JPH1188242A - Data carrier - Google Patents

Data carrier

Info

Publication number
JPH1188242A
JPH1188242A JP9239406A JP23940697A JPH1188242A JP H1188242 A JPH1188242 A JP H1188242A JP 9239406 A JP9239406 A JP 9239406A JP 23940697 A JP23940697 A JP 23940697A JP H1188242 A JPH1188242 A JP H1188242A
Authority
JP
Japan
Prior art keywords
circuit
transmission
interrogator
data
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9239406A
Other languages
Japanese (ja)
Other versions
JP3862112B2 (en
Inventor
Hidekazu Ishii
英一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23940697A priority Critical patent/JP3862112B2/en
Publication of JPH1188242A publication Critical patent/JPH1188242A/en
Application granted granted Critical
Publication of JP3862112B2 publication Critical patent/JP3862112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To allow a responder to obtain sufficient transmission power even when the responder is in operation in the vicinity of communication coverage limit. SOLUTION: A transmission load circuit 37 connects to a transmission reception coil 31 of a responder 30 via a switching transistor(TR) 39, and the resistance of the transmission load circuit 37 is selected so that the circuit 37 consumes power nearly equal to transmission power consumed to transmit data at a maximum communication distance (or a communication limit distance) with an interrogator 10. An internal processing circuit 35 activates the TR 39 via an I/O in the case that the responder 30 is operated with small power consumption in the vicinity of the limit communication distance so as to allow the transmission load circuit 37 to consume power, thereby suppressing an output of a rectifier circuit 33. In the case that the responder 30 required much power as data transmission or the like, the circuit 35 inactivates the TR 39. The TR 39 is conductive when a modulation circuit 36 provides an output of data '1'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、データキャリアに
関し、質問機と応答機(データキャリア)との間で信号
の授受行う非接触式ICカード型のデータキャリアに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data carrier and, more particularly, to a non-contact type IC card type data carrier for exchanging signals between an interrogator and a transponder (data carrier).

【0002】[0002]

【従来の技術】質問機と応答機のカードとの間で、電磁
結合方式又は電磁誘導方式等により信号の授受を行う方
式のデータキャリアシステム(例えば、「非接触式IC
カードシステム」として実用化が進められている)が広
く知られている。特に、搬送波を応答機側で整流して、
応答機の電力として使用する無電池方式の非接触式IC
カードシステムがIDカード用、搬送物の認識用タグ等
として広く用いられる様になってきた。
2. Description of the Related Art A data carrier system (for example, a "non-contact IC") for transmitting and receiving signals between an interrogator and a card of an answering machine by an electromagnetic coupling system or an electromagnetic induction system.
Practical application as a "card system") is widely known. In particular, the carrier is rectified on the transponder side,
Battery-free non-contact IC used as power for transponders
A card system has been widely used as an ID card, a tag for recognizing a conveyed article, and the like.

【0003】このような電磁結合方式の非接触式ICカ
ードシステムにおいては、質問機は、OSC(発振器)
で発生させた搬送波を送信データに応じて変調し、その
変調波をドライバー回路で増幅し、アンテナコイルを駆
動して応答機に送信する。応答機は、アンテナコイルで
質問機からの信号を受信すると、整流回路で搬送波を整
流して内部で使用する電力を得るとともに、復調回路で
受信信号を復調してデータ処理回路に送り、データ処理
回路でデータ処理を行う。
In such an electromagnetic coupling type non-contact IC card system, the interrogator is an OSC (oscillator).
Is modulated according to the transmission data, the modulated wave is amplified by a driver circuit, and the antenna coil is driven and transmitted to the transponder. When the transponder receives the signal from the interrogator with the antenna coil, the rectifier circuit rectifies the carrier wave to obtain the power to be used internally, and the demodulation circuit demodulates the received signal and sends it to the data processing circuit for data processing. Data processing is performed by the circuit.

