JPH1192409A - Photochlorination of methylbenzene compounds - Google Patents

Photochlorination of methylbenzene compounds

Info

Publication number
JPH1192409A
JPH1192409A JP25877797A JP25877797A JPH1192409A JP H1192409 A JPH1192409 A JP H1192409A JP 25877797 A JP25877797 A JP 25877797A JP 25877797 A JP25877797 A JP 25877797A JP H1192409 A JPH1192409 A JP H1192409A
Authority
JP
Japan
Prior art keywords
reaction
chlorine
tank
methylbenzenes
photochlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25877797A
Other languages
Japanese (ja)
Inventor
Chihiro Takashima
千博 高島
Hiroshi Aito
広 合戸
Tokuji Tsuneizumi
徳次 常泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP25877797A priority Critical patent/JPH1192409A/en
Publication of JPH1192409A publication Critical patent/JPH1192409A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for the photochlorination of a methylbenzene compound, capable of controlling the production of by-products as much as possible and enabling the efficient production of a highly pure trichloromethylbenzene useful for medicines, UV light absorbents and the like by controlling the chlorine concentration of a reaction system to a specific value or smaller in the latter reaction half when the hydrogen atoms in the side methyl group of a methylbenzene is chlorinated by a photochlorination reaction in a specific chlorination degree or larger. SOLUTION: This method for the photo-chlorination of the side chain methyl group of a methylbenzene (preferably toluene, o-xylene or the like) comprises controlling the reaction temperature of the first half of the reaction to 50-150 deg.C and controlling the chlorine concentration of the reaction system and the reaction temperature to <=10.0 g/liter and 100-150 deg.C, respectively, in the latter half giving a chlorination degree of 2.0-2.8. The chlorination degree expresses the degree of chlorine atoms to hydrogen atoms in the chlorinated methyl group. Thereby, the methylbenzene can be chlorinated without using an additive for catching a metal component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トルエン、キシ
レン等の側鎖メチル基を有するメチルベンゼン類のメチ
ル基を光塩素化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for photochlorinating a methyl group of methylbenzenes having a side chain methyl group such as toluene and xylene.

【0002】[0002]

【従来の技術】例えば、トルエンの側鎖メチル基を光塩
素化して得られるベンゾトリクロライドは、医薬品、紫
外線吸収剤、農薬、染料、塩化ベンゾイル等の酸クロラ
イド等の製造原料として多用されている。
2. Description of the Related Art For example, benzotrichloride obtained by photochlorinating the side chain methyl group of toluene is widely used as a raw material for producing pharmaceuticals, ultraviolet absorbers, pesticides, dyes, acid chlorides such as benzoyl chloride and the like. .

【0003】このようなベンゾトリクロライドを工業的
に製造する方法としては、一般に、光照射下に塩素を作
用させる光塩素化反応が採用されている。そして、この
トルエンの光塩素化反応においては、主として塩化ベン
ジル、塩化ベンザル、及びベンゾトリクロライドが生成
するが、反応槽内の光の届かない場所等で核塩素化物が
副生したり、更には、鉄等の金属成分の存在、気相部分
での爆発的燃焼の発生、反応液中の塩素濃度の高騰等に
より高沸点副生物が生成し、これが原因して反応液が着
色し、反応系の光の透過性が低下してますます副反応が
進行し、結果として目的物であるベンゾトリクロライド
の収率が低下したり、その純度が低下することがある。
As a method for industrially producing such benzotrichloride, generally, a photochlorination reaction in which chlorine acts under light irradiation is employed. Then, in this photochlorination reaction of toluene, benzyl chloride, benzal chloride, and benzotrichloride are mainly generated, but chlorinated nuclei are by-produced in places where light does not reach in the reaction tank, and furthermore, The presence of metal components such as iron, explosive combustion in the gas phase, and a rise in the chlorine concentration in the reaction solution produce high-boiling by-products, which cause the reaction solution to become colored, As a result, the side reaction progresses more and more, and as a result, the yield of benzotrichloride, which is the target substance, or the purity thereof may decrease.

【0004】そこで、このような問題を解決する方法と
して、塩素化反応を不完全な状態で停止し、蒸留により
未反応原料を回収して再利用する方法が知られている
が、この方法においては、蒸留操作が必須になり、ま
た、未反応物を回収して再利用するためのクッションタ
ンク等の設備も必要になり、操業上も、また、設備コス
ト的にも負担が多くなり、工業的には必ずしも満足でき
るものではない。
Therefore, as a method for solving such a problem, there is known a method in which the chlorination reaction is stopped in an incomplete state, and the unreacted raw material is recovered by distillation and reused. Requires a distillation operation, and equipment such as a cushion tank for collecting and reusing unreacted substances is also required. It is not always satisfactory.

【0005】また、別の方法として、例えば、尿素や酸
アミドを添加して反応系の金属成分を捕捉する方法(米
国特許第2,695,873号明細書)、尿素縮合物に
より反応系の金属成分を捕捉する方法(特開昭51−8
222号公報)、尿素又はその縮合物を用いて予め原料
中の鉄分を除去する方法(特開昭51−8223号公
報)、安定剤としてアルキレンポリアミンを反応系に添
加して核塩素化等の副反応を抑制する方法(特開平8−
208538号公報)、反応器を改良して原料と塩素と
の気液接触状態や光照射状態を改善した方法(特開平6
−293677号公報及び特開平6−298671号公
報)等が提案されている。
Further, as another method, for example, a method of adding urea or acid amide to capture the metal component of the reaction system (US Pat. No. 2,695,873), Method for capturing metal components (Japanese Patent Laid-Open No. 51-8 / 1976)
No. 222), a method in which iron in the raw material is removed in advance using urea or a condensate thereof (Japanese Patent Application Laid-Open No. 51-8223), an alkylenepolyamine as a stabilizer is added to a reaction system to prevent nuclear chlorination or the like. Method for suppressing side reaction (Japanese Unexamined Patent Publication No.
No. 208538), a method in which the reactor is improved to improve the gas-liquid contact state between the raw material and chlorine and the light irradiation state (Japanese Patent Application Laid-open No.
-293677 and JP-A-6-298671).

