JPH1189259A - Operating system of synchronous motor - Google Patents

Operating system of synchronous motor

Info

Publication number
JPH1189259A
JPH1189259A JP9238765A JP23876597A JPH1189259A JP H1189259 A JPH1189259 A JP H1189259A JP 9238765 A JP9238765 A JP 9238765A JP 23876597 A JP23876597 A JP 23876597A JP H1189259 A JPH1189259 A JP H1189259A
Authority
JP
Japan
Prior art keywords
inverter
synchronous motor
voltage
motor
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9238765A
Other languages
Japanese (ja)
Inventor
Hiroshi Oguri
浩 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9238765A priority Critical patent/JPH1189259A/en
Publication of JPH1189259A publication Critical patent/JPH1189259A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an operating system which can directly actuate a synchronous motor, by making any dynamic brake circuit unnecessary. SOLUTION: A controller 16 discriminates the actuation of a first synchronous motor 2 by means of circuits 13-15 from the output current of an inverter 1 and, after discriminating the actuation, detects that the DC voltage of the inverter 1 rises to a voltage which is close to an overvoltage level due to regenerated energy by means of circuits 11 and 12. Upon detecting the DC voltage approaching the overvoltage level, the controller 16 adjusts the phase of the inverter 1 so that the first synchronous motor 2 may be set to a driving mode and, after the motor 2 is pulled in by the phase adjustment, returns the inverter 1 to a normal operating state. The regenerated energy form a second motor 3 and after the second motor is absorbed by the first motor 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1台のインバータ
で複数台の同期電動機を並列運転し、各同期電動機をイ
ンバータに直入れ始動する同期電動機の運転方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor operation system in which a plurality of synchronous motors are operated in parallel by one inverter, and each synchronous motor is inserted directly into the inverter and started.

【0002】[0002]

【従来の技術】この種の設備は、図4に示すように、イ
ンバータ1を運転しておき、各同期電動機2、3とイン
バータ1間に設けられるマグネットコンタクタ(MC)
やブレーカ(MCCB))になる開閉器4、5を順次投
入することで各同期電動機を順次起動し、同期引き込み
により各同期電動機をインバータの運転周波数で同期運
転する。
2. Description of the Related Art As shown in FIG. 4, this type of equipment operates an inverter 1 and a magnet contactor (MC) provided between each of the synchronous motors 2, 3 and the inverter 1.
The synchronous motors are sequentially started by sequentially turning on the switches 4 and 5 which become the motors and breakers (MCCB), and the synchronous motors are synchronously operated at the operating frequency of the inverter by pulling in the synchronous motors.

【0003】これにより、出力周波数を一定に保持した
1台のインバータによる複数台の同期電動機の直入れ始
動と並列運転が可能となる。
[0003] Thus, it is possible to start a plurality of synchronous motors directly and to operate them in parallel by using a single inverter having a constant output frequency.

【0004】同期電動機の直入れ始動において、同期電
動機の速度が上昇して同期速度近づくと、図5に示すよ
うに、同期電動機は同期引き込みと脱調を繰り返し、速
度に振動が表れる。この振動により、同期電動機は速度
に応じて駆動と回生を繰り返し、その後に同期引き込み
でインバータ周波数に収束する。
When the speed of the synchronous motor increases and approaches the synchronous speed at the start of the direct drive of the synchronous motor, as shown in FIG. 5, the synchronous motor repeats pull-in and step-out of the synchronous motor, and vibration appears in the speed. Due to this vibration, the synchronous motor repeatedly drives and regenerates according to the speed, and then converges to the inverter frequency by pulling in the synchronization.

【0005】上記の直入れ始動において、インバータは
非常に電力変換効率が良く、内部損失が少ない。このた
め、同期電動機からの回生エネルギーは、同図の経路A
で示すように、インバータの主コンデンサ6に充電され
る。このため、回生時に主コンデンサの電圧が上昇し、
回生量が大きい場合には電圧上昇も大きくなり、インバ
ータの過電圧保護回路が動作してインバータが停止する
場合がある。
[0005] In the above-described straight-on start, the inverter has very good power conversion efficiency and low internal loss. For this reason, the regenerative energy from the synchronous motor is supplied to the path A in FIG.
As shown by, the main capacitor 6 of the inverter is charged. For this reason, the voltage of the main capacitor increases during regeneration,
When the regenerative amount is large, the voltage rise also becomes large, and the overvoltage protection circuit of the inverter may operate to stop the inverter.