【0004】[0004]

【発明が解決しようとする課題】ところで、応答機で使
用する電力は質問機からから供給される高周波磁界によ
りコイルに誘導電圧を発生させ、これを整流回路で整流
して供給している。データキャリアには、大まかに分け
ると、 1.高周波磁界を受けず何の動作もしない状態、 2.質問機から高周波磁界とともにこの信号にかけられ
た変調信号を受け取る受信動作状態、 3.質問機から高周波磁界を受け取りながら応答機内で
の信号処理を行う内部処理状態、 4.質問機から高周波磁界を受け取りながら質問機へデ
ータを送信する送信動作状態 の4つの動作状態が存在する。
By the way, the electric power used in the transponder generates an induced voltage in the coil by the high frequency magnetic field supplied from the interrogator, and rectifies the induced voltage by the rectifier circuit and supplies it. The data carriers are roughly divided into: 1. A state in which no operation is performed without receiving a high-frequency magnetic field; 2. A receiving operation state for receiving a modulated signal applied to this signal together with a high-frequency magnetic field from the interrogator; 3. Internal processing state in which signal processing is performed in the transponder while receiving a high-frequency magnetic field from the interrogator; There are four operating states: a transmitting operation state in which data is transmitted to the interrogator while receiving a high-frequency magnetic field from the interrogator.

【0005】この中で、4番目の送信動作状態が応答機
として最も電力を消費する動作状態である。質問機と応
答機の距離が遠くなり、質問機から受け取る電力が少な
く、応答機の動作のための下限に近い電力しか得られな
い場合に、上記4つの動作状態によって応答機の消費電
力が異なることが障害になる場合があった。
[0005] Among them, the fourth transmission operation state is the operation state that consumes the most power as a transponder. When the distance between the interrogator and the transponder is long, the power received from the interrogator is small, and only the power close to the lower limit for the operation of the transponder can be obtained, the power consumption of the transponder differs depending on the above four operation states. That could be an obstacle.

【0006】データキャリアシステムは通常下記の手順
で動作を行う事が多い。 (1)質問機からの高周波磁界と信号を受けて応答機が
動作を開始し、質問機からの呼びかけに応じて、応答機
が通信エリア内に来たことを知らせる為の短い信号を送
信する。 (2)質問機は通信エリア内に応答機が来たことを認識
し、IDの確認や、応答機の内部データの問い合わせ命
令を送る。
A data carrier system usually operates in the following procedure in many cases. (1) The transponder starts operating in response to a high-frequency magnetic field and a signal from the interrogator, and transmits a short signal for notifying that the transponder has arrived in the communication area in response to the call from the interrogator. . (2) The interrogator recognizes that the transponder has arrived in the communication area, and confirms the ID and sends an inquiry command for internal data of the transponder.

【0007】(3)上記質問機からの命令に沿った処理
を応答機が実施し、対応するデータを連続して質問機に
返す処理を行う。この一連の処理の中で、応答機が最も
電力を消費するのは質問機への送信動作であるが、
(1)の応答のような短い信号の送信時に消費する電力
は、応答機の整流回路内に設けられた平滑コンデンサに
蓄積された電荷で充分賄う事が出来るが、(3)のよう
に各種データを連続して送信する場合には大きな電力を
必要とし、応答機と質問機の距離が応答限界に近い場合
には、平滑コンデンサに蓄積された電荷の量が充分でな
いため、応答機が平滑コンデンサに蓄積された電荷を使
い切ってしまって、データ転送の途中で動作を停止する
と言う問題があった。
(3) The transponder performs a process in accordance with the command from the interrogator, and performs a process of continuously returning the corresponding data to the interrogator. In this series of processing, the responding machine consumes the most power during the transmission to the interrogator,
The power consumed when transmitting a short signal such as the response of (1) can be sufficiently covered by the electric charge accumulated in the smoothing capacitor provided in the rectifier circuit of the transponder. When transmitting data continuously, large power is required.When the distance between the transponder and the interrogator is close to the response limit, the amount of charge accumulated in the smoothing capacitor is not enough, and the transponder is smoothed. There is a problem in that the charge accumulated in the capacitor is used up and the operation stops during data transfer.