【0006】しかしながら、これらの方法においては、
金属成分を捕捉する目的で、あるいは安定剤として添加
される尿素、酸アミド、尿素縮合物、アルキレンポリア
ミン等の添加剤を用いる方法においては、これらの添加
物の存在が光塩素化反応に影響して目的物のベンゾトリ
クロライド等の生成やその収率に悪影響を及ぼしたり、
反応終了後にこれらの添加物を回収し除去する必要が生
じたり、ゲル化した鉄分の除去工程が必要になる等、別
の問題が発生して作業性や経済性等の点から必ずしも満
足できるものではなく、また、反応器を改良して気液接
触状態や光照射状態を改善する方法においては、この反
応器の改良に伴って制御系が複雑になり、これら反応器
の改良や制御系の設備に多大な費用を必要とし、しか
も、特に高沸点副生物の生成を抑制するという観点から
は必ずしも満足できる効果が得られない。
[0006] However, in these methods,
In a method using additives such as urea, acid amide, urea condensate, and alkylene polyamine added for the purpose of capturing metal components or as a stabilizer, the presence of these additives affects the photochlorination reaction. Adversely affect the production of benzotrichloride or the like as the target product and its yield,
After the completion of the reaction, it is necessary to collect and remove these additives, or a step of removing gelled iron is required. However, in the method for improving the gas-liquid contact state and the light irradiation state by improving the reactor, the control system becomes complicated with the improvement of the reactor, and the improvement of these reactors and the control system A large cost is required for the equipment, and a satisfactory effect cannot always be obtained from the viewpoint of suppressing the generation of high-boiling by-products.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者ら
は、トルエンやキシレン等のメチルベンゼン類の側鎖メ
チル基を光塩素化する方法において、金属成分を捕捉す
るための添加剤を添加することなく、また、複雑な制御
を伴うような反応器の改良を必要とすることなく、光塩
素化反応によってメチルベンゼン類の側鎖メチル基を効
率的に、かつ、高純度で収率良く完全に塩素化して側鎖
トリクロロメチル基まで塩素化できる方法について鋭意
検討した結果、1個のメチル基中の水素原子が塩素原子
に置換された比率で表される塩素化度が2.0〜2.8
の範囲内のある値を超えた時点から急激に副生物の生成
が始まり、そして、反応系の塩素濃度を10g/リット
ル以下に制御することによりこの副生物の生成を可及的
に抑制できることを見出し、本発明を完成した。
Therefore, the present inventors add an additive for capturing a metal component in a method for photochlorinating a side chain methyl group of methylbenzenes such as toluene and xylene. Without the need for modification of the reactor with complicated control, the side chain methyl groups of methylbenzenes can be efficiently and completely purified with high purity by photochlorination. As a result of intensive studies on a method capable of chlorinating to a side chain trichloromethyl group by chlorination, a chlorination degree represented by a ratio in which hydrogen atoms in one methyl group are replaced with chlorine atoms is 2.0-2. .8
The generation of by-products starts sharply from a point in time when the value exceeds a certain value in the range, and the generation of this by-product can be suppressed as much as possible by controlling the chlorine concentration of the reaction system to 10 g / liter or less. Heading, the present invention has been completed.

【0008】従って、本発明の目的は、特別な添加剤の
使用や反応器の改良を必要とすることなく、簡単な方法
で、しかも、可及的に副生物の生成を抑制することがで
き、高純度で収率良く目的のトリクロロメチルベンゼン
類を製造することができるメチルベンゼン類の光塩素化
方法を提供することにある。
Accordingly, an object of the present invention is to provide a simple method and suppress the generation of by-products as much as possible without using special additives or improving the reactor. Another object of the present invention is to provide a method for photochlorinating methylbenzenes, which can produce the target trichloromethylbenzenes with high purity and high yield.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、メ
チルベンゼン類の側鎖メチル基を光塩素化する方法にお
いて、1個のメチル基中の水素原子が塩素原子に置換さ
れた比率で表される塩素化度が2.0〜2.8の範囲内
の所定の値以上となった反応後半において、反応系の塩
素濃度を10.0g/リットル以下に制御するメチルベ
ンゼン類の光塩素化方法である。
That is, the present invention relates to a method for photochlorinating a side chain methyl group of methylbenzenes, wherein the ratio of hydrogen atoms in one methyl group to chlorine atoms is expressed as a ratio. Photochlorination of methylbenzenes to control the chlorine concentration of the reaction system to 10.0 g / liter or less in the latter half of the reaction when the degree of chlorination to be performed is not less than a predetermined value in the range of 2.0 to 2.8. Is the way.