【0006】この過電圧停止を防止するため、インバー
タの直流回路にダイナミックブレーキ(DBR)回路7
を設けている。このDBR回路7は、直流電圧上昇時
に、半導体素子をオン制御することで放電抵抗を直流回
路に接続し、回生エネルギーを抵抗を通して放電させ、
直流電圧の上昇を抑える。
In order to prevent this overvoltage stop, a dynamic brake (DBR) circuit 7 is provided in the DC circuit of the inverter.
Is provided. When the DC voltage rises, the DBR circuit 7 connects the discharge resistor to the DC circuit by turning on the semiconductor element to discharge the regenerative energy through the resistor.
Suppress DC voltage rise.

【0007】[0007]

【発明が解決しようとする課題】従来装置において、2
台目以降の同期電動機の始動は、1台目と同様にその起
動時に駆動と回生の繰り返しによる振動状態が発生す
る。この2台目以降の始動では、1台目の始動と異な
り、回生エネルギーは図4の経路Bで示すように、1台
目の同期電動機で消費される。
In the conventional apparatus, 2
When the synchronous motors subsequent to the first motor are started, a vibration state occurs due to repetition of driving and regeneration at the time of the start, similarly to the first motor. In the second and subsequent start-ups, unlike the first start-up, the regenerative energy is consumed by the first synchronous motor as shown by the path B in FIG.

【0008】したがって、ダイナミックブレーキ回路7
は、1台目の同期電動機の始動のときのみ使用されるも
のであり、低い使用率ではあるが回路上で必要なものと
なり、装置のコストアップ及び信頼性の低下、さらには
メンテナンスの煩わしさがある。
Therefore, the dynamic brake circuit 7
Is used only when the first synchronous motor is started. Although it is used at a low rate, it is necessary on the circuit, which increases the cost and reliability of the device, and further complicates maintenance. There is.

【0009】本発明の目的は、ダイナミックブレーキ回
路を不要にして同期電動機の直入れ始動ができる運転方
式を提供することにある。
An object of the present invention is to provide an operation system in which a synchronous motor can be started directly without requiring a dynamic brake circuit.

【0010】[0010]

【課題を解決するための手段】本発明は、インバータの
直流電圧及び出力電流から1台目の同期電動機の始動と
電圧上昇を判定し、この判定でインバータの出力位相を
制御することにより過電圧を抑制するようにしたもの
で、以下の方式を特徴とする。
SUMMARY OF THE INVENTION According to the present invention, overvoltage is determined by determining the start and voltage rise of the first synchronous motor from the DC voltage and output current of the inverter, and controlling the output phase of the inverter in this determination. This is characterized by the following method.

【0011】1台のインバータに複数台の同期電動機を
順次直入れして並列運転する同期電動機の運転方式にお
いて、インバータの出力電流から1台目の同期電動機の
起動を判定する手段と、この起動判定後に前記インバー
タの直流電圧が過電圧レベル近くまで上昇したことを検
出又は予測で得たときに該1台目の同期電動機が駆動モ
ードになるようインバータの位相調整を行う手段と、前
記位相調整で1台目の同期電動機の同期引き込みが完了
した後にインバータを正規の運転状態に戻す手段とを備
えたことを特徴とする。
In a synchronous motor operating system in which a plurality of synchronous motors are sequentially inserted directly into one inverter and operated in parallel, means for judging the activation of the first synchronous motor from the output current of the inverter, Means for adjusting the phase of the inverter so that the first synchronous motor is in the drive mode when it is detected or predicted that the DC voltage of the inverter has risen to near the overvoltage level after the determination; and Means for returning the inverter to a normal operation state after the first synchronous motor has been brought into synchronization.

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施形態を示す
装置構成図であり、図4と同等の部分は同じ符号で示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention, and portions equivalent to FIG. 4 are denoted by the same reference numerals.

