークス炉煙突からの黒
煙発生防止方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, particularly when a stack of black smoke is generated or predicted at the same time when coal is charged into all coking chambers of a furnace group. Prevents the generation of black smoke from the coke oven chimney, which can improve the airtightness of the carbonization chamber in a single action, prevent the flammable gas generated from leaking into the combustion chamber, and suppress the generation of chimney black smoke in a short time It is intended to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため実際のコークス炉操業条件下で種々検討
の結果、装入炭中の微粉炭含有率が高い場合ほど翌日の
煙突リンゲルマン濃度が低下する傾向があるというデー
タ解析結果に着目し、煙突からの黒煙が発生・予測され
るときに一時的に通常の原料炭よりも微粉炭含有率を高
めた細粒炭への切換えによって煙突黒煙の発生が短期間
に抑制できることを見出し、本発明を完成するに至った
ものである。
The present inventors have conducted various studies under the actual operating conditions of a coke oven to solve the above-mentioned problems. As a result, the higher the content of pulverized coal in the charged coal, the higher the chimney on the next day. Paying attention to the data analysis result that the Ringerman concentration tends to decrease, when black smoke from the chimney is generated and predicted, it is temporarily changed to fine coal whose pulverized coal content is higher than ordinary coking coal The present inventors have found that the generation of chimney black smoke can be suppressed in a short period of time by the switching, and have completed the present invention.

【0010】即ち、本発明の請求項1は、炭化室と燃焼
室からなる窯を多数並列に配置して炉団を形成している
コ−クス炉で原料炭を乾留処理する際に、コークス炉煙
突から黒煙が発生し又は黒煙の発生が予測されるとき、
炭化室へ装入する原料炭を通常の場合より微粉炭含有率
を高めた原料炭に短期間だけ変更することによって原料
炭の一部を炭化室炉壁煉瓦の目地亀裂部に埋め込ませ、
炭化室と燃焼室のガスシール性を向上させることを特徴
とするコークス炉煙突からの黒煙発生防止方法である。
That is, a first aspect of the present invention is to provide coke coking in a coke oven in which a plurality of kilns each including a carbonization chamber and a combustion chamber are arranged in parallel to form a furnace group. When black smoke is generated or predicted to be generated from the furnace chimney,
By changing the coking coal charged to the coking chamber to coking coal with a higher pulverized coal content than normal in a short period of time, part of the coking coal is embedded in the joint crack of the furnace wall brick of the coking chamber,
A method for preventing the generation of black smoke from a chimney of a coke oven, characterized by improving the gas sealing property between the carbonization chamber and the combustion chamber.

【0011】上記本発明において、微粉炭含有率を高め
た原料炭への変更期間としては、1〜7日の範囲内が好
ましい。また微粉炭含有率を高めた原料炭は、粒径3.
0mm以下の含有率が通常の場合より2〜5Wt%だけ高
くなるように細粒化したものが好ましい。さらに微粉炭
含有率を高めた原料炭には、粒径0.1mm以下の微粉
炭が8〜10%含有したものが好ましい。さらにまた、
通常の原料炭が粒径3.0mm以下77〜79%に粒度
調整されているときに、微粉炭含有率を高めた原料炭と
して粒径3.0mm以下80〜83%に粒度調整したも
のに変更するのが好ましい。
[0011] In the present invention, the period of change to the raw coal having a high content of pulverized coal is preferably in the range of 1 to 7 days. Coking coal with an increased pulverized coal content has a particle size of 3.
It is preferable to use fine particles such that the content of 0 mm or less is higher by 2 to 5 Wt% than that in a normal case. It is preferable that the raw coal having a higher pulverized coal content contains 8 to 10% of pulverized coal having a particle size of 0.1 mm or less. Furthermore,
When the size of ordinary coking coal is adjusted to a particle size of 3.0 mm or less and 77-79%, the coking coal with an increased pulverized coal content is adjusted to a particle size of 3.0 mm or less and 80-83%. It is preferable to change.

【0012】本発明によれば装炭直後から乾留初期段階
における、特に炭化室から大量に発生する可燃ガスの圧
力で加圧された炭化室と燃焼室との圧力差によって、微
粉炭含有率を高めた原料炭の一部が炭化室側の仕切壁煉
瓦に生じた目地亀裂部に押し込まれ、燃焼室からの加熱
で緻密化したカーボンとなって該目地亀裂部を完全に閉
塞させる。この結果、炭化室のガスシール性が向上して
可燃ガスの燃焼室側への漏れが防止され燃焼室での不完
全燃焼がなくなって煙突からの黒煙発生が防止される。
従って煙突から急激に黒煙が発生してその炭化室の箇所
が特定できない場合、または、その箇所が多い場合であ
っても、微粉炭含有率を高めた原料炭への短期間の切り
換え変更という一度のアクションだけで煙突からの黒煙
発生を短期間に防止することができる。
According to the present invention, the pulverized coal content is determined by the pressure difference between the combustion chamber and the combustion chamber which is pressurized by the pressure of the combustible gas generated in large quantities from the carbonization chamber immediately after the coal charging and in the initial stage of dry distillation. Part of the raised raw coal is pushed into joint cracks formed in the partition wall bricks on the carbonization chamber side, and becomes dense carbon by heating from the combustion chamber to completely close the joint cracks. As a result, the gas sealing property of the carbonization chamber is improved, the flammable gas is prevented from leaking to the combustion chamber side, the incomplete combustion in the combustion chamber is eliminated, and the generation of black smoke from the chimney is prevented.
Therefore, even when black smoke is rapidly generated from the chimney and the location of the carbonization chamber cannot be specified, or even when there are many locations, it is a short-term changeover to coking coal with a higher pulverized coal content. Black smoke generation from the chimney can be prevented in a short time with only one action.