【0010】また、本発明は、上記メチルベンゼン類の
光塩素化方法において、反応開始時から反応前半におけ
る反応温度を50〜150℃とし、反応後半の反応温度
を100〜150℃とする方法であり、また、反応系へ
の塩素供給量が比較的高い場合には塩素化度2.0〜
2.8の範囲内の比較的低い値から、また、塩素供給量
が比較的低い場合には塩素化度2.0〜2.8の範囲内
の比較的高い値から、反応後半として反応系の塩素濃度
を制御する方法であり、更に、反応系への塩素供給量を
制御することにより反応系の塩素濃度の制御を行う方法
である。
The present invention also relates to a method for photochlorinating methylbenzenes, wherein the reaction temperature in the first half of the reaction from the start of the reaction is 50 to 150 ° C., and the reaction temperature in the second half of the reaction is 100 to 150 ° C. If the amount of chlorine supplied to the reaction system is relatively high,
From a relatively low value in the range of 2.8, or from a relatively high value in the range of chlorination degree 2.0 to 2.8 when the chlorine supply is relatively low, the reaction This is a method of controlling the chlorine concentration of the reaction system, and further controlling the chlorine concentration of the reaction system by controlling the amount of chlorine supplied to the reaction system.

【0011】本発明において、原料として用いられるメ
チルベンゼン類としては、ベンゼン環にメチル基を有す
る化合物であればよいが、代表的には、1個の側鎖メチ
ル基を有するトルエンあるいはその誘導体や、2個の側
鎖メチル基を有するo−キシレン、m−キシレン、p−
キシレン、又はこれらの混合物等のキシレン類あるいは
その誘導体等を挙げることができる。
In the present invention, the methylbenzene used as a raw material may be any compound having a methyl group on a benzene ring, but typically, toluene having one side-chain methyl group or a derivative thereof, O-xylene having two side chain methyl groups, m-xylene, p-
Xylene such as xylene or a mixture thereof, or a derivative thereof, and the like can be given.

【0012】本発明においては、1個のメチル基中の3
個の水素原子が塩素原子に置換された比率で表される塩
素化度が2.0〜2.8の範囲内の所定の値未満である
か、それ以上であるかによって、光塩素化反応を反応前
半と反応後半とに区別し、反応後半においては反応系の
塩素濃度を10.0g/リットル以下、好ましくは5.
0g/リットル以下の範囲に制御するものである。反応
後半における反応系の塩素濃度が10g/リットルを超
えると、副生物の生成を有意義な範囲で抑制することが
難しくなる。塩素濃度については、副生物の生成を抑制
するという観点からは低い程よいが、あまりに低すぎる
と反応速度が極端に低下するので、反応速度を考慮して
適宜決定する。
In the present invention, 3 in one methyl group
The photochlorination reaction depends on whether the degree of chlorination represented by the ratio of the number of hydrogen atoms replaced by chlorine atoms is less than or equal to a predetermined value in the range of 2.0 to 2.8. Is divided into the first half of the reaction and the second half of the reaction. In the latter half of the reaction, the chlorine concentration of the reaction system is 10.0 g / liter or less, preferably 5.
It is controlled to a range of 0 g / liter or less. When the chlorine concentration of the reaction system in the latter half of the reaction exceeds 10 g / liter, it is difficult to suppress the generation of by-products within a meaningful range. The chlorine concentration is preferably as low as possible from the viewpoint of suppressing the generation of by-products. However, if it is too low, the reaction rate is extremely reduced. Therefore, the chlorine concentration is appropriately determined in consideration of the reaction rate.

【0013】この光塩素化反応を反応前半と反応後半と
に区別する塩素化度の値は、反応系に供給される塩素の
供給速度によって任意に決定することができるが、一般
的には、塩素供給量が比較的高くて反応速度が早い場合
には上記塩素化度2.0〜2.8の範囲内から比較的低
い値が設定され、また、塩素供給量が比較的低くて反応
速度が遅い場合には上記塩素化度2.0〜2.8の範囲
内から比較的高い値が設定される。また、この光塩素化
反応を反応前半から反応後半に切り換える際の塩素化度
の値は、使用するメチルベンゼン類の種類によっても異
なるが、2.0より低い値にすることは生産速度が低下
して工業的に好ましくなく、また、この塩素化度の値を
2.8より高い値にすることには反応液中の塩素濃度の
上昇により副生物の生成を抑制できなくなる場合が生じ
る。
The value of the degree of chlorination that distinguishes the photochlorination reaction into the first half and the second half of the reaction can be arbitrarily determined according to the supply rate of chlorine supplied to the reaction system. When the amount of chlorine supplied is relatively high and the reaction rate is high, a relatively low value is set within the range of the chlorination degree of 2.0 to 2.8. Is slow, a relatively high value is set from the range of the chlorination degree of 2.0 to 2.8. The value of the degree of chlorination when this photochlorination reaction is switched from the first half of the reaction to the second half of the reaction varies depending on the type of methylbenzenes used, but a value lower than 2.0 decreases the production rate. If the chlorination degree is set to a value higher than 2.8, the production of by-products may not be suppressed due to an increase in the chlorine concentration in the reaction solution.