【0013】電圧検出器11は、主コンデンサ6の電圧
を検出する。コンパレータ12は、インバータ1の過電
圧検出レベルより少し低くした電圧V1を比較基準と
し、電圧検出器11で検出した電圧が当該電圧V1を越
えたことを検出する。
The voltage detector 11 detects the voltage of the main capacitor 6. Comparator 12, the voltages V 1 which is slightly lower than the overvoltage detection level of the inverter 1 as a comparison reference, the voltage detected by the voltage detector 11 detects that exceeds the voltages V 1.

【0014】電流検出器13は、インバータ1の出力電
流を検出する。交流−直流変換器14は、電流検出器1
3で検出した電流を直流に変換する。A/D変換器15
は、電流検出器13からの検出信号をサンプリングして
ディジタル信号に変換する。
The current detector 13 detects the output current of the inverter 1. The AC-DC converter 14 includes the current detector 1
The current detected in step 3 is converted to direct current. A / D converter 15
Samples the detection signal from the current detector 13 and converts it into a digital signal.

【0015】制御装置16は、マイクロコンピュータ構
成にされ、インバータ1の起動/停止制御と出力周波数
及び電圧を一定に制御、さらにはPWM波形生成等のた
めの制御信号を生成するソフトウェアを搭載している。
この構成は、従来装置と同等のものになる。
The control device 16 has a microcomputer configuration and includes software for controlling the start / stop of the inverter 1, controlling the output frequency and voltage to be constant, and generating control signals for generating a PWM waveform and the like. I have.
This configuration is equivalent to the conventional device.

【0016】ここで、制御装置16は、コンパレータ1
2とA/D変換器15から得るインバータの直流電圧及
び出力電流から同期電動機の始動制御を行うためのソフ
トウェアを設ける。
Here, the control device 16 controls the comparator 1
2 and software for performing start control of the synchronous motor from the DC voltage and output current of the inverter obtained from the A / D converter 15.

【0017】この制御を図2を参照して説明する。時刻
1の電源投入後、インバータ1の運転による無負荷出
力電流を記憶保持しておく。その後、時刻t2で開閉器
4を投入し、1台目の同期電動機2を始動したときに流
れる起動電流を取り込み、この電流と無負荷電流を比較
し、無負荷電流が数十%(例えば30%)に上昇したと
きに1台目の同期電動機2の起動と判定する(時刻
3)。
This control will be described with reference to FIG. After power-on of the time t 1, the no-load output current by operation of the inverter 1 stores retained. Thereafter, were charged the switch 4 at time t 2, the starting current flowing when starting the first unit of the synchronous motor 2 uptake, compares the current and no-load current, no-load current of several tens% (e.g. 30%), it is determined that the first synchronous motor 2 is started (time t 3 ).

【0018】この起動判定後、コンデンサ6の電圧上昇
が過電圧レベルに近くなったことの検出信号をコンパレ
ータ12から得たとき(時刻t4)、インバータ1のゲ
ート信号位相を調整する。
After this start-up determination, when a detection signal indicating that the voltage rise of the capacitor 6 has approached the overvoltage level is obtained from the comparator 12 (time t 4 ), the gate signal phase of the inverter 1 is adjusted.

【0019】この位相調整は、インバータの出力位相角
をあらかじめ定めたパラメータ分だけ遅らせることによ
り出力周波数を下げる。これにより、回生モードであっ
た1台目の同期電動機2は、駆動モードとなり、コンデ
ンサ6の直流電圧の上昇が抑えられると共にスムーズな
同期引き込みがなされる。この同期引き込み波形を図3
に示す。
This phase adjustment lowers the output frequency by delaying the output phase angle of the inverter by a predetermined parameter. As a result, the first synchronous motor 2 which has been in the regenerative mode is in the drive mode, in which the DC voltage of the capacitor 6 is suppressed from rising and smooth synchronization is achieved. This synchronization pull-in waveform is shown in FIG.
Shown in

【0020】この同期引き込み完了(時刻t5)でコン
デンサ6の電圧が通常レベルに戻り、コンパレータ12
の出力も復帰し、インバータの出力周波数を正規の周波
数をに復帰させる位相処理を終了すると共に、処理完了
フラグをセットする。
When the synchronization is completed (time t 5 ), the voltage of the capacitor 6 returns to the normal level, and the comparator 12
, The phase processing for returning the output frequency of the inverter to the normal frequency ends, and the processing completion flag is set.