【0013】[0013]

【発明の実施の形態】以下本発明の実施の形態について
更に詳細に説明する。先ず、本発明で使用する通常の原
料炭とは、高炉用コークスや鋳物用コークス等の原料炭
として使用されるものであれば特に限定されない。一般
には、良質粘結炭(強粘結炭および弱粘結炭)や非微粘
結炭等をグループ毎に計量して配合し、所定の粒度に粉
砕されたものが使用される。かかる原料炭の装入炭とし
ての粒度調節は、通常、粒径3.0mm以下で77〜7
9 Wt%程度の範囲内を管理指標として調整されている。
そのときの0.1mm以下の微粉炭の含有率は、通常6
〜7 Wt%%程度の範囲内にある。かかる通常の原料炭を
連続的に乾留処理しているときに、例えば、大雨やCM
Cの定修・突発停止等に原料炭中の水分含有率が増加す
るような事態が発生した場合、その後水分含有率の低い
原料炭を装入するとコークス炉煙突から黒煙が発生し易
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in more detail. First, ordinary coking coal used in the present invention is not particularly limited as long as it is used as coking coal such as blast furnace coke and casting coke. Generally, high-quality caking coal (strong caking coal and weak caking coal), non-fine caking coal, and the like are measured and blended for each group, and pulverized to a predetermined particle size is used. The particle size of the coking coal is usually adjusted to 77 to 7 with a particle size of 3.0 mm or less.
Adjustments are made within a range of about 9 Wt% as a management index.
At that time, the content of pulverized coal of 0.1 mm or less is usually 6
77 Wt %%. When such ordinary coking coal is continuously carbonized, for example, heavy rain or CM
When a situation where the water content in the coking coal increases due to regular maintenance, sudden stoppage, etc. of C occurs, black smoke is likely to be generated from the coke oven chimney when the coking coal having a low water content is subsequently charged.

【0014】ここで、実際のコークス炉操業条件下で原
料炭中の微粉炭含有率が煙突リンゲルマン濃度に及ぼす
状況について約1年半に及ぶデータを調査した結果を図
1に基づいて説明する。この図1の縦軸は、横軸に示し
た原料炭に切換え変更した翌日と変更当日のリンゲルマ
ン濃度差(度)を表すものであるが、これによれば、原
料炭中の水分や揮発分の含有率その他の影響もあるが一
般的な傾向として、粒子径0.1mm以下の微粉炭含有
率が低い原料炭ではそれを全炭化室に切換えた翌日から
のリンゲルマン濃度(度)が前日(変更当日)よりも高
くなることを示している。一方、粒子径0.1mm以下
の微粉炭含有率が多くなると、その原料炭を全炭化室に
切換えた翌日からのリンゲルマン濃度(度)が前日より
も下がることを示している。
Here, the results of a survey of data for about one and a half years in which the content of pulverized coal in coking coal affects the concentration of chimney Ringermann under actual coke oven operating conditions will be described with reference to FIG. . The vertical axis in FIG. 1 represents the difference (degree) of Ringerman concentration between the day after the change to the coking coal shown on the horizontal axis and the day of the change, according to which the water and volatilization in the coking coal are determined. The general tendency is that coking coal with a low content of pulverized coal with a particle diameter of 0.1 mm or less has a ringerman concentration (degree) from the next day when it is switched to a full coking chamber, although there are other effects as well. It shows that it is higher than the previous day (the day of change). On the other hand, when the content of pulverized coal having a particle diameter of 0.1 mm or less increases, the Ringerman concentration (degree) from the day after the coking coal is switched to the entire coking chamber is lower than the previous day.

【0015】例えば、粒子径0.1mm以下の微粉炭含
有率が6〜7%程度では、翌日と前日とのリンゲルマン
濃度差(度)が0以上の高い数値を示している。一方微
粉炭含有率が8%以上ではリンゲルマン濃度差がマイナ
スになっている。このことは、煙突から黒煙が発生し、
リンゲルマン濃度が高くなった場合に、粒子径0.1m
m以下の微粉炭含有率が6〜7%程度の原料炭では、ば
い煙濃度が翌日には更に高まり黒煙発生の防止効果がな
いことを示している。一方微粉炭含有率が8%以上の原
料炭に変更して一日経過すると煙突のばい煙濃度が前日
より下がり、黒煙発生の防止効果が発揮されていること
を示している。
For example, when the content of pulverized coal having a particle size of 0.1 mm or less is about 6 to 7%, the difference (degree) in Ringerman concentration between the next day and the previous day shows a high value of 0 or more. On the other hand, when the pulverized coal content is 8% or more, the difference in Ringerman concentration is negative. This means that the chimney emits black smoke,
When the Ringerman concentration increases, the particle diameter is 0.1 m
In the case of raw coal having a pulverized coal content of about 6 to 7% or less, the soot concentration is further increased on the next day, indicating that there is no black smoke generation effect. On the other hand, when the content of pulverized coal was changed to coking coal having a content of 8% or more, the smoke concentration in the chimney dropped one day after the change, indicating that the effect of preventing the generation of black smoke was exhibited.