【0008】この問題は一つの質問機で複数の応答機に
対応するマルチ対応のデータキャリアシステムの場合に
特に問題となる。一台でもこの様に不安定な応答機が存
在するとこの応答機に対して何回もデータ送信要求を繰
り返すためにシステム全体が止まってしまうと言う現象
が起こるからである。この問題を解決するには平滑コン
デンサを大きくするか、平滑コンデンサに蓄積された電
荷で充分な短い期間に送信データを分割して送信し、分
割送信の間に平滑コンデンサに充電を行う方法が考えら
れるが、前者では応答機のサイズが大きく成るとともに
コストも増大すると言う別の問題が発生し、後者では一
台の応答機とのデータのやりとりに長時間有し、搬送シ
ステム等の用途に用いた場合等には、搬送システム内の
応答機を付着する物体の移動速度を制限せざるを得ない
と言った問題を発生させている。
This problem is particularly problematic in the case of a multi-support data carrier system that supports a plurality of transponders with one interrogator. This is because, if at least one such transponder exists, a phenomenon occurs that the entire system stops because data transmission requests are repeated many times for this transponder. To solve this problem, consider a method of increasing the size of the smoothing capacitor or dividing the transmission data for a sufficiently short period with the charge stored in the smoothing capacitor and transmitting it, and charging the smoothing capacitor during the divided transmission. However, the former has another problem that the size of the transponder increases and the cost also increases.The latter has a long time in exchanging data with one transponder and is used for applications such as transport systems. In such a case, there is a problem that the moving speed of the object attached to the transponder in the transport system must be limited.

【0009】本発明は、上記問題を解決し、応答機が通
信距離限界付近で動作する場合に充分な送信電力を確保
できるデータキャリアを提供する事を目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a data carrier capable of securing a sufficient transmission power when the transponder operates near a communication distance limit.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明のデータキャリアは、送受信コイルとこれに接
続された同調コンデンサと、送受信コイルで受信した信
号を整流する整流回路と、整流回路の出力電力で駆動さ
れる内部処理回路と、送信信号を前記送受信コイルに供
給する送信回路とを備え、質問機からの指示に従って信
号処理を行うデータキャリアにおいて、質問機との最大
通信距離時にデータを送信するために消費される送信電
力とほぼ等しい電力消費量の整流回路に対する負荷回路
と、内部処理回路での電力消費量が少ない時には負荷回
路を整流回路に接続し、内部処理回路での電力消費量が
多い時には切り離すスイッチング手段を備える。
In order to achieve the above object, a data carrier according to the present invention comprises a transmitting / receiving coil, a tuning capacitor connected thereto, a rectifying circuit for rectifying a signal received by the transmitting / receiving coil, and a rectifying circuit. An internal processing circuit driven by the output power of, and a transmission circuit for supplying a transmission signal to the transmission and reception coil, in a data carrier that performs signal processing according to the instruction from the interrogator, data at the maximum communication distance with the interrogator And a load circuit for the rectifier circuit with a power consumption substantially equal to the transmission power consumed for transmitting the power, and when the power consumption in the internal processing circuit is small, the load circuit is connected to the rectifier circuit and the power in the internal processing circuit is connected. A switching means for disconnecting when the consumption is large is provided.

【0011】尚、負荷回路はデータキャリアから前記質
問機に向かってデータを送信するために、送受信コイル
の両端の電圧に振幅変調をかける為の送信用負荷回路と
共用する事ができる。
The load circuit can be shared with a transmission load circuit for applying amplitude modulation to the voltage between both ends of the transmission / reception coil in order to transmit data from the data carrier to the interrogator.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。図1は本発明の実施の形態のデータキャリ
アを用いたデータキャリアシステムの構成を示す図であ
る。図において、質問機10は搬送波の基本信号を発生
する発振回路11と、発振回路11からの基本信号をそ
れぞれ異なる分周比で分周して第1、第2の搬送波を発
生する分周回路12、13、と第1、第2の搬送波から
1つの搬送波を選択して出力する選択回路15と、出力
増幅器16、アンテナコイル17、および同調コンデン
サ18を備える。質問機10は更に、送信信号を生成す
る内部処理回路19と、アンテナコイル17で受信した
信号を処理する復調回路20を備える。この図では復調
回路20の入力をアンテナコイル17としたが、アンテ
ナコイル17と同心に別途受信コイルを設けてもよい。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a data carrier system using a data carrier according to an embodiment of the present invention. In the figure, an interrogator 10 includes an oscillating circuit 11 for generating a basic signal of a carrier, and a frequency dividing circuit for dividing the basic signal from the oscillating circuit 11 at different frequency division ratios to generate first and second carrier waves. 12, a selection circuit 15 for selecting and outputting one carrier from the first and second carriers, an output amplifier 16, an antenna coil 17, and a tuning capacitor 18. The interrogator 10 further includes an internal processing circuit 19 for generating a transmission signal and a demodulation circuit 20 for processing a signal received by the antenna coil 17. In this figure, the input of the demodulation circuit 20 is the antenna coil 17, but a receiving coil may be separately provided concentrically with the antenna coil 17.