【0021】以上の処理により、従来のダイナミックブ
レーキ回路7と同等の機能を得る。その後の2台目以降
になる同期電動機3の始動(時刻t6)には、処理完了
フラグのセットから位相調整を行わない。この場合に
は、従来と同様に、1台目の同期電動機がエネルギー消
費を行ってコンデンサの電圧上昇を抑える。
With the above processing, a function equivalent to that of the conventional dynamic brake circuit 7 is obtained. After the subsequent start of the synchronous motor 3 (time t 6 ), the phase adjustment is not performed from the setting of the processing completion flag. In this case, as in the conventional case, the first synchronous motor consumes energy and suppresses the voltage rise of the capacitor.

【0022】なお、位相調整ではインバータの出力周波
数が瞬時変動するため、用途によっては使用できない場
合が発生するが、これはパラメータ上で動作禁止にでき
る。
In the phase adjustment, since the output frequency of the inverter fluctuates instantaneously, there may be a case where the inverter cannot be used depending on the application. However, this operation can be prohibited by a parameter.

【0023】また、実施形態では、コンパレータ12等
によりコンデンサ電圧の上昇を検出する場合を示した
が、これを省略し、電流検出器13の検出電流の時間積
分から回生エネルギーによる電圧上昇を予測する方法や
1台目の同期電動機の起動判定後の時間から電圧上昇を
予測するなど、ソフトウェア的に判定処理する構成にし
て同等の作用効果を得ることができる。
In the embodiment, the case where the rise of the capacitor voltage is detected by the comparator 12 or the like has been described. However, this is omitted, and the voltage rise due to the regenerative energy is predicted from the time integration of the current detected by the current detector 13. The same operation and effect can be obtained by a configuration in which the determination process is performed by software, such as by estimating the voltage rise from the method or the time after the determination of the start of the first synchronous motor.

【0024】[0024]

【発明の効果】以上のとおり、本発明によれば、インバ
ータの直流電圧及び出力電流から1台目の同期電動機の
始動と電圧上昇を判定し、この判定でインバータの出力
位相を制御することにより過電圧を抑制するようにした
ため、以下の効果がある。
As described above, according to the present invention, the start and voltage rise of the first synchronous motor are determined from the DC voltage and output current of the inverter, and the output phase of the inverter is controlled by this determination. Since the overvoltage is suppressed, the following effects are obtained.

【0025】(1)従来のダイナミックブレーキ回路が
不要になり、回路構成が簡単になると共に装置の信頼性
を向上できる。
(1) The conventional dynamic brake circuit is not required, the circuit configuration is simplified, and the reliability of the device can be improved.

【0026】(2)ダイナミックブレーキ回路のメンテ
ナンスが不要となる。
(2) Maintenance of the dynamic brake circuit becomes unnecessary.

【0027】(3)インバータのコストダウンを図るこ
とができる。
(3) The cost of the inverter can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す装置構成図。FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention.

【図2】実施形態における制御タイムチャート。FIG. 2 is a control time chart in the embodiment.

【図3】実施形態における同期引き込みの波形図。FIG. 3 is a waveform diagram of synchronization pull-in according to the embodiment.

【図4】従来の並列運転方式の構成図。FIG. 4 is a configuration diagram of a conventional parallel operation system.

【図5】従来の同期引き込みの波形図。FIG. 5 is a waveform diagram of a conventional synchronization pull-in.

【符号の説明】[Explanation of symbols]