【0016】本発明はかかる新知見に基づいて、更に検
討の結果なされたものである。本発明は、コークス炉煙
突から黒煙が発生し又は黒煙の発生が予測されるとき、
炭化室へ装入する原料炭を通常の場合より微粉炭含有率
を高めた原料炭に短期間だけ変更することに特徴を有す
る。ここで通常の場合より微粉炭含有率を高めた原料炭
とは、変更直前の原料炭に比較して微粉炭含有率を高め
たものを意味する。具体的には変更直前の原料炭の粒径
3.0mm以下の含有率より2〜5%だけ高くなるよう
に細粒化したものが好ましい。またかかる微粉炭含有率
を高めた原料炭には粒径0.1mm以下の微粉炭が8%
以上、好ましくは8〜10%含有したものが好ましい。
The present invention has been further studied based on such new findings. The present invention, when black smoke is generated or expected to be generated from the coke oven chimney,
It is characterized in that the raw coal charged into the coking chamber is changed to a raw coal having a higher content of pulverized coal than a normal case for a short period of time. Here, the coking coal whose pulverized coal content is higher than that in the normal case means a pulverized coal content higher than the coking coal immediately before the change. Specifically, it is preferable that the coal is refined so as to be higher by 2 to 5% than the content of the raw coal having a particle diameter of 3.0 mm or less immediately before the change. 8% of pulverized coal having a particle size of 0.1 mm or less is used as the raw coal having a high pulverized coal content.
As described above, those containing 8 to 10% are preferable.

【0017】本発明をさらに具体的に示せば、通常の原
料炭が粒径3.0mm以下77〜79%に粒度調整され
ているときに、微粉炭含有率を高めた原料炭として粒径
3.0mm以下80〜83%に粒度調整したものに変更
するのが好ましい。これによって粒子径0.1mm以下
の微粉炭含有率を8〜10%程度の高含有率に保持させ
ることができて、特に仕切壁でのガスシール効果を高め
る上で最も好ましい。なお粒径3mm以下の含有率を8
3%よりも更に高くすると、コークス炉上昇管等へのカ
ーボン付着増、コークス炉ガス精製工程へのキャリーオ
ーバー粉量の増加、粉砕電力のコストアップ等のデメリ
ットが高まる。更に嵩密度が低下することから炭化室へ
の原料炭装入量が減少してコークス品質の悪化影響も懸
念され好ましくない。また粒径3mm以下が80%以下
では、特に粒子径0.1mm以下の微粉炭含有率が8%
以下に減少して煙突からの黒煙発生の防止効果が発揮さ
れない。
More specifically, when the size of the ordinary raw coal is adjusted to be 77 to 79% of a particle diameter of 3.0 mm or less, the raw coal having an increased pulverized coal content has a particle diameter of 3 to 3%. It is preferable to change the particle size to be adjusted to 80 to 83% of 0.0 mm or less. As a result, the content of pulverized coal having a particle diameter of 0.1 mm or less can be maintained at a high content of about 8 to 10%, which is the most preferable particularly for enhancing the gas sealing effect on the partition wall. Note that the content of particles having a particle size of 3 mm or less is 8
If it is higher than 3%, demerits such as an increase in carbon adhesion to the coke oven riser tube, an increase in the amount of carry-over powder in the coke oven gas purification step, and an increase in the cost of pulverization power, etc. are increased. Further, since the bulk density is reduced, the amount of coking coal charged into the carbonization chamber is reduced, and the coke quality may be adversely affected, which is not preferable. When the particle size of 3 mm or less is 80% or less, the content of pulverized coal having a particle size of 0.1 mm or less is particularly 8%.
Therefore, the effect of preventing the generation of black smoke from the chimney is not exhibited.

【0018】かかる微粉炭含有率を高めた原料炭への粒
度調節法は特に限定されない。原料炭は、前記した如く
グループ毎に計量・配合し、コークス炉の炭化室へ装入
前に所定の粒度に粉砕される。この場合、微粉炭含有率
を高めるには、原料炭粉砕強化方式あるいは微粉炭配合
方式のいずれでもよい。原料炭粉砕強化方式による粒度
調節は、通常の原料炭の粉砕粒度目標管理に使用した、
粉砕機のモーター電流管理値、反撥板と粉砕機衝撃刃と
の隙間調節基準等を適宜変更するだけであり標準化が容
易である。また微粉炭配合方式による粒度調節では、例
えば通常の粉砕原料炭に対して別に用意した粒子径0.
1mm以下の微粉炭含有率を高めた石炭を配合したり、
或いはかかる粒子径0.1mm以下の微粉炭及び/又は
粉コークスを配合してもよい。
There is no particular limitation on the method of adjusting the particle size of the raw coal having such a high content of pulverized coal. The raw coal is measured and blended for each group as described above, and pulverized to a predetermined particle size before being charged into the coking chamber of the coke oven. In this case, in order to increase the pulverized coal content, either the pulverized coal pulverization method or the pulverized coal compounding method may be used. Particle size control by coking coal pulverization method was used for normal coking coal particle size target management,
The motor current control value of the crusher, the standard for adjusting the gap between the repulsion plate and the impact blade of the crusher, and the like are simply changed as appropriate, and standardization is easy. In the particle size control by the pulverized coal blending method, for example, a particle size of 0.1 prepared separately from ordinary pulverized raw coal is used.
Mixing coal with a high pulverized coal content of 1 mm or less,
Alternatively, pulverized coal and / or coke powder having a particle diameter of 0.1 mm or less may be blended.

