JPH1192119A - Oxide powder - Google Patents

Oxide powder

Info

Publication number
JPH1192119A
JPH1192119A JP9270396A JP27039697A JPH1192119A JP H1192119 A JPH1192119 A JP H1192119A JP 9270396 A JP9270396 A JP 9270396A JP 27039697 A JP27039697 A JP 27039697A JP H1192119 A JPH1192119 A JP H1192119A
Authority
JP
Japan
Prior art keywords
particles
oxide
oxide powder
sample
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9270396A
Other languages
Japanese (ja)
Inventor
Itsuki Sasaki
厳 佐々木
Kazumasa Takatori
一雅 鷹取
Naoyoshi Watanabe
直義 渡辺
Tatsuo Noritake
達夫 則竹
Jun Sugiyama
純 杉山
Tatsuya Hatanaka
達也 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9270396A priority Critical patent/JPH1192119A/en
Publication of JPH1192119A publication Critical patent/JPH1192119A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain oxide powder having characteristics of a plurality of oxides and capable of suppressing the formation of aggregates owing to the rugged surface shape. SOLUTION: Nuclear particles 70 of an oxide are prepd. and fine oxide particles 71 different from the nuclear particles 70 in compsn. are stuck to the surfaces of the nuclear particles 70 to obtain the objective oxide powder 7. The nuclear particles 70 may be particles of lithium manganese double oxide and the fine oxide particles 71 may be fine particles of LiMO2 (M is a transition metal such as Co, Ni, Fe, Cr, Ti or V).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,表面に微粒子を付着してなる特
殊な形状の酸化物粉末に関する。
TECHNICAL FIELD The present invention relates to a specially shaped oxide powder having fine particles adhered to the surface.

【0002】[0002]

【従来技術】金属酸化物,金属複合酸化物等の酸化物
は,種々の分野で利用されており,例えば最近注目され
ているリチウム2次電池の正極材料としても用いられて
いる。従来のリチウム2次電池用正極材料としては,規
則配列層状岩塩構造のLiCoO2 が用いられてきた。
しかし,このものは,資源量,価格の点から,その地位
をスピネル構造のリチウムマンガン複合酸化物(LiM
2 4 )に置き換わられつつある。
2. Description of the Related Art Oxides such as metal oxides and metal composite oxides are used in various fields, and are used, for example, as positive electrode materials for lithium secondary batteries that have recently attracted attention. As a conventional positive electrode material for a lithium secondary battery, LiCoO 2 having an ordered layered rock salt structure has been used.
However, in terms of resource quantity and price, this material is considered to be a spinel-structured lithium manganese composite oxide (LiM
n 2 O 4 ).

【0003】このLiMn2 4 はLiCoO2 に比ベ
てリチウムの拡散速度が遅い,導電率が低い,という欠
点を持っている。そのため,高電流密度で充放電を行っ
た場合,大きな放電容量を得にくく容量劣化も大きい。
そのため,理想的には,上記LiMn2 4 とLiCo
2 の両者の長所を併せ持った酸化物粉末が正極材料と
して望ましい。
[0003] LiMn 2 O 4 has the disadvantages that the diffusion rate of lithium is lower and the conductivity is lower than that of LiCoO 2 . Therefore, when charging and discharging are performed at a high current density, it is difficult to obtain a large discharge capacity, and the capacity deterioration is large.
Therefore, ideally, the above LiMn 2 O 4 and LiCo
An oxide powder having both advantages of O 2 is desirable as the cathode material.

【0004】[0004]

【解決しようとする課題】上記のLiMn2 4 の高電
流密度での充放電特性の欠点を解決するために,従来は
高結晶性でかつ,粒径が小さい粉末が提案されている。
例えば特開平7−81905号公報に示されている噴霧
燃焼合成がそれにあたる。しかし,この改良でもLiC
oO2 に匹敵する特性は得られていない。
In order to solve the above-mentioned drawback of the charge / discharge characteristics of LiMn 2 O 4 at a high current density, a powder having high crystallinity and a small particle size has been conventionally proposed.
For example, the spray combustion synthesis disclosed in JP-A-7-81905 corresponds to this. However, even with this improvement, LiC
Properties comparable to oO 2 have not been obtained.

【0005】また,粒径が小さい粉末は一般的に嵩高く
充填率が上がらないという欠点を持つ。これは粒子間付
着力が粒子重量に対し相対的に大きくなるためである。
充填率の低下は電極密度の低下,即ち電池容量の低下を
招く。また,その粒子間付着力のため電極にする際の成
型性が悪いといった欠点を持つ。
[0005] Powders having a small particle size generally have the disadvantage that they are bulky and do not increase the filling rate. This is because the interparticle adhesion becomes relatively large with respect to the particle weight.
A decrease in the filling factor causes a decrease in the electrode density, that is, a decrease in the battery capacity. In addition, there is a disadvantage that the moldability when forming an electrode is poor due to the adhesion between particles.

【0006】そこで,発明者らはこれらの2つの課題; (1)導電率が低い,もしくはリチウム拡散速度が遅い
ことに起因する高電流密度での充放電容量の低下,
(2)粒子間付着力に起因する充填率の低下及び電極作
製時の成型性の低下,を解決するため鋭意検討を行っ
た。その結果,核となる酸化物粒子の表面に,これと異
なる特性を有する酸化物微粉末を凹凸状に配置すること
を考えた。これが実現すれば,凹凸の効果によって粒子
間付着力が減少し,充填性及び成型性を向上させること
ができ,かつ単独の酸化物では得られない優れた特性を
併せもつ酸化物粉末を得ることができる。
Therefore, the present inventors have solved these two problems: (1) a decrease in charge / discharge capacity at a high current density due to a low conductivity or a low lithium diffusion rate;
(2) Intensive investigations were made to solve the problem of the decrease in the filling factor due to the adhesion between particles and the decrease in moldability during electrode fabrication. As a result, we considered that oxide fine powders having different characteristics were arranged on the surface of the core oxide particles in irregular shapes. If this is realized, the adhesion between particles will be reduced due to the effect of unevenness, the filling property and moldability can be improved, and an oxide powder having excellent properties that cannot be obtained with a single oxide will be obtained. Can be.