【0014】例えば、メチルベンゼン類がトルエンであ
って、反応開始時から反応前半における反応系への塩素
供給量(仕込み原料の重量に対して時間当たりの塩素
量)がこの原料トルエンに対して40〜4重量%/hr
である場合、光塩素化反応をその反応前半から塩素濃度
の制御を行う反応後半へと切り換える際の塩素化度の値
を、上記塩素供給量に反比例させて塩素化度2.5〜
2.8の範囲内から決定するのがよい。このように反応
前半から反応後半へと切り換える塩素化度の値を塩素供
給量に応じて設定することにより、必要以上に反応終了
までの反応時間を長くすることなく副生物の生成を効果
的に抑制することができる。
For example, methylbenzenes are toluene, and the amount of chlorine supplied to the reaction system from the start of the reaction to the first half of the reaction (the amount of chlorine per hour with respect to the weight of the charged raw material) is 40 to the raw material toluene. ~ 4% by weight / hr
In the case of, the value of the chlorination degree at the time of switching the photochlorination reaction from the first half of the reaction to the second half of the reaction for controlling the chlorine concentration is inversely proportional to the chlorine supply amount, and the chlorination degree is 2.5 to
It is better to determine from the range of 2.8. By setting the value of the degree of chlorination that switches from the first half of the reaction to the second half of the reaction in accordance with the amount of chlorine supplied in this manner, the generation of by-products can be effectively prevented without unnecessarily prolonging the reaction time until the end of the reaction. Can be suppressed.

【0015】本発明においては、反応開始時から反応前
半において副生物の生成を可及的に抑制するために、好
ましくはこの反応開始時から反応前半における反応温度
を50〜150℃、より好ましくは100〜150℃と
するのがよく、また、反応後半での反応速度が極端に低
下するのを防止するために、好ましくはこの反応後半の
反応温度を100〜150℃とするのがよい。このよう
に反応温度を制御することにより、可及的に副生物の生
成を抑制しつつ反応速度が極端に低下するのを防止する
ことができ、高純度のトリクロロメチルベンゼン類を収
率良く効率的に製造することができる。
In the present invention, in order to minimize the formation of by-products in the first half of the reaction from the start of the reaction, the reaction temperature in the first half of the reaction from the start of the reaction is preferably 50 to 150 ° C., more preferably The reaction temperature is preferably from 100 to 150 ° C, and in order to prevent the reaction rate in the latter half of the reaction from extremely lowering, the reaction temperature in the latter half of the reaction is preferably from 100 to 150 ° C. By controlling the reaction temperature in this way, it is possible to prevent the reaction rate from dropping extremely while suppressing the generation of by-products as much as possible, and to efficiently produce high-purity trichloromethylbenzenes in good yield. It can be manufactured in a special way.

【0016】また、本発明の方法を実施するための反応
装置については、特に制限されるものではなく、従来公
知の装置をそのまま使用することができるが、好ましく
は、塩素化度が2.0〜2.8の範囲内の所定の値未満
の反応液を収容して反応前半の低次槽となる反応槽と、
塩素化度が2.0〜2.8の範囲内の所定の値以上の反
応液を収容して反応後半の高次槽となる反応槽とを有す
る、少なくとも2槽の反応槽を接続した反応装置を用い
るのがよく、この際に、高次槽側の反応系の塩素濃度を
10.0g/リットル以下に制御すると共に、この高次
槽側の排ガスを低次槽側に供給し、高次槽側の排ガス中
に含まれる未反応塩素を低次槽側で反応させるのがよ
い。
The reaction apparatus for carrying out the method of the present invention is not particularly limited, and a conventionally known apparatus can be used as it is, but preferably has a chlorination degree of 2.0. A reaction tank containing a reaction solution of less than a predetermined value in the range of ~ 2.8 and serving as a lower tank in the first half of the reaction;
A reaction in which at least two reaction tanks are connected, each having a reaction tank containing a reaction solution having a chlorination degree of not less than a predetermined value in the range of 2.0 to 2.8 and serving as a higher-order tank in the latter half of the reaction. An apparatus is preferably used. At this time, the chlorine concentration in the reaction system on the higher tank side is controlled to 10.0 g / liter or less, and the exhaust gas from the higher tank side is supplied to the lower tank side, whereby the higher tank is supplied. The unreacted chlorine contained in the exhaust gas on the next tank side is preferably reacted on the lower tank side.

【0017】例えば、2槽の反応槽を接続した反応装置
を用いた場合には、その一方を反応前半の低次槽とする
と共に他方を反応後半の高次槽とし、2槽の反応槽を交
互に低次槽と高次槽とに切り換えて操業でき、また、3
槽あるいはそれ以上の反応槽を直列に接続した反応装置
を用いた場合には、各反応槽を到達した塩素化度に応じ
て順次低次槽と高次槽とに切り換えながら連続的に操業
できる。このように複数の反応槽を接続した反応装置を
用いることにより、低次槽として操業されている反応槽
が排ガス中の塩素を吸収し、反応槽の外部に排出される
排気中の塩素含有量を可及的に低減することができる。
For example, in the case of using a reaction apparatus in which two reaction tanks are connected, one of them is used as a lower tank in the first half of the reaction and the other is used as a higher tank in the second half of the reaction, and the two reaction tanks are used. The operation can be alternately switched between the lower tank and the higher tank.
In the case of using a reactor in which tanks or more reaction tanks are connected in series, it is possible to continuously operate while sequentially switching to a lower tank and a higher tank in accordance with the degree of chlorination that has reached each reaction tank. . By using a reaction apparatus in which a plurality of reaction tanks are connected in this way, the reaction tank operated as a lower tank absorbs chlorine in the exhaust gas, and the chlorine content in the exhaust gas discharged to the outside of the reaction tank. Can be reduced as much as possible.

【0018】[0018]

【発明の実施の形態】以下、実施例及び比較例に基づい
て、本発明の好適な実施の形態を説明する。なお、以下
の実施例及び比較例において、反応物の塩素化度、反応
液中(反応系)の塩素濃度、及び生成物の純度は、それ
ぞれ以下のような方法で測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below based on examples and comparative examples. In the following Examples and Comparative Examples, the chlorination degree of the reactant, the chlorine concentration in the reaction solution (reaction system), and the purity of the product were measured by the following methods, respectively.