【0019】本発明では、コークス炉煙突から黒煙が発
生し又は黒煙の発生が予測されるときに、上記した微粉
炭含有率を高めた原料炭に変更する。ここでコークス炉
煙突から黒煙の発生が予測される発生原因としては、
(1)コークス炉に大きな温度変動が与えられたとき
(例えば、コークス減産日、稼働率変動、大雨・台風到
来時の水分増減、燃焼ガスの組成や供給量の変動時(ガ
ス管補修、高炉休風)など、(2)石炭の性状が変化し
たとき(例えば配合炭の変更、CMC定修に伴う石炭水
分の増減、揮発分変動)など、(3)コークス炉での炉
体劣化(炉齢進行など)、コークス押出時の機械的な外
力摩擦による損傷・変形が生じたときなどが挙げられ
る。なお、煙突からの黒煙は常に発生しているのではな
く、上記のような黒煙の発生原因がある場合、あるいは
従来からの慣例上からそれが予測される場合、そのタイ
ミングにマッチした事前アクションとして本発明方法を
適用することが最も好ましい。
In the present invention, when black smoke is generated from the coke oven chimney or when black smoke is predicted to be generated, the raw coal is changed to the above-described pulverized coal having a high pulverized coal content. Here, black smoke is predicted to be generated from the coke oven chimney.
(1) When a large temperature fluctuation is given to the coke oven (for example, when the production of coke is reduced, the operating rate fluctuates, the moisture increases or decreases when heavy rain or a typhoon arrives, or the combustion gas composition or supply changes (gas pipe repair, blast furnace (3) Deterioration of furnace body in coke oven (furnace), such as (2) changes in coal properties (for example, change of coal blend, increase or decrease in coal moisture due to CMC regular maintenance, volatile matter fluctuation), etc. Aging, etc.), when damage or deformation occurs due to mechanical external friction during coke extrusion, etc. Note that black smoke from the chimney is not always generated, but as described above. When there is a cause of occurrence, or when it is predicted from a conventional practice, it is most preferable to apply the method of the present invention as a pre-action that matches the timing.

【0020】本発明での微粉炭含有率を高めた原料炭へ
の変更作業は、それまで通常の原料炭を貯蔵していたコ
ークス炉装入炭槽が空になるのを待って、微粉炭含有率
を高めた原料炭に置換え貯蔵し、従来と同様に順次各炭
化室へ装入を行うだけでよい。かかる原料炭の変更期間
は、少なくとも全炉団の炭化室に微粉炭含有率を高めた
原料炭を装入し終わるまでは継続させることが好まし
い。一般に通常のコークス炉では、一つの炭化室に原料
炭を装入してから高温乾留で得られたコークスの窯出し
迄が約16〜24時間であることから微粉炭含有率を高
めた原料炭は約1日程度で炉団全ての炭化室に装入でき
る。
In the present invention, the operation for changing to the coking coal having a high pulverized coal content is performed by waiting for the coke oven charging coal tank storing the normal coking coal to empty until the pulverized coal is removed. It is only necessary to replace the raw coal with a higher content and store it, and to sequentially charge each carbonization chamber in the same manner as before. It is preferable that the period for changing the coking coal be continued at least until the coking coal having a high pulverized coal content is completely charged into the coking chamber of the entire furnace group. Generally, in a normal coke oven, it takes about 16 to 24 hours from the charging of the coking coal into one coking chamber to the removal of the coke obtained by high-temperature carbonization, so that the coking coal with a high pulverized coal content is increased. Can be charged to all coking chambers in about one day.

【0021】原料炭を炭化室に装入直後の乾留初期段階
には、乾留ガスが大量に発生して炭化室内のガス圧力は
200〜1000mmAqにも達する。一方燃焼室内の
ガス圧力は通常5mmAq程度である。従って、可燃ガ
スが大量に発生する炭化室と燃焼室とでは大きな圧力差
が生じる。この段階で特に通常の原料炭よりも微粉炭含
有率を高めた原料炭には、従来のドライシール用モルタ
ルの粒度(通常0.1mm以下100%)と同じ粒径
0.1mm以下の微粉炭含有率が増加しているだけでな
く、モルタルの粒度より大きい粒径(0.1〜0.3m
m)分布に属するものも多く含まれている。
In the initial stage of dry distillation immediately after charging the raw coal into the carbonization chamber, a large amount of dry distillation gas is generated, and the gas pressure in the carbonization chamber reaches 200 to 1000 mmAq. On the other hand, the gas pressure in the combustion chamber is usually about 5 mmAq. Therefore, a large pressure difference occurs between the carbonization chamber where a large amount of combustible gas is generated and the combustion chamber. In this stage, particularly, pulverized coal having a pulverized coal content higher than that of ordinary coking coal includes pulverized coal having a particle size of 0.1 mm or less, which is the same as the particle size (usually 0.1 mm or less 100%) of conventional mortar for dry sealing. Not only the content is increasing, but also the particle size (0.1-0.3 m
m) Many of those belonging to the distribution are also included.