【0007】上記のLiMn2 4 の場合は導電性の酸
化物微粉末もしくはリチウムの拡散速度が早い酸化物微
粉末を配置することによって,導電率が低い,もしくは
リチム拡散速度が遅いことに起因する高電流密度での充
放電容量の低下を抑制し,かつ粒子間付着力に起因する
充填率の低下及び電極作製時の成型性の低下をも抑える
ことができる。
[0007] In the case of LiMn 2 O 4 described above, the conductivity is low or the lithium diffusion rate is low because the conductive oxide fine powder or the oxide fine powder having a high lithium diffusion rate is disposed. In addition, it is possible to suppress a decrease in charge / discharge capacity at a high current density, and also to suppress a decrease in a filling factor and a decrease in moldability at the time of electrode production due to interparticle adhesion.

【0008】本発明は,かかる従来の問題点に鑑みてな
されたもので,複数の酸化物の特性を併せ持つと共に,
表面の凹凸形状により粒子間付着力が低減できる,酸化
物粉末を提供しようとするものである。
The present invention has been made in view of such a conventional problem, and has the characteristics of a plurality of oxides.
An object of the present invention is to provide an oxide powder capable of reducing the interparticle adhesion due to the unevenness of the surface.

【0009】[0009]

【課題の解決手段】本発明は,酸化物よりなる核粒子の
表面に,これと異なる組成の酸化物微粒子を付着してな
ることを特徴とする酸化物粉末にある。
According to the present invention, there is provided an oxide powder comprising oxide particles having a different composition adhered to the surface of core particles made of oxide.

【0010】本発明において最も注目すべきことは,上
記酸化物粉末を構成する各粒子は,上記核粒子の表面に
上記酸化物微粒子を付着してなり,かつ,上記核粒子と
上記酸化物微粒子は,互いに異なる組成の酸化物より構
成されていることである。
The most remarkable point in the present invention is that each of the particles constituting the oxide powder is obtained by adhering the oxide fine particles on the surface of the core particles, and further comprising the core particles and the oxide fine particles. Means that they are composed of oxides having different compositions.

【0011】上記酸化物微粒子の粒径は,核粒子の表面
に付着する程度の大きさ,つまり,核粒子の粒径の1/
5〜1/100の範囲にすることが好ましい。酸化物微
粒子の粒径が上記範囲を超える場合には,いずれも,核
粒子の表面に明確な凹凸形状を形成できないという問題
がある。
The particle size of the oxide fine particles is such that they adhere to the surface of the core particles, that is, 1 / the particle size of the core particles.
It is preferable to set the range of 5 to 1/100. When the particle size of the oxide fine particles exceeds the above range, there is a problem that a clear uneven shape cannot be formed on the surface of the core particles in any case.

【0012】次に,本発明の作用につき説明する。本発
明の酸化物粉末は,上記核粒子の表面に上記酸化物微粒
子を付着してなる。そのため,上記酸化物粉末の粒子表
面においては,上記酸化物微粒子の付着部分と未付着の
部分とによって凹凸形状が形成される。この粒子表面の
凹凸形状は,互いの粒子の付着力を低減するという効果
を発揮し,凝集体の形成を大幅に抑制することができ
る。それ故,本発明の酸化物粉末は,例えば圧粉体等に
成形した場合の嵩密度を大幅に向上させることができ
る。また,粒子間付着力の低減によって粉末の流動性,
成型性も改善される。
Next, the operation of the present invention will be described. The oxide powder of the present invention is obtained by adhering the oxide fine particles to the surface of the core particles. Therefore, on the particle surface of the oxide powder, a concavo-convex shape is formed by a portion where the oxide fine particles adhere and a portion where the oxide fine particles do not adhere. The irregular shape of the particle surface exerts an effect of reducing the adhesion of the particles to each other, and can greatly suppress the formation of aggregates. Therefore, the oxide powder of the present invention can greatly improve the bulk density when molded into, for example, a green compact. In addition, the powder's fluidity,
Moldability is also improved.

【0013】また,上記酸化物粉末は,上記核粒子と上
記酸化物微粒子との2つの異なる酸化物により構成され
ている。そのため,核粒子の有する優れた特性と酸化物
微粒子の有する優れた特性を同時に併せ持つものとな
る。それ故,本発明によれば,複数の酸化物の特性を併
せ持つと共に,表面の凹凸形状により凝集体の形成を抑
制できる,酸化物粉末を提供することができる。
[0013] The oxide powder is composed of two different oxides, the core particles and the oxide fine particles. Therefore, the excellent properties of the core particles and the excellent properties of the oxide fine particles are simultaneously obtained. Therefore, according to the present invention, it is possible to provide an oxide powder that has the properties of a plurality of oxides and can suppress the formation of aggregates due to the surface irregularities.