【0013】応答機30は送受信コイル31と、送受信
コイル31に並列に接続された同調コンデンサ32と、
整流回路33と、FSK復調を行う復調回路34、内部
処理回路35、送信用変調回路36および送信用負荷回
路37を有する。内部処理回路35は一般的な信号処理
回路と同様に、CPU35a、RAM35b、プログラ
ム等を記憶したROM35c、電気的に書き換え可能な
EEPROM35dおよびインタフェース35eを備え
ている。なお、整流回路33で整流された電力は、復調
回路34、内部処理回路35、送信用変調回路36に供
給される。
The transponder 30 includes a transmission / reception coil 31, a tuning capacitor 32 connected in parallel to the transmission / reception coil 31,
It includes a rectifier circuit 33, a demodulation circuit 34 for performing FSK demodulation, an internal processing circuit 35, a transmission modulation circuit 36, and a transmission load circuit 37. The internal processing circuit 35 includes a CPU 35a, a RAM 35b, a ROM 35c storing programs and the like, an electrically rewritable EEPROM 35d, and an interface 35e, like a general signal processing circuit. The power rectified by the rectifier circuit 33 is supplied to a demodulation circuit 34, an internal processing circuit 35, and a transmission modulation circuit 36.

【0014】送信用変調回路36の出力及びインタフェ
ース35eの出力は論理OR回路38を介してスイッチ
ングトランジスタ39に接続されている。スイッチング
トランジスタ39は送信用負荷回路37を論理OR回路
38の出力に応じて選択的に送受信コイル31と整流回
路33の接点に接続する。送信用負荷回路37の抵抗値
は質問機10との最大通信距離(若しくは通信限界距
離)時にデータを送信するために消費される送信電力と
ほぼ等しい電力消費量と成るように設定されている。
The output of the transmission modulation circuit 36 and the output of the interface 35 e are connected to a switching transistor 39 via a logical OR circuit 38. The switching transistor 39 selectively connects the transmission load circuit 37 to the contact between the transmission / reception coil 31 and the rectifier circuit 33 according to the output of the logical OR circuit 38. The resistance value of the transmission load circuit 37 is set such that the power consumption is substantially equal to the transmission power consumed for transmitting data at the maximum communication distance (or communication limit distance) with the interrogator 10.

【0015】発振回路11はたとえば4MHzの基準信
号を生成する。この基準信号は第1、第2の分周回路1
2、13に供給され、第1の分周回路12で1/32に
分周された信号(125KHz)と第2の分周回路13
で1/34に分周された信号(117.6470588
KHz)が得られる。内部処理回路19が論理値“1”
のデータの送信を指示する場合には選択回路15で第1
の分周回路12の出力を選択して125KHzの信号を
出力増幅器16を介してアンテナコイル17に送る。一
方、内部処理回路19が論理値“0”のデータの送信を
指示する場合には選択回路15で第2の分周回路13の
出力を選択して117.6470588KHzの信号を
出力増幅器16を介してアンテナコイル17に送る。
The oscillation circuit 11 generates a 4 MHz reference signal, for example. This reference signal is supplied to the first and second frequency dividers 1
2 and 13 and the signal (125 KHz) divided by the first frequency dividing circuit 12 to 1/32 and the second frequency dividing circuit 13
Divided by 1/34 (117.6470588)
KHz). The internal processing circuit 19 has a logical value “1”
When the transmission of the data is instructed, the selection circuit 15
And outputs a signal of 125 KHz to the antenna coil 17 via the output amplifier 16. On the other hand, when the internal processing circuit 19 instructs the transmission of data of the logical value “0”, the output of the second frequency dividing circuit 13 is selected by the selecting circuit 15 and the signal of 117.6470588 KHz is transmitted through the output amplifier 16. To the antenna coil 17.