【0019】〔反応物の塩素化度〕反応槽内から反応物
を採取してガスクロマトグラフ分析を行い、メチル基の
3個の水素が1〜3個の範囲で塩素に置換した逐次生成
物(主成分)の塩素化度に含有重量%を按分し、計算し
て求める。
[Degree of Chlorination of Reactant] The reactant was sampled from the reactor and subjected to gas chromatographic analysis to determine the sequential product in which three hydrogens in the methyl group were replaced with chlorine in the range of 1 to 3 ( The content percentage by weight is proportionally divided into the chlorination degree of the main component) and calculated.

【0020】〔反応液中の塩素濃度〕反応槽内から反応
物5gを採取し、この反応物をN/2のNaOH水溶液
25ml中に入れ、10分間よく振盪した後、1gのK
Iと10mlの(1+1)酢酸水溶液とを加え、N/1
0のNa2 2 3 水溶液を用いて溶液が微黄色から透
明に変化した点を終点として滴定し、ヨウ素消費量から
計算して塩素濃度を求めた(さらし液測定JIS K1
207の応用)。
[Chlorine Concentration in Reaction Solution] 5 g of a reactant was sampled from a reaction vessel, and the reactant was placed in 25 ml of an N / 2 aqueous solution of NaOH, and shaken well for 10 minutes.
I and 10 ml of (1 + 1) acetic acid aqueous solution were added, and N / 1
Using an aqueous solution of Na 2 S 2 O 3 at 0, titration was performed using the point at which the solution changed from pale yellow to transparent as the end point, and the chlorine concentration was calculated from the iodine consumption (exposed solution measurement JIS K1).
207).

【0021】〔生成物の純度〕島津製作所社製GC−1
4A(カラム:G−205)を使用し、内部標準物質と
してクロロパラキシレンを用い、ガスクロマトグラフの
内部標準法により分析した。ここで採用した内部標準法
分析値はJIS K0066の蒸留法による検定で確認
した。
[Purity of product] GC-1 manufactured by Shimadzu Corporation
Using 4A (column: G-205) and chloroparaxylene as an internal standard substance, analysis was carried out by an internal standard method of a gas chromatograph. The analysis value of the internal standard method adopted here was confirmed by a test based on the distillation method of JIS K0066.

【0022】実施例1 塩素吹込口、排気口、還流冷却器、攪拌機、ジャケット
を備えた2槽のグラスライニング製光照射型反応槽A及
びBを併設し、一方の反応槽Aの排気口を他方の反応槽
Bの塩素吹込口に接続し、各反応槽A及びBにはそれぞ
れトルエン2700リットルを仕込み、両反応槽A及び
B共に50℃まで昇温させた。
Example 1 Two glass-lined light irradiation type reaction tanks A and B equipped with a chlorine injection port, an exhaust port, a reflux condenser, a stirrer, and a jacket are provided side by side. The other reactor B was connected to the chlorine injection port, and each reactor A and B was charged with 2700 liters of toluene, respectively, and both reactors A and B were heated to 50 ° C.

【0023】反応槽Aの塩素吹込口から塩素を410k
g/hr(トルエンに対する塩素供給量17.4重量%
/hr)の供給量で供給し、高圧水銀灯で光照射下にト
ルエンの光塩素化反応を開始した。反応開始後、反応槽
Aの反応温度は110〜130℃に維持し、また、反応
槽B側は80〜100℃に維持した。なお、この段階で
は、反応槽A及びBは共に低次槽として操業され、ま
た、反応槽Bは反応槽Aの排気ガス中に含まれる塩素を
トラップする役割を果たしている。
410 k of chlorine from the chlorine inlet of the reaction tank A
g / hr (17.4% by weight of chlorine supplied to toluene)
/ Hr), and the photochlorination reaction of toluene was started under light irradiation with a high-pressure mercury lamp. After the start of the reaction, the reaction temperature of the reaction tank A was maintained at 110 to 130 ° C, and the reaction tank B side was maintained at 80 to 100 ° C. At this stage, both the reaction tanks A and B are operated as lower-order tanks, and the reaction tank B has a role of trapping chlorine contained in the exhaust gas of the reaction tank A.

【0024】反応槽A内の反応物の塩素化度を測定し、
塩素化度2.8の時点(反応槽Aが高次槽となった時
点)で塩素供給量を100kg/hrに低下させた。こ
の時の反応槽Aにおける反応液中の塩素濃度は0.5g
/リットルであった。その後、この反応槽A内の反応液
中の塩素濃度を0.1〜5.0g/リットルに維持しな
がら光塩素化反応を継続した。
The degree of chlorination of the reactant in the reaction tank A is measured,
At the time when the chlorination degree was 2.8 (when the reaction tank A became a higher-order tank), the chlorine supply rate was reduced to 100 kg / hr. At this time, the chlorine concentration in the reaction solution in the reaction tank A was 0.5 g.
/ Liter. Thereafter, the photochlorination reaction was continued while maintaining the chlorine concentration in the reaction solution in the reaction vessel A at 0.1 to 5.0 g / liter.