【0014】次に,上記核粒子はリチウムマンガン複合
酸化物であり,かつ,上記酸化物微粒子はLiCoO2
に代表されるLiMO2 (M=Co,Ni,Fe,C
r,Ti,Vなどの遷移金属)とすることができる。こ
れにより,上記酸化物粉末をリチウム2次電池における
優れた正極材料として適用することができる。
Next, the core particles are a lithium manganese composite oxide, and the oxide particles are LiCoO 2
LiMO 2 (M = Co, Ni, Fe, C
transition metals such as r, Ti, and V). Thus, the oxide powder can be used as an excellent cathode material in a lithium secondary battery.

【0015】即ち,この場合の酸化物粉末は,リチウム
マンガン複合酸化物の核粒子の表面に多数のLiCoO
2 に代表されるLiMO2 が付着した状態で構成されて
いる。そのため,安価で資源豊富な核粒子に,上記酸化
物微粒子の優れた導電性を付加することができる。ま
た,正極を形成する場合の充填率は,上記凹凸形状の凝
集体抑制効果によって,従来よりも向上させることがで
きる。
That is, in this case, a large number of LiCoO 2 particles are formed on the surface of the core particles of the lithium manganese composite oxide.
LiMO 2 represented by 2 is formed in a state adhered. Therefore, the excellent conductivity of the oxide fine particles can be added to the inexpensive and resource-rich core particles. In addition, the filling rate in the case of forming the positive electrode can be improved as compared with the related art due to the effect of suppressing the aggregates having the uneven shape.

【0016】更に,このLiMO2 が,LiMn2 4
と同じ電圧範囲で充放電可能ならば,全体の容量が大き
く減少することはない。それ故,この酸化物粉末は,リ
チウム2次電池の正極材料に適用した場合に,高放電容
量,特に高電流密度での充放電容量の増加,体積当りで
の充放電容量の増加等の優れた効果を発揮する。
Further, this LiMO 2 is LiMn 2 O 4
If charge and discharge are possible in the same voltage range as above, the overall capacity will not be significantly reduced. Therefore, when this oxide powder is applied to the positive electrode material of a lithium secondary battery, it is excellent in high discharge capacity, particularly, increase in charge / discharge capacity at high current density, increase in charge / discharge capacity per volume, etc. It has the effect.

【0017】次に,上記優れた酸化物粉末を製造する方
法としては,酸化物よりなる核粒子の表面に,これと異
なる組成の酸化物微粒子を付着してなる酸化物粉末を製
造する方法であって,上記酸化物微粒子の原料イオンを
含有する原料水溶液を作製すると共に,該原料水溶液中
に上記核粒子を分散させ,次いで該原料水溶液を可燃性
液体中に乳濁させてエマルジョンとなし,該エマルジョ
ンを液滴状に噴霧し,該液滴中の可燃性液体を燃焼させ
て,上記酸化物粉末を合成することを特徴とする酸化物
粉末の製造方法がある。
Next, as a method for producing the above-mentioned excellent oxide powder, there is a method for producing an oxide powder obtained by adhering oxide fine particles having a different composition to the surface of core particles made of oxide. A raw material aqueous solution containing the raw material ions of the oxide fine particles is prepared, the core particles are dispersed in the raw material aqueous solution, and then the raw material aqueous solution is emulsified in a flammable liquid to form an emulsion. There is a method for producing an oxide powder, which comprises spraying the emulsion in the form of droplets and burning a combustible liquid in the droplets to synthesize the oxide powder.

【0018】本製造方法において最も注目すべきこと
は,上記原料水溶液には上記核粒子を予め分散させてお
き,この原料水溶液を用いて噴霧燃焼合成法を行うこと
である。
The most remarkable point in this production method is that the core particles are dispersed in the raw material aqueous solution in advance, and a spray combustion synthesis method is performed using the raw material aqueous solution.

【0019】上記核粒子としては,0.5〜5μmの粒
径を有するものを用いる。粒径が0.5μm未満の場合
には,核粒子の表面への凹凸形状の形成が困難であると
いう問題があり,一方,5μmを超える場合には,噴霧
燃焼合成法の実施が困難であるという問題がある。ま
た,上記核粒子は,例えば従来の噴霧燃焼合成法,固相
反応法等の種々の方法により作製することができる。
As the core particles, those having a particle size of 0.5 to 5 μm are used. When the particle size is less than 0.5 μm, there is a problem that it is difficult to form irregularities on the surface of the core particles. On the other hand, when the particle size exceeds 5 μm, it is difficult to perform the spray combustion synthesis method. There is a problem. The above-mentioned core particles can be produced by various methods such as a conventional spray combustion synthesis method and a solid phase reaction method.

【0020】また,上記原料水溶液としては,酸化物微
粒子の原料イオン,即ち,得ようとする酸化物微粒子の
原料元素をイオン状態で含むものである。例えばリチウ
ムコバルト複合酸化物の酸化物微粒子を核粒子表面に析
出させる場合には,上記原料水溶液にはリチウムイオン
とコバルトイオンとを含有させる。
The raw material aqueous solution contains the raw material ions of the oxide fine particles, that is, the raw material element of the oxide fine particles to be obtained in an ion state. For example, in the case where oxide fine particles of a lithium-cobalt composite oxide are precipitated on the core particle surface, the raw material aqueous solution contains lithium ions and cobalt ions.

【0021】また,上記原料水溶液は,可燃性液体中に
乳濁させてエマルジョンとなす。このとき用いる可燃性
液体としては,ケロシン,軽油,重油,ガソリンなど
を,またエマルジョン形成用の乳化剤としては金属イオ
ンを含まないもの,特にノニオン系界面活性剤が望まし
く,グリセリン脂肪酸エステルなどを用いる。
The raw material aqueous solution is emulsified in a combustible liquid to form an emulsion. As the flammable liquid used at this time, kerosene, light oil, heavy oil, gasoline, or the like is used. As the emulsifier for forming an emulsion, one containing no metal ion, particularly a nonionic surfactant is desirable, and glycerin fatty acid ester is used.