【0016】データ送信後は応答機への電力送信の為に
選択回路15で第1の分周回路12の出力を選択して1
25KHzの信号を出力増幅器16を介してアンテナコ
イル17に送り続ける。応答機30の送受信コイル31
と同調コンデンサ32から構成される同調回路の同調周
波数は、125KHzと117.6470588KHz
の2つの周波数の中心、即ちルート(125KHz×1
17.6470588)=121.2678125KH
zに設定されている。従って、応答機30では論理値
“1”を受信する場合も論理値“0”を受信する場合も
ほぼ同じ強度の信号を受信する事が出来る。
After the data transmission, the output of the first frequency dividing circuit 12 is selected by the selecting circuit 15 for power transmission to the transponder, and
The signal of 25 KHz is continuously sent to the antenna coil 17 via the output amplifier 16. Transceiver coil 31 of transponder 30
The tuning frequency of the tuning circuit composed of the tuning capacitor 32 is 125 KHz and 117.6470588 KHz.
Center of the two frequencies, ie, the root (125 kHz × 1)
17.6470588) = 121.2678125KH
z. Therefore, the transponder 30 can receive a signal of almost the same strength both when receiving the logical value “1” and when receiving the logical value “0”.

【0017】応答機30から質問機10へデータ送信を
行う場合には、内部処理回路35の内部のCPUで発生
したデータがインタフェース35eを介して変調回路3
6に伝えられ、変調回路の出力に応じて送信用負荷回路
37をスイッチングトランジスタ39をオン・オフ動作
させる。すると送受信コイル31に流れる電流が変化
し、送受信コイル31とアンテナコイル17間の電磁結
合の強さが変化する。質問機10の復調回路20はアン
テナコイル17の両端に発生する電圧の変化、具体的に
は第1の分周回路14から出力される125KHzの信
号の振幅変化を検出して応答機30からのデータを復調
する。実際にはバンドパスフィルタで、第1の分周回路
14から出力される125KHzの信号のサブバンドの
振幅および位相の変化をとらえて復調動作を行う。
When data is transmitted from the transponder 30 to the interrogator 10, the data generated by the CPU inside the internal processing circuit 35 is transmitted to the modulation circuit 3 via the interface 35e.
6, the switching transistor 39 of the transmission load circuit 37 is turned on / off in accordance with the output of the modulation circuit. Then, the current flowing through the transmitting / receiving coil 31 changes, and the strength of the electromagnetic coupling between the transmitting / receiving coil 31 and the antenna coil 17 changes. The demodulation circuit 20 of the interrogator 10 detects a change in the voltage generated at both ends of the antenna coil 17, specifically, a change in the amplitude of the 125 KHz signal output from the first frequency divider 14, and Demodulate the data. Actually, the demodulation operation is performed by a band-pass filter by detecting the change in the amplitude and phase of the sub-band of the 125 KHz signal output from the first frequency divider 14.

【0018】内部処理回路35は、内部処理回路35内
部での電力消費量が少ない時には負荷回路を整流回路に
接続し、内部処理回路での電力消費量が多い時には切り
離す制御信号をインタフェース35eを介して出力す
る。電力消費量が多い時としては電気的に書き換え可能
なEEPROM35dへのデータの書き込み等の動作と
データ送信動作が上げられる。
The internal processing circuit 35 connects a load circuit to the rectifier circuit when the power consumption inside the internal processing circuit 35 is small, and disconnects a control signal for disconnecting when the power consumption in the internal processing circuit is large via the interface 35e. Output. When the power consumption is large, operations such as data writing to the electrically rewritable EEPROM 35d and a data transmission operation are performed.