【0025】反応槽A内の反応物をガスクロマトグラフ
分析で分析し、ベンザルクロライドが0.1%以下にな
った時点でこの反応槽Aの光塩素化反応を終了させた。
この間、反応槽Aでは塩素供給量を100kg/hrか
ら50kg/hrへ、更に最終的に15kg/hrへと
段階的に低下させ、反応槽A内の反応液中の塩素濃度を
0.1〜5.0g/リットルに維持した。また、塩素供
給量15kg/hrの時点では、5m3 /hrの窒素ガ
ス(N2 )を混合して供給した。
The reaction product in the reaction vessel A was analyzed by gas chromatography analysis, and when the amount of benzal chloride became 0.1% or less, the photochlorination reaction in the reaction vessel A was terminated.
During this time, in the reaction tank A, the chlorine supply rate is gradually reduced from 100 kg / hr to 50 kg / hr, and finally to 15 kg / hr, and the chlorine concentration in the reaction solution in the reaction tank A is reduced to 0.1 to 0.1 kg / hr. It was maintained at 5.0 g / l. At the time of the supply of chlorine of 15 kg / hr, nitrogen gas (N 2 ) of 5 m 3 / hr was mixed and supplied.

【0026】反応槽Aの反応が終了した後、この反応槽
Aへの塩素供給を一旦停止し、反応槽Bへの塩素の供給
と光照射とをそのまま継続し、反応槽Aには5m3 /h
rの窒素ガスを吹き込みながら60℃まで冷却し、反応
物を払出した。その後、この反応槽Aには新しいトルエ
ン2700リットルを仕込んで、50℃まで昇温させ
た。
After the reaction in the reaction tank A is completed, the supply of chlorine to the reaction tank A is temporarily stopped, the supply of chlorine to the reaction tank B and the irradiation of light are continued as they are, and 5 m 3 / H
The mixture was cooled to 60 ° C. while blowing nitrogen gas of r, and the reaction product was discharged. Thereafter, 2700 liters of fresh toluene was charged into the reaction vessel A, and the temperature was raised to 50 ° C.

【0027】次に、反応槽Bの排気口を反応槽Aの塩素
吹込口に接続し、反応槽Bの塩素吹込口から塩素を41
0kg/hr(トルエンに対する塩素供給量17.4重
量%/hr)の供給量で供給し、反応槽Aと反応槽Bと
の関係を逆にして上記と同様にトルエンの光塩素化反応
を行った。
Next, the exhaust port of the reaction tank B was connected to the chlorine injection port of the reaction tank A,
0 kg / hr (amount of chlorine supply to toluene: 17.4% by weight / hr) was supplied, and the photochlorination reaction of toluene was carried out in the same manner as above by reversing the relationship between the reaction tanks A and B. Was.

【0028】上記反応槽Aから得られた反応生成物をガ
スクロマトグラフ法により分析した結果、ベンゾトリク
ロライド96.0重量%、ベンザルクロライド0.1重
量%、核塩素化物(逐次反応物の核に1個の塩素が入っ
たモノクロル体)0.7重量%、及び高沸点副生物3.
2重量%であった。また、反応槽Bから得られた反応生
成物をガスクロマトグラフ法により分析した結果、反応
槽Aからの場合と同様に、ベンゾトリクロライド96.
0重量%、ベンザルクロライド0.1重量%、核塩素化
物0.7重量%、及び高沸点副生物3.2重量%であっ
た。更に、反応槽Aから再度得られた反応生成物をガス
クロマトグラフ法により分析した結果、最初の反応槽A
からの場合と同様に、ベンゾトリクロライド96.0重
量%、ベンザルクロライド0.1重量%、核塩素化物
0.7重量%、及び高沸点副生物3.2重量%であっ
た。
The reaction product obtained from the reaction vessel A was analyzed by gas chromatography. As a result, 96.0% by weight of benzotrichloride, 0.1% by weight of benzal chloride, and chlorinated nuclei (nuclei of the successive reactants) were obtained. 0.7% by weight of a monochloro body containing one chlorine) and a high-boiling by-product
It was 2% by weight. Further, as a result of analyzing the reaction product obtained from the reaction tank B by gas chromatography, the benzotrichloride 96.
0% by weight, 0.1% by weight of benzal chloride, 0.7% by weight of nuclear chlorinated product, and 3.2% by weight of high-boiling by-product. Further, the reaction product obtained again from the reaction tank A was analyzed by gas chromatography, and as a result, the first reaction tank A was analyzed.
Benzotrichloride, 96.0% by weight, benzal chloride, 0.1% by weight, chlorinated nuclear, 0.7% by weight, and 3.2% by weight of high-boiling by-products.

【0029】実施例2 高次槽における反応液中の塩素濃度を1.0g/リット
ル以下に維持し、また、最終的に塩素供給量を3kg/
hr(N2 :5m3 /hr)へと低下させた以外は、上
記実施例1と同様に操業した。
Example 2 The chlorine concentration in the reaction solution in the higher-order tank was maintained at 1.0 g / liter or less, and finally the chlorine supply was 3 kg / liter.
The operation was performed in the same manner as in Example 1 except that the reaction time was reduced to hr (N 2 : 5 m 3 / hr).

【0030】上記反応槽Aから得られた反応生成物をガ
スクロマトグラフ法により分析した結果、ベンゾトリク
ロライド98.0重量%、ベンザルクロライド0.1重
量%、核塩素化物0.7重量%、及び高沸点副生物1.
2重量%であった。また、反応槽Bから得られた反応生
成物をガスクロマトグラフ法により分析した結果、上記
と同様であった。
As a result of analyzing the reaction product obtained from the reaction vessel A by gas chromatography, 98.0% by weight of benzotrichloride, 0.1% by weight of benzal chloride, 0.7% by weight of nuclear chlorinated product, And high-boiling by-products
It was 2% by weight. Moreover, the reaction product obtained from the reaction tank B was analyzed by gas chromatography, and as a result, the result was the same as above.

【0031】実施例3 高次槽における反応液中の塩素濃度を0.1〜7.0g
/リットル以下に維持し、また、最終的に塩素供給量を
30kg/hr(N2 :5m3 /hr)へと低下させた
以外は、上記実施例1と同様に操業した。
Example 3 The concentration of chlorine in the reaction solution in the higher-order tank was 0.1 to 7.0 g.
/ L or less, and the operation was carried out in the same manner as in Example 1 except that the chlorine supply rate was finally reduced to 30 kg / hr (N 2 : 5 m 3 / hr).

【0032】上記反応槽Aから得られた反応生成物をガ
スクロマトグラフ法により分析した結果、ベンゾトリク
ロライド94.0重量%、ベンザルクロライド0.1重
量%、核塩素化物0.7重量%、及び高沸点副生物5.
2重量%であった。また、反応槽Bから得られた反応生
成物をガスクロマトグラフ法により分析した結果、上記
と同様であった。
As a result of analyzing the reaction product obtained from the reaction vessel A by gas chromatography, 94.0% by weight of benzotrichloride, 0.1% by weight of benzal chloride, 0.7% by weight of nuclear chlorinated product, And high-boiling by-products5.
It was 2% by weight. Moreover, the reaction product obtained from the reaction tank B was analyzed by gas chromatography, and as a result, the result was the same as above.

【0033】比較例1 実施例1の反応槽Aのみを用いてトルエン2700リッ
トルを仕込み、50℃まで昇温させた後、塩素吹込口か
ら塩素を350kg/hr(トルエンに対する塩素供給
量15.0重量%/hr)の供給量で供給し、高圧水銀
灯で光照射下にトルエンの光塩素化反応を開始した。反
応開始後、反応槽Aの反応温度を110〜130℃に維
持し、この反応槽A内の反応物の塩素化度が3.0にな
るまで光塩素化反応を継続して終了させた。
Comparative Example 1 Using only the reaction vessel A of Example 1, 2700 liters of toluene was charged and heated to 50 ° C., and then 350 kg / hr of chlorine was supplied from the chlorine inlet through a chlorine supply amount of 15.0. Wt% / hr), and the photochlorination reaction of toluene was started under light irradiation with a high-pressure mercury lamp. After the start of the reaction, the reaction temperature of the reaction vessel A was maintained at 110 to 130 ° C., and the photochlorination reaction was continued and terminated until the degree of chlorination of the reactants in the reaction vessel A reached 3.0.

【0034】上記反応槽Aから得られた反応生成物をガ
スクロマトグラフ法により分析した結果、ベンゾトリク
ロライド88.0重量%、ベンザルクロライド0.1重
量%、核塩素化物0.7重量%、及び高沸点副生物1
1.2重量%であった。
The reaction product obtained from the reaction vessel A was analyzed by gas chromatography. As a result, it was found that benzotrichloride was 88.0% by weight, benzal chloride was 0.1% by weight, nucleated chloride was 0.7% by weight, And high-boiling by-products 1
It was 1.2% by weight.

【0035】[0035]

【発明の効果】本発明によれば、特別な添加剤の使用や
反応器の改良を必要とすることなく、塩素化度に基づい
て反応系の塩素濃度を制御するだけで、可及的に副生物
の生成を抑制することができ、また、高純度で収率良く
目的のトリクロロメチルベンゼン類を製造することがで
きる。
According to the present invention, it is possible to control the chlorine concentration of the reaction system based on the degree of chlorination as much as possible without using special additives or improving the reactor. Generation of by-products can be suppressed, and the target trichloromethylbenzenes can be produced with high purity and high yield.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メチルベンゼン類の側鎖メチル基を光塩
素化する方法において、1個のメチル基中の水素原子が
塩素原子に置換された比率で表される塩素化度が2.0
〜2.8の範囲内の所定の値以上となった反応後半にお
いて、反応系の塩素濃度を10.0g/リットル以下に
制御することを特徴とするメチルベンゼン類の光塩素化
方法。
1. A method for photochlorinating a side chain methyl group of methylbenzenes, wherein the degree of chlorination represented by the ratio of hydrogen atoms in one methyl group replaced by chlorine atoms is 2.0.
A method for photochlorination of methylbenzenes, wherein the chlorine concentration in the reaction system is controlled to 10.0 g / liter or less in the latter half of the reaction when the reaction value becomes equal to or more than a predetermined value within the range of 2.8 to 2.8.
【請求項2】 反応開始時から反応前半における反応温
度を50〜150℃とし、反応後半の反応温度を100
〜150℃とする請求項1に記載のメチルベンゼン類の
光塩素化方法。
2. The reaction temperature in the first half of the reaction from the start of the reaction is 50 to 150 ° C., and the reaction temperature in the second half of the reaction is 100 ° C.
The method for photochlorination of methylbenzenes according to claim 1, wherein the temperature is from -150 ° C.
【請求項3】 反応系への塩素供給量が比較的高い場合
には塩素化度2.0〜2.8の範囲内の比較的低い値か
ら、また、塩素供給量が比較的低い場合には塩素化度
2.0〜2.8の範囲内の比較的高い値から、反応後半
として反応系の塩素濃度を制御する請求項1又は2に記
載のメチルベンゼン類の光塩素化方法。
3. When the amount of chlorine supplied to the reaction system is relatively high, a relatively low value in the range of 2.0 to 2.8 is used. The method for photochlorinating methylbenzenes according to claim 1 or 2, wherein the chlorine concentration of the reaction system is controlled as the latter half of the reaction from a relatively high value in the range of chlorination degree 2.0 to 2.8.
【請求項4】 反応系の塩素濃度の制御は、反応系への
塩素供給量を制御して行う請求項1〜3のいずれかに記
載のメチルベンゼン類の光塩素化方法。
4. The method for photochlorination of methylbenzenes according to claim 1, wherein the control of the chlorine concentration in the reaction system is performed by controlling the amount of chlorine supplied to the reaction system.
【請求項5】 塩素化度が2.0〜2.8の範囲内の所
定の値未満の反応液を収容して反応前半の低次槽となる
反応槽と塩素化度が2.0〜2.8の範囲内の所定の値
以上の反応液を収容して反応後半の高次槽となる反応槽
とを有する、少なくとも2槽の反応槽を接続した反応装
置を用い、高次槽側の反応系の塩素濃度を10.0g/
リットル以下に制御すると共に、この高次槽側の排ガス
を低次槽側に供給し、高次槽側の排ガス中に含まれる未
反応塩素を低次槽側で反応させる請求項1〜4のいずれ
かに記載のメチルベンゼン類の光塩素化方法。
5. A reaction tank containing a reaction solution having a chlorination degree of less than a predetermined value in a range of 2.0 to 2.8 and serving as a lower tank in the first half of the reaction, and a chlorination degree of 2.0 to 2.8. Using a reaction apparatus having at least two reaction tanks connected to each other and having a reaction liquid containing a reaction solution of a predetermined value or more within the range of 2.8 and serving as a higher-order tank in the latter half of the reaction; The chlorine concentration of the reaction system of 10.0 g /
And controlling the unreacted chlorine contained in the exhaust gas of the higher-order tank in the lower-order tank while supplying the exhaust gas of the higher-order tank to the lower-order tank side. The method for photochlorination of methylbenzenes according to any one of the above.
【請求項6】 メチルベンゼン類がトルエンであって、
反応開始時から反応前半における反応系への塩素供給量
がこの原料トルエンに対して40〜4重量%/hrであ
り、反応前半から反応後半へと切り換える塩素化度の値
を上記塩素供給量に反比例させて塩素化度2.5〜2.
8の範囲内から決定する請求項1〜5のいずれかに記載
のメチルベンゼン類の光塩素化方法。
6. The methylbenzenes are toluene,
The amount of chlorine supplied to the reaction system from the start of the reaction to the first half of the reaction is 40 to 4% by weight / hr based on the amount of the starting toluene. The chlorination degree is 2.5 to 2.
The method for photochlorinating methylbenzenes according to claim 1, wherein the method is determined from the range of 8.
JP25877797A 1997-09-24 1997-09-24 Photochlorination of methylbenzene compounds Pending JPH1192409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25877797A JPH1192409A (en) 1997-09-24 1997-09-24 Photochlorination of methylbenzene compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25877797A JPH1192409A (en) 1997-09-24 1997-09-24 Photochlorination of methylbenzene compounds

Publications (1)

Publication Number Publication Date
JPH1192409A true JPH1192409A (en) 1999-04-06

Family

ID=17324944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25877797A Pending JPH1192409A (en) 1997-09-24 1997-09-24 Photochlorination of methylbenzene compounds

Country Status (1)

Country Link
JP (1) JPH1192409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409528A (en) * 2018-01-31 2018-08-17 青岛和兴精细化学有限公司 A kind of new process prepared using novel reaction equipment to benzyl dichloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409528A (en) * 2018-01-31 2018-08-17 青岛和兴精细化学有限公司 A kind of new process prepared using novel reaction equipment to benzyl dichloride

Similar Documents

Publication Publication Date Title
EP0877009B1 (en) Process for producing 1,1,1,3,3-pentafluoropropane
US20060161029A1 (en) Production and purification processes
EP0346612A1 (en) Process for production of 1,1,1-trifluoro-2,2-dichloroethane
EP0773206B1 (en) Process for producing 1,1,1,2,3,3,3-heptafluoropropane
US5399796A (en) Purification of 1,1-dichloro-1-fluoroethane
JPH1192409A (en) Photochlorination of methylbenzene compounds
KR100346285B1 (en) Process for the production of difluoromethane
US4898996A (en) Process for producing 3-chloro-4-fluoronitrobenzene
JP4727830B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane
JP3918883B2 (en) Method for producing benzoyl chlorides
EP1123911B1 (en) Process for producing difluoromethane and difluorochloromethane
JP3059717B2 (en) Continuous production method of mono and / or bis (mono and / or di and / or trichloromethyl) benzene
KR20080016944A (en) Process for synthesis of halogenated nitrogen
JPH09255617A (en) Production of alkylbenzoyl chloride
US6093858A (en) Method for producing bis (trifluoromethyl) benzene
JPH05286918A (en) Production of acrylonitrile dimer
CS203024B2 (en) Method for the isolation of unreacted 1,2-dichlorethane from 1,2-dichlorethane splitting product
JP3259893B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoropropan-2-one
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
CN1036778C (en) Improved method of separating and purifying 1,1-difluoroethane
JPH045007B2 (en)
US3386903A (en) Method for preparing oximinomethyl benzoic acid
JPH08239333A (en) Production of 1,1,1,3,3-pentachloropropane
KR100524336B1 (en) Process for Preparing o-Alkylfluorobenzenes
JP4029447B2 (en) Method for producing 2-chloro-1,4-bistrichloromethylbenzene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A02