【0022】また,上記エマルジョンの噴霧燃焼合成時
における反応塔内の,エマルジョンの燃焼火炎温度は合
成する酸化物粉末の種類に応じて設定する。例えば,リ
チウムマンガン複合酸化物の核粒子の表面にリチウムコ
バルト複合酸化物の酸化物微粒子を析出させる場合に
は,600〜900℃とすることが好ましい。600℃
未満では燃焼の安定性に問題がある。一方,900℃を
超えるとリチウムマンガン複合酸化物が分解してしまう
という問題がある。
The combustion flame temperature of the emulsion in the reaction tower during the spray combustion synthesis of the emulsion is set according to the type of oxide powder to be synthesized. For example, when depositing oxide fine particles of lithium cobalt composite oxide on the surface of core particles of lithium manganese composite oxide, the temperature is preferably set to 600 to 900 ° C. 600 ° C
If it is less than 3, there is a problem in combustion stability. On the other hand, when the temperature exceeds 900 ° C., there is a problem that the lithium manganese composite oxide is decomposed.

【0023】次に,本発明の作用につき説明する。本発
明においては,上記原料水溶液中に上記核粒子を予め分
散させ,さらにこの原料水溶液を上記のエマルジョン状
態にして噴霧燃焼合成を行う。そのため,上記核粒子の
表面に異なる組成の酸化物粉末を付着してなる酸化物粉
末を容易に製造することができる。
Next, the operation of the present invention will be described. In the present invention, the core particles are dispersed in the raw material aqueous solution in advance, and the raw material aqueous solution is made into the above-mentioned emulsion state to perform spray combustion synthesis. Therefore, an oxide powder obtained by adhering oxide powders having different compositions to the surface of the core particles can be easily produced.

【0024】即ち,本製造方法においては,上記原料水
溶液を可燃性液体中に略均一に乳濁させたエマルジョン
を液滴状に噴霧する。噴霧された液滴中には略均一の大
きさの原料水溶液が可燃性液体に包まれた状態で含有さ
れる。さらに各原料水溶液中には,予め分散させておい
た核粒子が含有された状態となる。
That is, in the present production method, an emulsion obtained by emulsifying the raw material aqueous solution substantially uniformly in a flammable liquid is sprayed in the form of droplets. The sprayed droplet contains a raw material aqueous solution having a substantially uniform size in a state of being wrapped in a combustible liquid. Further, each raw material aqueous solution contains core particles dispersed in advance.

【0025】そして,噴霧された各液滴は,可燃性液体
の燃焼によって,これに包まれていた原料水溶液ごと
に,脱溶媒,熱分解,結晶成長のプロセスが進行する。
具体的には,既に酸化物状態で存在する核粒子の表面
に,原料水溶液から合成される新しい酸化物微粒子が析
出し,付着する。
[0025] Each of the sprayed droplets undergoes the process of desolvation, thermal decomposition, and crystal growth for each raw material aqueous solution enclosed by the combustion of the combustible liquid.
Specifically, new oxide fine particles synthesized from the raw material aqueous solution precipitate and adhere to the surface of the core particles already existing in the oxide state.

【0026】そのため,得られる酸化物粉末は,核粒子
の表面に多数の酸化物微粒子を付着させた凹凸形状を有
する酸化物粉末となり,上述した優れた作用効果を発揮
する。なお,本製造方法においては,得られる全ての粒
子がこのような構造の粒子となるのではなく,酸化物微
粒子,又は核粒子の単独の状態の粒子が含まれる場合も
ある。
Therefore, the obtained oxide powder becomes an oxide powder having irregularities in which a large number of oxide fine particles are adhered to the surface of the core particles, and exhibits the above-mentioned excellent effects. In the present production method, not all the obtained particles are particles having such a structure, but may include oxide fine particles or particles in a single state of core particles.

【0027】このように,本製造方法によれば,複数の
酸化物の特性を併せ持つと共に,表面の凹凸形状により
凝集体の形成を抑制できる,酸化物粉末の製造方法が得
られる。
As described above, according to the present production method, there is obtained a method for producing an oxide powder, which has the characteristics of a plurality of oxides and can suppress the formation of agglomerates due to the unevenness of the surface.

【0028】[0028]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかる酸化物粉末及びその製造方
法につき,図1〜図4を用いて説明する。本例において
は,図1に示すごとく,本発明の製造方法にかかる噴霧
燃焼合成法によって,Li1.03Mn1.974 の組成より
なるリチウムマンガン複合酸化物の核粒子70の表面
に,LiCoO2 の組成よりなるリチウムコバルト複合
酸化物の酸化物微粒子71を付着してなる,酸化物粉末
7を製造した(試料E1)。
Embodiment 1 An oxide powder according to an embodiment of the present invention and a method for producing the same will be described with reference to FIGS. In this example, as shown in FIG. 1, LiCoO 2 was deposited on the surface of lithium manganese composite oxide core particles 70 having a composition of Li 1.03 Mn 1.97 O 4 by the spray combustion synthesis method according to the production method of the present invention. An oxide powder 7 was prepared by adhering oxide fine particles 71 of a lithium-cobalt composite oxide having a composition (Sample E1).