【0019】内部処理回路35内部での電力消費量が少
ない時にはスイッチングトランジスタ39がオンし、負
荷回路37が同調回路の送受信コイル31に接続される
ので同調回路を流れる電流の一部がこの負荷回路37で
熱として消費され、整流回路33に流れる電流が減少
し、内部処理回路35へ供給される電力が減少する。此
処で電力消費量が多いデータ送信動作をする場合は、イ
ンタフェース35eを介してスイッチングトランジスタ
39をオフ動作させる制御信号が出力される。しかしな
がら、変調回路36からは、送信データが論理“1”の
時にスイッチングトランジスタ39をオンし、送信デー
タが論理“1”の時にオフする信号が出力されるので、
スイッチングトランジスタ39は変調回路36からの信
号に従ってオン・オフ動作する。
When the power consumption inside the internal processing circuit 35 is small, the switching transistor 39 is turned on, and the load circuit 37 is connected to the transmission / reception coil 31 of the tuning circuit. At 37, the heat is consumed, and the current flowing through the rectifier circuit 33 decreases, and the power supplied to the internal processing circuit 35 decreases. Here, when performing a data transmission operation with a large power consumption, a control signal for turning off the switching transistor 39 is output via the interface 35e. However, the modulation circuit 36 outputs a signal that turns on the switching transistor 39 when the transmission data is logic “1” and turns off when the transmission data is logic “1”.
The switching transistor 39 performs an on / off operation according to a signal from the modulation circuit 36.

【0020】この時、負荷回路37の抵抗値は質問機1
0との最大通信距離(若しくは通信限界距離)時にデー
タを送信するために消費される送信電力とほぼ等しい電
力消費量と成るように設定されているので、負荷回路が
同調回路に接続されても、整流回路33から供給される
電力がデータ送信に必要な電力を下回る事がない。尚、
本発明は質問機10と応答機30の距離が通信限界に近
くまで遠い場合を前提としているので、質問機10と応
答機30の距離が近くなって来ると、内部処理回路35
内部での電力消費量が少ない時の負荷回路37の電力消
費だけでは整流回路33の出力上昇を抑えられない事態
が発生する。これは負荷回路37の抵抗値は質問機10
との最大通信距離(若しくは通信限界距離)時にデータ
を送信するために消費される送信電力とほぼ等しい電力
消費量と成るように設定されているからであり、質問機
10と応答機30の距離が至近距離になった時の負荷と
しては小さすぎるからである。
At this time, the resistance value of the load circuit 37 is determined by the interrogator 1.
Since the power consumption is set to be substantially equal to the transmission power consumed for transmitting data at the maximum communication distance (or communication limit distance) with 0, even if the load circuit is connected to the tuning circuit. The power supplied from the rectifier circuit 33 does not fall below the power required for data transmission. still,
The present invention is based on the premise that the distance between the interrogator 10 and the transponder 30 is as close as possible to the communication limit.
A situation occurs in which the output rise of the rectifier circuit 33 cannot be suppressed only by the power consumption of the load circuit 37 when the internal power consumption is small. This means that the resistance value of the load circuit 37 is
This is because the power consumption is set to be substantially equal to the transmission power consumed for transmitting data at the maximum communication distance (or communication limit distance) between the interrogator 10 and the responder 30. This is because the load is too small when the distance is short.

【0021】この事態を防止するために本実施の形態の
変形例としては、図2に示すように、整流回路33の出
力電圧を検出する電圧検出手段41、およびこの電圧検
出手段41が予め設定された閾値電圧を越える電圧を検
出した時に同調回路にスイッチングトランジスタ42を
介して接続される負荷回路43を備える。負荷回路42
によって質問機10と応答機30の距離が至近距離にな
った時に電流バイパスを形成して、同調回路に発生する
電流の一部(場合によっては大部分)をこの負荷回路4
2で熱として消費して整流回路33への電流を制限す
る。
In order to prevent this situation, as a modified example of the present embodiment, as shown in FIG. 2, a voltage detecting means 41 for detecting an output voltage of the rectifying circuit 33 and the voltage detecting means 41 are set in advance. The tuning circuit includes a load circuit 43 connected via the switching transistor 42 when a voltage exceeding the threshold voltage is detected. Load circuit 42
As a result, when the distance between the interrogator 10 and the transponder 30 becomes a short distance, a current bypass is formed, and a part (a large part of the current) generated in the tuning circuit is supplied to the load circuit 4.
In step 2, the heat is consumed as heat and the current to the rectifier circuit 33 is limited.

【0022】従って、限界応答距離内であれば、質問機
10と応答機30の距離によらず安定した動作が可能と
なる。
Therefore, within the limit response distance, a stable operation can be performed regardless of the distance between the interrogator 10 and the transponder 30.