1…インバータ 2、3…同期電動機 4、5…開閉器 6…コンデンサ 7…ダイナミックブレーキ回路 12…コンパレータ 15…A/D変換器 16…制御装置 DESCRIPTION OF SYMBOLS 1 ... Inverter 2, 3 ... Synchronous motor 4, 5 ... Switch 6 ... Capacitor 7 ... Dynamic brake circuit 12 ... Comparator 15 ... A / D converter 16 ... Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1台のインバータに複数台の同期電動機
を順次直入れして並列運転する同期電動機の運転方式に
おいて、 インバータの出力電流から1台目の同期電動機の起動を
判定する手段と、 この起動判定後に前記インバータの直流電圧が過電圧レ
ベル近くまで上昇したことを検出又は予測で得たときに
該1台目の同期電動機が駆動モードになるようインバー
タの位相調整を行う手段と、 前記位相調整で1台目の同期電動機の同期引き込みが完
了した後にインバータを正規の運転状態に戻す手段とを
備えたことを特徴とする同期電動機の運転方式。
1. A synchronous motor operation system in which a plurality of synchronous motors are sequentially inserted directly into one inverter and operated in parallel, means for judging start-up of a first synchronous motor from an output current of the inverter; Means for adjusting the phase of the inverter so that the first synchronous motor is in the drive mode when it is detected or predicted that the DC voltage of the inverter has risen to near the overvoltage level after the start determination; Means for returning the inverter to a normal operation state after the synchronization of the first synchronous motor has been completed by the adjustment.
JP9238765A 1997-09-04 1997-09-04 Operating system of synchronous motor Pending JPH1189259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9238765A JPH1189259A (en) 1997-09-04 1997-09-04 Operating system of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9238765A JPH1189259A (en) 1997-09-04 1997-09-04 Operating system of synchronous motor

Publications (1)

Publication Number Publication Date
JPH1189259A true JPH1189259A (en) 1999-03-30

Family

ID=17034940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9238765A Pending JPH1189259A (en) 1997-09-04 1997-09-04 Operating system of synchronous motor

Country Status (1)

Country Link
JP (1) JPH1189259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162727A2 (en) * 2000-06-08 2001-12-12 BAE SYSTEMS Controls, Inc. Apparatus and method for driving a plurality of induction motors
WO2018185878A1 (en) 2017-04-05 2018-10-11 三菱電機株式会社 Synchronous motor driving device, blower, and air conditioning device
WO2019069363A1 (en) * 2017-10-03 2019-04-11 三菱電機株式会社 Motor control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162727A2 (en) * 2000-06-08 2001-12-12 BAE SYSTEMS Controls, Inc. Apparatus and method for driving a plurality of induction motors
EP1162727A3 (en) * 2000-06-08 2004-11-24 BAE SYSTEMS Controls, Inc. Apparatus and method for driving a plurality of induction motors
WO2018185878A1 (en) 2017-04-05 2018-10-11 三菱電機株式会社 Synchronous motor driving device, blower, and air conditioning device
US10951140B2 (en) 2017-04-05 2021-03-16 Mitsubishi Electric Corporation Synchronous motor drive device, air-sending device and air-conditioning device
WO2019069363A1 (en) * 2017-10-03 2019-04-11 三菱電機株式会社 Motor control device
JPWO2019069363A1 (en) * 2017-10-03 2020-10-15 三菱電機株式会社 Electric motor control device

Similar Documents

Publication Publication Date Title
JP3107230B2 (en) Motor control device and method
CN108964572B (en) Method and system for active short circuit control of motor
KR20160141978A (en) A method for controlling an inverter
JPH1189259A (en) Operating system of synchronous motor
JP4261843B2 (en) Electric motor control device
KR20110121519A (en) Driving device of centrifugal separator
JP2001086762A (en) Power supply device
KR100988137B1 (en) Deceleration control apparatus and method for inverter
JP2001268992A (en) Variable speed controller
KR100434137B1 (en) Speed search method for inverter system, for smoothly operating motor when power is re-supplied after instantaneous power outage
KR100492758B1 (en) Control circuit for stop of hybrid motor starter
JP2979765B2 (en) Inverter for synchronous motor
JP2000134973A (en) Control device of brushless motor
JPH0158759B2 (en)
JP4154172B2 (en) Excitation control device for synchronous machine
JP2002204594A (en) Motor control equipment
JPH1056779A (en) Drive unit for motor-driven compressor
JP2006180610A (en) Dc motor rotation speed detector
JPH08331891A (en) Controller and control method for induction motor
JP4626124B2 (en) Electric motor control device
JPS60121971A (en) Inverter for starting transformer
JP2000116171A (en) Motor controller
JPS6032405B2 (en) Electric vehicle power generation brake control method
JP2002118967A (en) Power supply voltage maintaining apparatus
JPH08182386A (en) Controller for alternate current motor