【0029】また,比較のため,従来の噴霧燃焼合成
法,従来の固相法,の2種類の製造方法によりそれぞれ
Li1.03Mn1.974 の組成よりなるリチウムマンガン
複合酸化物の粉末(試料C1,C2)を作製した。
For comparison, a lithium manganese composite oxide powder (sample C1) having a composition of Li 1.03 Mn 1.97 O 4 was obtained by two kinds of production methods, a conventional spray combustion synthesis method and a conventional solid phase method. , C2).

【0030】まず,図2に噴霧燃焼合成装置の概要を示
す。この装置は,エマルジョンを供給する定量ポンプ1
と,エマルジョンを噴霧するアトマイザ2と,着火のた
めのパイロットバーナー3と,円筒形状の燃焼反応塔4
と,粒子回収のための捕集器5とからなる。そして,上
記定量ポンプ1は,エマルジョン110を入れた混合タ
ンク11に接続してある。この装置を用いて試料E1及
びC1を作製した。試料E1は本発明の例であり,試料
C1は比較例である。
First, FIG. 2 shows an outline of the spray combustion synthesizing apparatus. This equipment is a metering pump 1 for supplying emulsion.
An atomizer 2 for spraying an emulsion, a pilot burner 3 for ignition, and a cylindrical combustion reaction tower 4
And a collector 5 for collecting particles. The metering pump 1 is connected to a mixing tank 11 containing the emulsion 110. Samples E1 and C1 were prepared using this apparatus. Sample E1 is an example of the present invention, and sample C1 is a comparative example.

【0031】(試料E1の製造)リチウムイオン源とし
ての硝酸リチウム(LiNO3 )と,コバルトイオン源
としての硝酸コバルト(Co(NO3 2 ・6H2 O)
をモル比でLi:Coが1:1の割合になるように溶か
した水溶液を,コバルトイオン濃度で0.05モル/リ
ットルになるように調整し,原料水溶液とした。
(Production of Sample E1) Lithium nitrate (LiNO 3 ) as a lithium ion source and cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) as a cobalt ion source
Was dissolved at a molar ratio of Li: Co at a ratio of 1: 1 to adjust the cobalt ion concentration to 0.05 mol / liter to obtain a raw material aqueous solution.

【0032】次いで,上記原料水溶液に,約1μmの粒
径を有するリチウムマンガン複合酸化物の酸化物微粒子
を1リットル当たりに48.9g添加し,混合,分散さ
せた。この微粒子は,Li1.03Mn1.974 の組成のも
のである。次に,上記酸化物微粒子を分散させた原料水
溶液を,乳化剤としてのグリセリン脂肪酸エステルを溶
かした,可燃性液体としてのケロシン中に懸濁させて,
混合タンク11中においてエマルジョン110を作製し
た。
Next, 48.9 g per liter of lithium manganese composite oxide fine particles having a particle size of about 1 μm were added to the raw material aqueous solution, and mixed and dispersed. These fine particles have a composition of Li 1.03 Mn 1.97 O 4 . Next, the raw material aqueous solution in which the oxide fine particles are dispersed is suspended in kerosene as a combustible liquid in which glycerin fatty acid ester as an emulsifier is dissolved,
An emulsion 110 was prepared in the mixing tank 11.

【0033】次いで,このエマルジョン110を,定量
ポンプ1でアトマイザ2に供給し,酸素ガスを周りから
吹き付けることによって,燃焼反応塔4内に液滴状に噴
霧させた。そして水素と酸素の混合ガスの燃炎をパイロ
ットバーナー3から供給し,これによって上記エマルジ
ョン中の可燃性液体を着火し,燃焼反応塔4内で噴霧燃
焼合成を行った。
Next, the emulsion 110 was supplied to the atomizer 2 by the metering pump 1 and sprayed with oxygen gas from the surroundings to be sprayed into the combustion reaction tower 4 in the form of droplets. Then, a flame of a mixed gas of hydrogen and oxygen was supplied from the pilot burner 3, thereby igniting the combustible liquid in the emulsion and performing spray combustion synthesis in the combustion reaction tower 4.

【0034】噴霧燃焼合成が行なわれているエマルジョ
ンの火炎温度は,約900℃であった。なお,燃焼時に
おいては酸素不足にならないように,外部より反応塔へ
空気を強制供給した。燃焼によって合成された酸化物粉
末は,捕集器5において回収した。これを試料E1とし
た。
The flame temperature of the emulsion subjected to the spray combustion synthesis was about 900 ° C. During the combustion, air was forcibly supplied to the reaction tower from the outside so as not to run out of oxygen. The oxide powder synthesized by combustion was collected in the collector 5. This was designated as Sample E1.

【0035】(試料C1の製造)リチウムイオン源とし
ての硝酸リチウム(LiNO3 )と,マンガンイオン源
としての硝酸マンガン6水和物(Mn(NO3 2 ・6
2 O)をモル比でLi:Mnが1.03:1.97の
割合になるように溶かした水溶液を,マンガンイオン濃
度で1.97モル/リットルになるように調整し,原料
水溶液とした。そして,この原料水溶液に上記のような
酸化物微粒子を加えることなく,そのまま用いた。その
他は上記試料E1の作製方法と同様にして,リチウムマ
ンガン複合酸化物の粒子を作製した。これを試料C1と
した。
(Preparation of Sample C1) Lithium nitrate (LiNO 3 ) as a lithium ion source and manganese nitrate hexahydrate (Mn (NO 3 ) 2 .6) as a manganese ion source
An aqueous solution of H 2 O) dissolved in a molar ratio of Li: Mn of 1.03: 1.97 was adjusted to a manganese ion concentration of 1.97 mol / l, and the raw material aqueous solution was adjusted to 1.97 mol / l. did. The raw material aqueous solution was used without adding the above-mentioned oxide fine particles. Other than that, the lithium manganese composite oxide particles were produced in the same manner as in the production method of Sample E1. This was designated as Sample C1.