【0022】本発明では、これら適性粒度分布を有する
微粉炭を大きな圧力差を利用して、炭化室仕切壁煉瓦の
目地亀裂部へ効率良く埋め込ませて完全に閉塞させるこ
とになる。かかる現象は原料炭の装入直後から約1時間
以内の初期段階で生じているものと考えられる。このよ
うにして目地亀裂部を埋めた微粉炭等は、以後の燃焼室
からの供給熱で熱分解してカーボン化するが、このカー
ボンはやがて緻密化して、煉瓦目地亀裂部でのシール材
の役割を果たし結果的に仕切壁でのガスシール性を向上
させる。これによって以降の炭化室で発生する可燃ガス
の燃焼室への漏れ込みは確実に防止されることとなる。
In the present invention, the pulverized coal having an appropriate particle size distribution is efficiently buried in the joint crack portion of the carbonized room partition wall brick by utilizing a large pressure difference, and is completely closed. It is considered that such a phenomenon occurs at an initial stage within about one hour immediately after charging of the raw coal. The pulverized coal or the like that fills the joint cracks in this way is thermally decomposed by the heat supplied from the combustion chamber to carbonize, but this carbon is eventually densified and the sealing material at the brick joint cracks It plays a role and consequently improves the gas sealing property at the partition wall. As a result, the leakage of the combustible gas generated in the subsequent carbonization chamber into the combustion chamber is reliably prevented.

【0023】なお仕切壁煉瓦の目地亀裂部又は局部的な
欠損部に埋め込まれたシール材の役割を果たしている目
地埋め材は、例えばコークス押出時やコークス押出完了
時の炭化室解放中に炭化室内に空気が侵入して、徐々に
燃焼消失してしまうのは避けられない。従って細粒化し
た原料炭への変更期間が短すぎるとシール効果の長期持
続性が薄れる。一方、微粉炭含有率を高めた原料炭への
変更期間が長すぎると、煙突黒煙の発生・増加を長期間
に亙って未然に防止できるという環境対策上のメリット
がある反面で、前述した如きタールスラッジ量の増加、
石炭粉砕機の電力使用量の増加、原料炭装入量の減少等
のデメリットも生じて、長期間の継続は経済的には不利
である。従って本発明における煙突からの黒煙発生又は
その予測がなされる時の黒煙発生防止のためのアクショ
ンとしては、その当日(又は予測の前日)から1〜7日
以内、好ましくは2〜4日程度継続させることが、シー
ル効果の持続性と経済性の両面で最適である。
The joint filling material which plays a role of a sealing material embedded in a joint crack portion or a locally defective portion of the partition wall brick is formed, for example, during coke extrusion or during opening of the coking chamber at the completion of coke extrusion. It is inevitable that air will enter and gradually burn and disappear. Therefore, if the period of change to the finely divided raw coal is too short, the long-term durability of the sealing effect is reduced. On the other hand, if the period of change to coking coal with an increased pulverized coal content is too long, there is a merit in environmental measures that the generation and increase of chimney black smoke can be prevented for a long time beforehand. Increase in the amount of tar sludge,
Disadvantages such as an increase in the amount of power used by the coal crusher and a decrease in the amount of coking coal are produced, so that long-term continuation is economically disadvantageous. Therefore, in the present invention, the action for preventing the generation of black smoke from the chimney or the prediction thereof when black smoke is generated is 1 to 7 days from the day (or the day before the prediction), preferably 2 to 4 days. It is optimum to maintain the sealing effect for a certain degree in terms of both the durability of the sealing effect and the economic efficiency.

【0024】[0024]

【実施例】以下本発明の実施の一例を説明する。なお下
記実施例における (1)リンゲルマン値は、煙突から排出されたばい煙の
濃度を通過光線100%,80%,60%,40%,2
0%,0%の場合にそれぞれ0,1,2,3,4,5度
の6段階に分けた度数値を示す(例えば、0度が全白、
5度が全黒となる)。 (2)煙突リンゲルマン濃度(度/月/煙突)とは、1
本の煙突から排出されるばい煙のリンゲルマン値を1分
置きに常時自動的に計測した結果の1ケ月間の平均値で
ある。この数値が高い程、燃焼室での不完全燃焼が生じ
ていることを示す。 (3)煙突リンゲルマン濃度ピーク値とは、原料炭が各
炭化室へ装入直後に煙突から排出されるばい煙のリンゲ
ルマン値ピーク値である。この数値が高い程、気密性の
低い炭化室であって燃焼室への可燃ガスの漏れ込みが多
いことを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. In the following examples, (1) Ringerman value is calculated based on the density of soot discharged from a chimney, passing light rays 100%, 80%, 60%, 40%, 2
In the case of 0% and 0%, the frequency values divided into six levels of 0, 1, 2, 3, 4, and 5 degrees are shown (for example, 0 degrees is all white,
5 degrees is all black). (2) Chimney Ringerman concentration (degree / month / chimney) is 1
This is the average value for one month as a result of automatically measuring the Ringerman value of soot emitted from the chimney of a book every other minute. A higher value indicates that incomplete combustion has occurred in the combustion chamber. (3) The chimney Ringerman concentration peak value is the peak value of the ringerman value of the soot discharged from the chimney immediately after charging the raw coal into each coking chamber. The higher this value is, the higher the leakage of combustible gas into the combustion chamber is in the carbonization chamber with low airtightness.