【0023】[0023]

【発明の効果】以上の様に本発明によれば、応答機が通
信距離限界付近で動作する場合に充分な送信電力を確保
できるデータキャリアを提供する事ができる。
As described above, according to the present invention, it is possible to provide a data carrier that can secure sufficient transmission power when the transponder operates near the communication distance limit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のデータキャリアシステム
を示すブロック図である。
FIG. 1 is a block diagram showing a data carrier system according to an embodiment of the present invention.

【図2】本発明の実施の形態のデータキャリアシステム
の変形例を示すブロック図である。
FIG. 2 is a block diagram showing a modification of the data carrier system according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 質問機 11 発振回路 12 分周回路 13 分周回路 15 選択回路 17 アンテナコイル 18 同調コンデンサ 19 内部処理回路 20 復調回路 30 応答機 31 送受信コイル 32 同調コンデンサ 33 整流回路 35 内部処理回路 37 送信用負荷回路 38 論理和回路 REFERENCE SIGNS LIST 10 Interrogator 11 Oscillator 12 Frequency divider 13 Frequency divider 15 Selection circuit 17 Antenna coil 18 Tuning capacitor 19 Internal processing circuit 20 Demodulation circuit 30 Transponder 31 Transceiver coil 32 Tuning capacitor 33 Rectifier circuit 35 Internal processing circuit 37 Transmission load Circuit 38 OR circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送受信コイルとこれに接続された同調コ
ンデンサと、前記送受信コイルで受信した信号を整流す
る整流回路と、前記整流回路の出力電力で駆動される内
部処理回路と、送信信号を前記送受信コイルに供給する
送信回路とを備え、質問機からの指示に従って信号処理
を行うデータキャリアにおいて、 前記質問機との最大通信距離時にデータを送信するため
に消費される送信電力とほぼ等しい電力消費量の前記整
流回路に対する負荷回路と、 前記内部処理回路での電力消費量が少ない時には前記負
荷回路を前記整流回路に接続し、前記内部処理回路での
電力消費量が多い時には切り離すスイッチング手段を備
えた事を特徴とするデータキャリア。
A transmitting / receiving coil, a tuning capacitor connected thereto, a rectifying circuit for rectifying a signal received by the transmitting / receiving coil, an internal processing circuit driven by output power of the rectifying circuit, A transmission circuit for supplying a signal to the transmission / reception coil, and in a data carrier that performs signal processing in accordance with an instruction from the interrogator, a power consumption substantially equal to a transmission power consumed for transmitting data at a maximum communication distance with the interrogator. A load circuit for the rectifier circuit, and switching means for connecting the load circuit to the rectifier circuit when the power consumption in the internal processing circuit is small, and disconnecting the load circuit when the power consumption in the internal processing circuit is large. A data carrier characterized by the following:
【請求項2】 請求項2において、前記負荷回路はデー
タキャリアから前記質問機に向かってデータを送信する
ために、前記送受信コイルの両端の電圧に振幅変調をか
ける為の送信用負荷回路と共用されている事を特徴とす
るデータキャリア。
2. The transmission circuit according to claim 2, wherein the load circuit is used for transmitting data from a data carrier to the interrogator, and is used as a transmission load circuit for applying amplitude modulation to a voltage between both ends of the transmission / reception coil. A data carrier characterized by being performed.
【請求項3】 送受信コイルとこれに接続された同調コ
ンデンサと、前記送受信コイルの両端に接続され前記送
受信コイルで受信した信号を整流する整流回路と、前記
整流回路の出力電力で駆動される内部処理回路と、送信
信号を前記送受信コイルに供給する送信回路とを備え、
質問機からの指示に従って信号処理を行うデータキャリ
アにおいて、 前記質問機との最大通信距離時にデータを送信するため
に消費される送信電力とほぼ等しい電力消費量の前記整
流回路に対する負荷回路と、 前記内部処理回路での電力消費量が少ない時には前記負
荷回路を前記整流回路に接続し、前記内部処理回路での
電力消費量が多い時には切り離す負荷制御信号を発生す
る負荷制御手段と、 前記送信回路の出力と負荷制御信号の論理和信号を発生
する論理手段と、 前記論理手段の出力に応じて前記負荷回路を前記整流回
路に接続するスイッチング手段を備えた事を特徴とする
データキャリア。
3. A transmission / reception coil, a tuning capacitor connected thereto, a rectification circuit connected to both ends of the transmission / reception coil for rectifying a signal received by the transmission / reception coil, and an internal part driven by output power of the rectification circuit. A processing circuit, and a transmission circuit that supplies a transmission signal to the transmission / reception coil,
In a data carrier that performs signal processing according to an instruction from the interrogator, a load circuit for the rectifier circuit having a power consumption substantially equal to a transmission power consumed for transmitting data at a maximum communication distance with the interrogator; When the power consumption in the internal processing circuit is small, the load circuit is connected to the rectifier circuit, and when the power consumption in the internal processing circuit is large, a load control unit that generates a load control signal to disconnect the load circuit, A data carrier, comprising: logic means for generating a logical sum signal of an output and a load control signal; and switching means for connecting the load circuit to the rectifier circuit in accordance with the output of the logic means.
JP23940697A 1997-09-04 1997-09-04 Data carrier Expired - Lifetime JP3862112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23940697A JP3862112B2 (en) 1997-09-04 1997-09-04 Data carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23940697A JP3862112B2 (en) 1997-09-04 1997-09-04 Data carrier

Publications (2)

Publication Number Publication Date
JPH1188242A true JPH1188242A (en) 1999-03-30
JP3862112B2 JP3862112B2 (en) 2006-12-27

Family

ID=17044309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23940697A Expired - Lifetime JP3862112B2 (en) 1997-09-04 1997-09-04 Data carrier

Country Status (1)

Country Link
JP (1) JP3862112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541288A (en) * 2005-05-19 2008-11-20 エヌエックスピー ビー ヴィ Transponder with improved voltage limiting circuit
CN105337424A (en) * 2015-11-02 2016-02-17 李德生 OO core-shaped split fulcrum revolving contactless magnetically-controlled power adjusting device
CN105356625A (en) * 2015-11-02 2016-02-24 李德生 Core-O conjoined fulcrum rotating contactless magnetically-controlled power adjusting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541288A (en) * 2005-05-19 2008-11-20 エヌエックスピー ビー ヴィ Transponder with improved voltage limiting circuit
JP4690455B2 (en) * 2005-05-19 2011-06-01 エヌエックスピー ビー ヴィ Transponder with improved voltage limiting circuit
CN105337424A (en) * 2015-11-02 2016-02-17 李德生 OO core-shaped split fulcrum revolving contactless magnetically-controlled power adjusting device
CN105356625A (en) * 2015-11-02 2016-02-24 李德生 Core-O conjoined fulcrum rotating contactless magnetically-controlled power adjusting device

Also Published As

Publication number Publication date
JP3862112B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JPH1188241A (en) Data carrier system
EP1927072B1 (en) Radio frequency identification device systems
US6664770B1 (en) Wireless power transmission system with increased output voltage
JP3621560B2 (en) Electromagnetic induction data carrier system
CN104038259B (en) Contactless communication device and user apparatus including contactless communication device
US20040080299A1 (en) Energy source recharging device and method
US6021951A (en) Wireless IC card and IC card reader communication system
NO881341L (en) ELECTRONIC DATA COMMUNICATION SYSTEM.
US9325430B2 (en) Communication system and communication apparatus
US6118367A (en) Data carrier system
US6731199B1 (en) Non-contact communication system
JP4332963B2 (en) Capacitive modulation of electromagnetic transponders
JP3940939B2 (en) Data carrier
JPH08191258A (en) Transmitter-receiver for contactless ic card system
JP3607585B2 (en) Non-contact response device
KR100341628B1 (en) Noncontact communication system and interrogator used therefor
JP2009271920A (en) Recharge of active transponder
JP3862112B2 (en) Data carrier
KR101584953B1 (en) Rfid uhf rf interrupt logic circuit
JPH09298486A (en) Contactless data transmission reception method and its equipment
JPH1145319A (en) Data carrier
JP7459940B2 (en) IC card and IC card system
JP2000242756A (en) Data carrier having charging function
JP3194715B2 (en) Reader / writer device for non-contact IC card system
JP3135838B2 (en) Non-contact data transmission / reception method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6