【0036】(試料C2の製造)試料C2は,従来の固
相反応法により製造した。原料として炭酸リチウム(L
2 CO3 ),二酸化マンガン(MnO2 )の粒子を用
い,モル比でLi:Mnが1.03:1.97になるよ
うに混合した。混合は,エタノールを溶媒として,遊星
ボールミルで行った。この混合粒子を乾燥後,ペレット
状にプレス成形して800℃,8時間,酸素中で熱処理
した。このペレットを充分に粉砕して,上記と同じ組成
のLi1.03Mn1.974 のリチウムマンガン複合酸化物
の粒子を得た。これを試料C2とした。
(Production of Sample C2) Sample C2 was produced by a conventional solid-phase reaction method. Lithium carbonate (L
i 2 CO 3), using the particles of manganese dioxide (MnO 2), Li at a molar ratio: Mn 1.03 were mixed so that the 1.97. Mixing was performed with a planetary ball mill using ethanol as a solvent. After drying, the mixed particles were pressed into a pellet and heat-treated at 800 ° C. for 8 hours in oxygen. The pellet was sufficiently pulverized to obtain lithium manganese composite oxide particles of Li 1.03 Mn 1.97 O 4 having the same composition as above. This was designated as Sample C2.

【0037】次に,本例においては,上記3つの試料E
1,C1,C2の粒子形状について,SEM観察を行い
評価した。また,合成粒子の充填性を定量的に評価する
ため,試料10g,ダイス内径φ30mm,加圧1to
nの条件で,加圧嵩密度を測定した。
Next, in this example, the above three samples E
The particle shapes of 1, 1, and 2 were evaluated by SEM observation. In addition, in order to quantitatively evaluate the filling property of the synthetic particles, a sample of 10 g, a die inner diameter of φ30 mm, and a pressure of 1 to
Under the condition of n, the pressure bulk density was measured.

【0038】上記SEM観察の結果を図3,図4に示
す。図3は本発明の例による試料E1のSEM写真であ
る。また,図4は従来の比較例による試料C1のSEM
写真である。いずれも5000倍の写真である。これら
の図から知られるように,試料E1の粒子は,核粒子の
周囲に多数の酸化物微粒子が付着した凹凸形状の表面状
態を形成していた。
The results of the SEM observation are shown in FIGS. FIG. 3 is an SEM photograph of the sample E1 according to an example of the present invention. FIG. 4 shows an SEM of sample C1 according to a conventional comparative example.
It is a photograph. Each is a 5000 × photograph. As is known from these figures, the particles of the sample E1 formed a surface state of a concavo-convex shape in which a large number of oxide fine particles adhered around the core particles.

【0039】これに対し,試料C1は粒径は試料E1と
ほぼ同等であるが,表面に凹凸形状があまりないものと
なっていた。また,この試料C1は,形状自体がばらつ
いており,破裂粒子等のいびつな形状の粒子が多数見ら
れた。なお,試料C2の粒子についてはSEM写真を示
していないが,これは従来より知られているように,試
料E1,C1に比べて1オーダー大きい粒径を有するも
のである。
On the other hand, the sample C1 had almost the same particle diameter as the sample E1, but had little irregularities on the surface. Further, the shape of the sample C1 varied, and a large number of irregularly shaped particles such as burst particles were observed. Although no SEM photograph is shown for the particles of sample C2, they have a particle size that is one order larger than that of samples E1 and C1, as is conventionally known.

【0040】次に,上記加圧嵩密度の測定結果を表1に
示す。表1より知られるごとく,試料E1が最も高い嵩
密度を示し,上記凹凸形状の形成が直接的に嵩密度の向
上に寄与していることが分かる。また,試料C1の嵩密
度が低いのは,中空粒子等のいびつな形状の粒子が多い
ためと考えられる。
Next, Table 1 shows the measurement results of the bulk density under pressure. As can be seen from Table 1, it can be seen that the sample E1 has the highest bulk density, and that the formation of the irregularities directly contributes to the improvement of the bulk density. The low bulk density of the sample C1 is considered to be due to the large number of irregularly shaped particles such as hollow particles.

【0041】[0041]

【表1】 [Table 1]

【0042】実施形態例2 本例においては,実施形態例1において製造した3つの
試料(E1,C1,C2)を正極材料として用いてそれ
ぞれリチウム2次電池を組み立て,その特性を評価し
た。
Embodiment 2 In this embodiment, a lithium secondary battery was assembled using each of the three samples (E1, C1, C2) manufactured in Embodiment 1 as a positive electrode material, and the characteristics thereof were evaluated.

【0043】まず,上記リチウム2次電池の構成につき
説明する。上記リチウム2次電池の正極を作るに当って
は,まず上記試料E1,C1,C2の酸化物粉末を85
wt%,導電剤であるカーボンを7wt%,結着剤であ
るポリフッ化ビニリデン(PVdF)を8wt%用い,
これらを溶剤であるN−メチル・2・ピロリドン(NM
P)と湿式混合して正極合剤ペーストとした。次に,こ
の正極合剤ペーストを,0.2mmの厚さでアルミ箔に
塗布し,乾燥後2.7ton/cm2 で加圧して正極を
作製した。
First, the structure of the lithium secondary battery will be described. In making the positive electrode of the lithium secondary battery, first, the oxide powder of the samples E1, C1, and C2 was mixed with 85%
wt%, 7 wt% of carbon as a conductive agent, and 8 wt% of polyvinylidene fluoride (PVdF) as a binder.
These are dissolved in N-methyl-2-pyrrolidone (NM)
P) and wet mixing to obtain a positive electrode mixture paste. Next, this positive electrode mixture paste was applied to an aluminum foil with a thickness of 0.2 mm, dried, and then pressurized at 2.7 ton / cm 2 to prepare a positive electrode.