【0025】実施例1 通常の高炉用コークスとして配合調整された原料炭(水
分8〜10%含有)を粉砕粒度3.0mm以下78±1
%(但し0.1mm以下の微粉炭含有率7%)に粒度調
整してから石炭調湿設備(CMC)にて水分含有率6%
に予備乾燥し、炭化室と燃焼室が交互に配置され全炭化
室285門/3炉団を保有する連続操業下のコークス炉
に装入し通常の乾留条件下で高炉用コークスを製造す
る。このようなコークス炉の定常条件下では、煙突リン
ゲルマン濃度(度/月/煙突)は0.5以下であった。
ところがCMCの定修(約2週間)期間中に原料炭の水
分含有率が7〜10%の範囲で増減したり、定修後に水
分含有率が6%に減少したときなどに、煙突からの黒煙
が頻繁に発生し、その都度リンゲルマン濃度が0.5
(度/月/煙突)以上に達する日が何日も続いた。
Example 1 Raw coal (containing 8 to 10% of water) blended and adjusted as ordinary blast furnace coke was ground to a grain size of 3.0 mm or less 78 ± 1.
% (However, the content of pulverized coal of 0.1 mm or less is 7%), and then the moisture content is 6% by the coal humidity control equipment (CMC).
Then, the coke oven and the combustion chamber are alternately arranged, and the coke oven is charged into a coke oven under continuous operation having a total of 285/3 coke ovens to produce coke for a blast furnace under ordinary conditions of carbonization. Under the steady conditions of such a coke oven, the chimney Ringerman concentration (degree / month / chimney) was 0.5 or less.
However, when the moisture content of coking coal fluctuates in the range of 7 to 10% during the regular repair period (about 2 weeks) of CMC, or when the moisture content decreases to 6% after regular repair, etc. Black smoke frequently occurs, and each time the Ringerman concentration becomes 0.5
(Degrees / month / chimney) The days that exceeded the number of days continued for many days.

【0026】そこで、原料炭水分の変動時(CMCの定
修及び突発停止時など)に粉砕粒度を3.0mm以下8
2%に高めて細粒化した原料炭に変更する粒度アクショ
ン操作を2〜3日間づつ継続する操作をこまめに(約2
ケ月間に3回)実施した結果、煙突黒煙の発生は殆ど見
られなくなり、リンゲルマン濃度は常時0.3(度/月
/煙突)以下で安定することが確かめられた。なお、全
炭化室285門/3炉団における煙突リンゲルマン濃度
ピーク値が3(度/窯)以上の平均出現率は、原料炭変
更の粒度アクション操作を実施する以前(約1年半)が
4.5%であったが、実施して以降(約10月間)が
0.6%と大幅に減少していた。またこの期間における
煙突リンゲルマン濃度(度/月/煙突)の平均値も前者
では0.31であったものが後者では0.24%へと低
下し、煙突黒煙発生の抑制効果が確実に発揮されている
ことが明らかとなった。この結果、煤塵発生量の減少、
NOX排出量の減少、炭酸ガス排出量の減少といった環
境対応力の向上が図られることとなった。
Therefore, when the water content of the raw coal fluctuates (when the CMC is regularly repaired or suddenly stopped, etc.), the pulverized particle size is 3.0 mm or less.
Frequently carry out the operation to continue the granularity action operation to increase to 2% and to change to the coking coal which has been refined for 2 to 3 days (approximately 2
As a result, it was confirmed that almost no chimney black smoke was generated, and the Ringermann concentration was always stable at 0.3 (degrees / month / chimney) or less. In addition, the average appearance rate of the chimney Ringerman concentration peak value of 3 (degrees / kiln) or more in all the coking chambers 285 gates / 3 furnaces was before carrying out the granularity action operation of coking coal change (about one and a half years). It was 4.5%, but since the implementation (about 10 months), it has decreased significantly to 0.6%. The average value of the concentration of chimney Ringerman (degree / month / chimney) during this period was 0.31 in the former, but decreased to 0.24% in the latter, and the effect of suppressing the generation of black smoke from the chimney was surely confirmed. It was clear that it was being demonstrated. As a result, the amount of generated dust decreases,
Improvements in environmental responsiveness, such as a reduction in NOx emissions and a reduction in carbon dioxide emissions, have been achieved.

【0027】実施例2 実施例1と同じコークス炉にて、実施例1で使用したと
同じく通常の高炉用コークスとして配合調整された原料
炭(水分8〜10%含有)を粉砕粒度3.0mm以下7
8±1%(但し0.1mm以下の微粉炭含有率約6〜7
%)に粒度調整してから石炭調湿設備(CMC)にて水
分含有率6.0〜6.5%に予備乾燥し通常の乾留条件
下で高炉用コークスを連続操業下で製造していた。とこ
ろがある期間、原料炭の特殊事情から揮発分含有率が通
常の約28%前後から25〜24%に徐々に低下する期
間が継続し、仕切壁レンガ目地を埋める緻密化カーボン
の生成要因である揮発分含有率が低下して緻密化カーボ
ンが燃焼消失したことによる炭化室のガスシール効果が
悪化したためと思われる煙突黒煙が頻繁に発生し、リン
ゲルマン濃度0.5度/hr以上の日が21日間続い
た。そこで揮発分含有率が25%前後の低揮発分原料炭
操業が継続している期間中に、粉砕粒度を3.0mm以
下78%から80%に高める変更操作を3日間継続した
結果、リンゲルマン濃度の平均値は0.7(度/月/煙
突)から0.45(度/月/煙突)に低減した。更に粉
砕粒度を3.0mm以下80%から82%に高める変更
操作を引き続き3日間継続した結果、リンゲルマン濃度
の平均値は0.45(度/月/煙突)から0.3(度/
月/煙突)に低減した。このことから、低揮発分炭操業
条件下でも本発明の煙突黒煙発生の抑制効果が確かめら
れた。
Example 2 In the same coke oven as in Example 1, raw coal (containing 8 to 10% water) blended and adjusted as ordinary blast furnace coke as used in Example 1 was ground to a particle size of 3.0 mm. Below 7
8 ± 1% (however, the content of pulverized coal less than 0.1 mm is about 6-7
%), And preliminarily dried to a moisture content of 6.0 to 6.5% in a coal humidity control facility (CMC) to produce blast furnace coke under continuous dry distillation conditions under continuous operation. . However, for a certain period, due to the special circumstances of coking coal, the period in which the volatile content gradually decreases from about 28% to 25 to 24% continues, and is a factor of producing densified carbon filling the partition wall joints. In the case where the chimney black smoke, which is considered to be due to the deterioration of the gas sealing effect of the carbonization chamber due to the burning of the densified carbon due to the decrease in the volatile matter content, frequently occurred, and the ringerman concentration was 0.5 degrees / hr or more. For 21 days. Therefore, while the operation of the low volatile content coking coal having a volatile content of about 25% was continued, a change operation of increasing the pulverized particle size from 78% of 3.0 mm or less to 80% was continued for 3 days. The average concentration was reduced from 0.7 (degrees / month / chimney) to 0.45 (degrees / month / chimney). Furthermore, as a result of continuing a change operation for increasing the pulverized particle size from 80% to 82% from 3.0 mm or less for 3 days, the average value of the Ringerman concentration was changed from 0.45 (degrees / month / chimney) to 0.3 (degrees / month).
Moon / chimney). From this, it was confirmed that the effect of suppressing the generation of black smoke from the chimney of the present invention even under low volatile coal operating conditions.

【0028】[0028]

【発明の効果】本発明によれば、特別の設備投資や設備
改造をすることなく、しかもモルタル等の材料、吹き付
け設備等を使用することなく、粉砕粒度の異なる原料炭
への変更という一度のアクションだけで、煙突黒煙の発
生・増加を比較的短期間に抑制し、或いは未然に防止す
ることができる。これによって、ばい塵発生量の減少、
NOX排出量の減少、炭酸ガス排出量の減少といった環
境対応力の向上効果も発揮される。更にはコークス炉ガ
スの回収増加にも寄与すると同時に、煙突黒煙発生の抑
制により緊急の窯口補修強化体制を組む回数が減少し、
結果的に炉体補修回数が減少しコークス炉炉体寿命延長
も期待される等の顕著な作用効果を発揮する。
According to the present invention, it is possible to change to a coking coal having a different crushing particle size without using special equipment investment or equipment remodeling, and without using materials such as mortar and spraying equipment. The action alone can suppress or prevent the occurrence and increase of chimney black smoke in a relatively short period of time. This reduces the amount of dust generated,
The effect of improving environmental responsiveness, such as a reduction in NOX emission and a reduction in carbon dioxide emission, is also exhibited. Furthermore, while contributing to an increase in the recovery of coke oven gas, the number of times of establishing an emergency kiln mouth repair strengthening system by suppressing the generation of chimney black smoke has been reduced,
As a result, the number of furnace body repairs is reduced and the life of the coke furnace body is prolonged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コークス炉における微粉炭含有比率の異なる装
入炭と煙突リンゲルマン濃度差の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between charged coal having different pulverized coal content ratios in a coke oven and a difference in the concentration of chimney Ringerman.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化室と燃焼室からなる窯を多数並列に
配置して炉団を形成しているコ−クス炉で原料炭を乾留
処理する際に、コークス炉煙突から黒煙が発生し又は黒
煙の発生が予測されるとき、炭化室へ装入する原料炭を
通常の場合より微粉炭含有率を高めた原料炭に短期間だ
け変更することによって原料炭の一部を炭化室炉壁煉瓦
の目地亀裂部に埋め込ませ、炭化室と燃焼室のガスシー
ル性を向上させることを特徴とするコークス炉煙突から
の黒煙発生防止方法。
When coking coal is carbonized in a coke oven forming a furnace group by arranging a large number of kilns comprising a carbonization chamber and a combustion chamber in parallel, black smoke is generated from a coke oven chimney. Alternatively, when black smoke is expected to occur, a part of the coking coal is changed into a coking chamber furnace by changing the coking coal charged to the coking chamber to a coking coal with a higher pulverized coal content than normal in a short period of time. A method for preventing generation of black smoke from a chimney of a coke oven characterized by being embedded in a joint crack of a wall brick to improve gas sealing properties of a carbonization chamber and a combustion chamber.
【請求項2】 微粉炭含有率を高めた原料炭への変更期
間は、1〜7日の範囲内とする請求項1に記載のコーク
ス炉煙突からの黒煙発生防止方法。
2. The method for preventing black smoke generation from a coke oven chimney according to claim 1, wherein the period of change to coking coal having a higher pulverized coal content is within a range of 1 to 7 days.
【請求項3】 微粉炭含有率を高めた原料炭は、粒径
3.0mm以下の含有率が通常の場合より2〜5Wt%だ
け高くなるように細粒化したものである請求項1または
請求項2に記載の黒煙発生防止方法。
3. The raw coal having an increased content of pulverized coal is finely divided so that the content of particles having a particle diameter of 3.0 mm or less is higher by 2 to 5 Wt% than usual. The method for preventing black smoke generation according to claim 2.
【請求項4】 微粉炭含有率を高めた原料炭には、粒径
0.1mm以下の微粉炭が8〜10Wt%含有している請
求項1〜請求項3のいずれか1項に記載のコークス炉煙
突からの黒煙発生防止方法。
4. The raw coal according to claim 1, wherein the pulverized coal having an increased pulverized coal content contains 8 to 10 Wt% of pulverized coal having a particle size of 0.1 mm or less. How to prevent black smoke from the coke oven chimney.
【請求項5】 通常の原料炭が粒径3.0mm以下77
〜79%に粒度調整されているときに、微粉炭含有率を
高めた原料炭として粒径3.0mm以下80〜83%に
粒度調整したものに変更する請求項1に記載のコークス
炉煙突からの黒煙発生防止方法。
5. An ordinary coking coal having a particle diameter of 3.0 mm or less 77.
The coke oven chimney according to claim 1, wherein when the particle size is adjusted to ~ 79%, the raw coal having a high content of pulverized coal is changed to a particle size adjusted to 80 to 83% with a particle size of 3.0mm or less. Black smoke generation prevention method.
JP25554397A 1997-09-19 1997-09-19 How to prevent black smoke from the coke oven chimney Expired - Fee Related JP3943205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25554397A JP3943205B2 (en) 1997-09-19 1997-09-19 How to prevent black smoke from the coke oven chimney