【0044】一方,負極には厚さ0.4mmの金属Li
箔を1枚用いた。上記正極と負極との間には,セパレー
ターとしてポリプロピレン不織布を介設した。さらに,
上記リチウム2次電池における電解液は,1規定のLi
PF6 溶液を用いた。この電解液の溶媒はエチレンカー
ボネートとジエチルカーボネートの1:1混合液であ
る。
On the other hand, a metal Li having a thickness of 0.4 mm
One foil was used. A polypropylene nonwoven fabric was interposed between the positive electrode and the negative electrode as a separator. further,
The electrolyte in the lithium secondary battery is 1N Li
A PF 6 solution was used. The solvent of this electrolyte is a 1: 1 mixture of ethylene carbonate and diethyl carbonate.

【0045】次に,上記リチウム2次電池の特性の評価
は,サイクル特性と高放電容量性とを同時に評価するた
め次のように充放電試験を行った。まず,各リチウム2
次電池の充電条件は,4.3Vになるまで1mA/cm
2の定電流により充電し,その後電圧が4.3Vに到達
した後は,この電圧で定電圧充電を行うという条件とし
た。なお以上の充電時間の合計は4時間とした。
Next, in order to evaluate the characteristics of the lithium secondary battery, a charge / discharge test was performed as follows in order to simultaneously evaluate the cycle characteristics and the high discharge capacity. First, each lithium 2
The charging condition of the secondary battery is 1 mA / cm until it reaches 4.3 V.
After the battery was charged with the constant current of 2 , and after the voltage reached 4.3 V, the condition was set such that constant voltage charging was performed at this voltage. The total of the above charging times was 4 hours.

【0046】また,各リチウム2次電池の放電条件は,
定電流放電を行い,3.5Vに到達したとき放電を終了
した。そして,定電流放電の放電電流密度は3サイクル
毎に変えた。具体的には,1〜3サイクルは0.5mA
/cm2 ,4〜6サイクルは1mA/cm2 ,7〜9サ
イクルは2mA/cm2 ,10〜12サイクルは4mA
/cm2 ,13〜15サイクルは再び0.5mA/cm
2 とした。
The discharge conditions of each lithium secondary battery are as follows:
A constant current discharge was performed, and when the voltage reached 3.5 V, the discharge was terminated. The discharge current density of the constant current discharge was changed every three cycles. Specifically, 0.5 mA for 1-3 cycles
/ Cm 2, 4~6 cycle is 1mA / cm 2, 7~9 cycle 2mA / cm 2, 10~12 cycle 4mA
/ Cm 2 , 0.5 mA / cm for 13-15 cycles again
And 2 .

【0047】上記の充放電試験結果を図5に示す。同図
は,横軸に充放電サイクル数を,縦軸には活物質放電容
量(mAh/g)をとった。また,プロットした各デー
タの上には,各放電電流密度を示した。同図より,1〜
3サイクルのデータ群から10〜12サイクルのデータ
群までを比較することにより,各リチウム2次電池の高
放電容量性を評価することができる。また,1〜3サイ
クルのデータ群と13〜15サイクルのデータ群とを比
較することにより,サイクル特性(耐久性)を評価する
ことができる。
FIG. 5 shows the results of the above charge / discharge test. In the figure, the horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the active material discharge capacity (mAh / g). The respective discharge current densities are shown above the plotted data. According to FIG.
By comparing the data group of three cycles to the data group of 10 to 12 cycles, the high discharge capacity of each lithium secondary battery can be evaluated. The cycle characteristics (durability) can be evaluated by comparing the data group of 1 to 3 cycles with the data group of 13 to 15 cycles.

【0048】その結果,本発明及び従来の噴霧燃焼合成
法による試料E1,C1は,いずれも固相反応法の試料
C2よりも優れた高放電容量性及びサイクル特性を示し
た。また,4mA/cm2 における高放電容量性につい
ては,本発明の試料E1が試料C1よりも格段に優れた
性能を示した。
As a result, both the samples E1 and C1 of the present invention and the conventional spray combustion synthesis method exhibited higher discharge capacity and cycle characteristics than the sample C2 of the solid phase reaction method. As for the high discharge capacity at 4 mA / cm 2 , the sample E1 of the present invention showed much better performance than the sample C1.

【0049】試料E1,C1が固相反応法による試料C
2よりも優れた性能を発揮した理由は,リチウムマンガ
ン複合酸化物粒子の均質性が良い,粒径が小さい,比表
面積が大きいという特性によると考えられる。また,本
発明の例である試料E1が試料C1よりもすぐれた電極
性能を発揮した理由は,上記凹凸形状による嵩密度向上
効果と,酸化物微粒子のLiCoO2による導電率向上
効果が発揮されたためであると考えられる。
Samples E1 and C1 were sample C obtained by the solid-phase reaction method.
It is considered that the reason why the performance superior to 2 was exhibited is that the lithium manganese composite oxide particles have good homogeneity, small particle size, and large specific surface area. Further, the reason why the sample E1 which is an example of the present invention exhibited better electrode performance than the sample C1 was because the effect of improving the bulk density by the above-mentioned uneven shape and the effect of improving the conductivity by LiCoO 2 of the oxide fine particles were exhibited. It is considered to be.

【0050】[0050]

【発明の効果】上述のごとく,本発明によれば,複数の
酸化物の特性を併せ持つと共に,表面の凹凸形状により
凝集体の形成を抑制できる,酸化物粉末を提供すること
ができる。
As described above, according to the present invention, it is possible to provide an oxide powder having both the properties of a plurality of oxides and suppressing the formation of aggregates due to the unevenness of the surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の酸化物粉末を示す説明図。FIG. 1 is an explanatory view showing an oxide powder according to a first embodiment.

【図2】実施形態例1における,噴霧燃焼合成装置の概
要説明図。
FIG. 2 is a schematic explanatory view of a spray combustion synthesizing apparatus according to the first embodiment.

【図3】実施形態例1における,試料E1の粒子形状を
示す図面代用のSEM写真(倍率5000倍)。
FIG. 3 is a SEM photograph (magnification: 5,000 times) showing a particle shape of a sample E1 in Embodiment Example 1 instead of a drawing.

【図4】実施形態例1における,試料C1の粒子形状を
示す図面代用のSEM写真(倍率5000倍)。
FIG. 4 is a SEM photograph (magnification: 5,000) used as a substitute for a drawing, showing the particle shape of sample C1 in the first embodiment.

【図5】実施形態例2における,リチウム2次電池の充
放電試験結果を示す説明図。
FIG. 5 is an explanatory diagram showing a result of a charge / discharge test of a lithium secondary battery in Embodiment 2.

【符号の説明】[Explanation of symbols]

1...定量ポンプ, 2...アトマイザ, 3...パイロットバーナー, 4...燃焼反応塔, 5...捕集器, 7...酸化物粉末, 70...核粒子, 71...酸化物微粒子, 1. . . 1. metering pump, . . Atomizer, 3. . . 3. pilot burner, . . Combustion reaction tower, 5. . . Collector, 7. . . Oxide powder, 70. . . Nuclear particle, 71. . . Oxide fine particles,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 直義 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 則竹 達夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉山 純 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 畑中 達也 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoyoshi Watanabe 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Tatsuo Noriku, Nagakute-cho, Aichi-gun, Aichi Prefecture 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Jun Sugiyama Ochi, Chukuji, Nagakute-cho, Aichi-gun, Aichi Prefecture, Japan 41-Toyota Central Research Laboratory Co., Ltd. (72) Tatsuya Hatanaka Aichi Prefecture 41 Toyota-Chuo R & D Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物よりなる核粒子の表面に,これと
異なる組成の酸化物微粒子を付着してなることを特徴と
する酸化物粉末。
1. An oxide powder comprising oxide fine particles having a different composition adhered to the surface of a core particle made of an oxide.
JP9270396A 1997-09-16 1997-09-16 Oxide powder Pending JPH1192119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9270396A JPH1192119A (en) 1997-09-16 1997-09-16 Oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9270396A JPH1192119A (en) 1997-09-16 1997-09-16 Oxide powder

Publications (1)

Publication Number Publication Date
JPH1192119A true JPH1192119A (en) 1999-04-06

Family

ID=17485685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9270396A Pending JPH1192119A (en) 1997-09-16 1997-09-16 Oxide powder

Country Status (1)

Country Link
JP (1) JPH1192119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2006012433A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US7056486B2 (en) 2000-02-16 2006-06-06 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
US7252906B2 (en) 2001-02-12 2007-08-07 Lg Chem, Ltd. Positive active material for a lithium secondary battery with higher performance and preparation method of the same
US7695649B2 (en) * 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
USRE42433E1 (en) 2000-02-28 2011-06-07 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
US7056486B2 (en) 2000-02-16 2006-06-06 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
USRE42433E1 (en) 2000-02-28 2011-06-07 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US7252906B2 (en) 2001-02-12 2007-08-07 Lg Chem, Ltd. Positive active material for a lithium secondary battery with higher performance and preparation method of the same
US7695649B2 (en) * 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
JP2006012433A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
CN109888235A (en) A kind of nickelic tertiary cathode material of gradation and its preparation method and application
JP5888418B2 (en) Negative electrode active material, method for producing negative electrode active material, negative electrode and secondary battery
CN111081987B (en) Lithium cobaltate cathode material of lithium ion battery with voltage of more than 4.45V and preparation method thereof
CN110168785A (en) Ni-based active material presoma and preparation method thereof, Ni-based active material and lithium secondary battery
CN110233259A (en) Positive active material, positive pole piece and electrochemical energy storage device
CN109461927A (en) A kind of compound nickel-cobalt-manganese multi positive electrode of high magnification and preparation method thereof
CN112635754B (en) Multi-element anode material and preparation method and application thereof
CA2781658A1 (en) Active material particles having secondary particles with lithium transition metal oxides and method for procucing the same
CN110010886A (en) A kind of lithium-rich manganese-based anode material, preparation method, anode pole piece and lithium ion secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
CN111087031B (en) Preparation method of coated positive electrode material
JP2006261061A (en) Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
CN106450267B (en) Lithium ion secondary battery
CN110085831A (en) A kind of metatitanic acid lithium cladding nickel-cobalt-manganternary ternary anode material and preparation method thereof
CN110112393A (en) A kind of positive electrode, and its preparation method and application
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2008044836A (en) Method for producing lithium-transition metal compound oxide
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
JP4144317B2 (en) Method for producing lithium transition metal composite oxide
JP2001015108A (en) Positive electrode active material for lithium secondary battery, its manufacture, and lithium secondary battery
JPH11121006A (en) Positive electrode active material for lithium secondary battery
JPH1192119A (en) Oxide powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019