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25554397A JP3943205B2 (en) 1997-09-19 1997-09-19 How to prevent black smoke from the coke oven chimney

Publications (2)

Publication Number Publication Date
JPH1192765A true JPH1192765A (en) 1999-04-06
JP3943205B2 JP3943205B2 (en) 2007-07-11

Family

ID=17280197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25554397A Expired - Fee Related JP3943205B2 (en) 1997-09-19 1997-09-19 How to prevent black smoke from the coke oven chimney

Country Status (1)

Country Link
JP (1) JP3943205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189918A (en) * 2014-03-28 2015-11-02 新日鐵住金株式会社 A method for measuring and repairing cracks in furnace body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189918A (en) * 2014-03-28 2015-11-02 新日鐵住金株式会社 A method for measuring and repairing cracks in furnace body

Also Published As

Publication number Publication date
JP3943205B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
CN203744266U (en) Auxiliary thermal power generation system for waste incineration
CN200958757Y (en) Vertical thermal-decomposition incinerator
CN108424988B (en) Liquid slag buffer device with concurrent heating and preheating functions
CN101037193A (en) Technology and device for producing yellow Phosphorus by electric oven process
CN201242342Y (en) Shaft kiln
CN112628738A (en) Plasma fly ash melting treatment system and method combined with waste incineration power plant
CN103822357A (en) Horizontal pulverized coal organic heat carrier boiler
CN1245341C (en) Process for producing mineral wool granular cotton and its hot air system
CN103292342A (en) Method for co-combusting Xinjiang Guanghui lignite in combusting bitumite boiler
JPH1192765A (en) Method for preventing evolution of black smoke from stack of coke oven
CN105271841A (en) Rotary kiln device and method for constant temperature indirect calcination of limestone
CN202141190U (en) Biomass energy hot-blast stove
CN103398395A (en) Method and system for ultra-dilute-phase pneumatic conveying of petroleum coke powdered solid fuel for combustion
CN203771690U (en) Horizontal coal dust organic heat carrier boiler
CN114774150A (en) Method for reducing heat consumption of tamping coke oven
CN105090934B (en) A kind of low temperature clean combustion of coal method applied to fixed bed boiler
CN200964394Y (en) Vertical cleaning heat recovery coking furnace
CN110260328B (en) Smokeless oil-free vertical pyrolysis gasifier for household garbage
CN204625480U (en) A kind of rotary kiln device of constant temperature indirect calcination Wingdale
AU722145B2 (en) The production of hot metal by the melting down of scrap as an iron source.
CN207514916U (en) The smokeless pyrolysis gasification furnace of house refuse
CN112833403A (en) Stepped pre-combustion furnace system for hazardous waste treatment and hazardous waste treatment method
CN108266734B (en) A kind of high-moisture rubbish cracking apparatus and method
CN101852427A (en) Petroleum coke direct burner
CN111397385A (en) Automatic ash removal horizontal gas heat exchanger economizer system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees