JPH1186863A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1186863A
JPH1186863A JP9254121A JP25412197A JPH1186863A JP H1186863 A JPH1186863 A JP H1186863A JP 9254121 A JP9254121 A JP 9254121A JP 25412197 A JP25412197 A JP 25412197A JP H1186863 A JPH1186863 A JP H1186863A
Authority
JP
Japan
Prior art keywords
positive electrode
main component
current collector
secondary battery
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9254121A
Other languages
Japanese (ja)
Inventor
Hiroaki Sugino
弘明 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP9254121A priority Critical patent/JPH1186863A/en
Publication of JPH1186863A publication Critical patent/JPH1186863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve charging/discharging characteristics by using an electrochemically active metal for a positive electrode current collector, and using an organic compound with high affinity to the metal ions for a positive electrode active material. SOLUTION: An electrochemically active metal having a metal dissolution- deposition reaction accompanied by a charging/discharging, e.g. copper, is used for a positive electrode current collector. A positive electrode material preferably has a proper complex forming constant for metal ions and the functional group expected with electrochemical oxidation reduction. The positive electrode material having low molecular weight, small electrochemical equivalent, and a proper oxidation reduction potential is preferably used in view of increasing the battery energy density. Dithizone, 8-oxyquinoline, 1-(2-pyridylazo)-2-naphthol, N-benzoyl-N-phenylhydroxylamine, or a phenanthroline derivatives are used with respect to copper ions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】コンピューターや携帯電話等
の通信機器の小型軽量化に伴い、電源となる二次電池の
高エネルギー密度化が求められている。本発明は、小型
で充放電容量の大きな二次電池、詳細には電気化学的に
活性とされる金属のイオンと特異的な錯体を形成しうる
有機化合物を含む正極を用いたリチウム系二次電池に関
するものである。
BACKGROUND OF THE INVENTION As communication devices such as computers and mobile phones become smaller and lighter, there is a demand for higher energy density of secondary batteries as power sources. The present invention relates to a secondary battery having a small size and a large charge / discharge capacity, in particular, a lithium-based secondary battery using a positive electrode containing an organic compound capable of forming a specific complex with a metal ion that is electrochemically activated. It relates to batteries.

【0002】[0002]

【従来の技術】主な二次電池として、鉛蓄電池・ニッケ
ル−カドミニウム電池、ニッケル水素電池、リチウム二
次電池、リチウムイオン電池等がある。リチウム系二次
電池は、その理論容量の大きさから、次世代二次電池の
花形として注目され、盛んに改良研究がなされている。
2. Description of the Related Art Lead secondary batteries include lead-acid batteries, nickel-cadmium batteries, nickel-metal hydride batteries, lithium secondary batteries, and lithium ion batteries. Lithium-based secondary batteries have attracted attention as the flower shape of next-generation secondary batteries due to their large theoretical capacity, and are being actively studied for improvement.

【0003】リチウム系二次電池の正極活物質として
は、コバルト・ニッケル・マンガン・バナジウム等の遷
移金属酸化物のリチウム塩が主流であり、その組成や構
造を制御することで高エネルギー密度化が計られてい
る。但し、正極の容量は、リチウム金属の理論容量には
遥かに及ばず、リチウムイオンをインターカレートする
負極用炭素材料の容量と比較しても見劣りがする。ま
た、理論容量が大きい有機化合物を正極活物質に利用す
る試みも、米国特許第4251607 号・日本国特許平4-6874
7 ・特開平5-74459 等に散見されるが、電圧出力・充放
電サイクルの安定性・電流密度等のいずれかに不満な点
が残されている。
[0003] As a positive electrode active material of a lithium secondary battery, a lithium salt of a transition metal oxide such as cobalt, nickel, manganese, and vanadium is mainly used, and by controlling the composition and structure thereof, high energy density can be achieved. Is measured. However, the capacity of the positive electrode is far below the theoretical capacity of lithium metal, and is inferior to the capacity of a carbon material for a negative electrode that intercalates lithium ions. Attempts to utilize an organic compound having a large theoretical capacity as a positive electrode active material have also been disclosed in U.S. Pat.
7 ・ Although it is scattered in JP-A-5-74459, it is unsatisfactory in any of voltage output, stability of charge / discharge cycle, current density, etc.

【0004】[0004]

【発明が解決しようとする課題】多くの有機化合物は理
論容量の大きさから正極活物質として魅力的なものでは
あるが、導電性に乏しいことや酸化還元反応の速度が遅
いことから、放電時の電圧降下・電流密度の低さ・室温
での特性低下等の問題点が見られた。これらを克服する
手段として、導電剤として炭素材料等を添加することや
他の材料との複合化等の工夫がされてきたが、満足すべ
き事例は少なかった。
Many organic compounds are attractive as positive electrode active materials because of their large theoretical capacities, but because of their poor conductivity and slow oxidation-reduction reaction, However, problems such as voltage drop, low current density, and deterioration of characteristics at room temperature were observed. As means for overcoming these problems, attempts have been made to add a carbon material or the like as a conductive agent or to combine it with another material, but there have been few satisfactory cases.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
克服するために、従来は電池の作製過程で極力回避しよ
うとされてきた集電体の溶解−析出反応を積極的に利用
することで、上記課題を解決しようとするものである。
即ち、正極集電体に電気化学的に活性とされる金属を用
い、該金属のイオンと親和性の高い有機化合物を正極活
物質とすることで優れた特性を有する二次電池を実現し
ようとするものである。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems, the present invention actively utilizes a current collector dissolution-precipitation reaction which has been conventionally attempted to avoid as much as possible in the process of manufacturing a battery. This aims to solve the above problem.
That is, it is intended to realize a secondary battery having excellent characteristics by using a metal that is electrochemically active for the positive electrode current collector and using an organic compound having high affinity for ions of the metal as the positive electrode active material. Is what you do.

【0006】銀・銅等は、リチウム系二次電池のように
電位差4V近傍で充電を行う場合には、自身の溶解反応
が起こる電極反応活性な金属として知られ、リチウム系
二次電池の正極集電体としては、ほとんど使われてこな
かった。但し、放電時には、逆反応である金属の析出も
ある程度可逆的に認められる。従って、この可逆性を高
めるために、充電時に溶出された金属イオンの拡散によ
る散逸を防ぎ電極近傍にトラップする目的で、本発明で
は該金属イオンと親和性の高い有機化合物を正極として
選択した。当然のことながら、充放電に伴い、正極では
錯形成反応とその逆反応および該有機化合物自身の酸化
還元反応が共役的に進行し高い容量を実現しているもの
と考えられる。
[0006] Silver or copper is known as an electrode-reactive metal in which its own dissolution reaction takes place when charged near a potential difference of 4 V like a lithium secondary battery. It has hardly been used as a current collector. However, at the time of discharge, metal deposition, which is a reverse reaction, is reversibly recognized to some extent. Therefore, in order to enhance the reversibility, an organic compound having a high affinity for the metal ion was selected as the positive electrode in the present invention for the purpose of preventing the metal ion eluted at the time of charging from being dissipated by diffusion and trapping the metal ion near the electrode. Naturally, it is considered that the complex formation reaction and its reverse reaction and the oxidation-reduction reaction of the organic compound itself proceed conjugately in the positive electrode with charge / discharge to realize a high capacity.

【0007】本発明に用いる正極集電体としては、電気
化学的に活性であること、即ち充放電に伴う金属の溶解
−析出反応が認められるものであれば、特に制限は無
い。但し、コスト面から、銅が好適である。このような
集電体としては、純金属の箔以外に、該金属種を主成分
とする合金箔や、該金属と電気化学的に不活性とされる
別種金属のクラッド箔等も挙げることができる。また、
チタンやステンレス鋼に該金属をコーティングしたもの
も候補に挙げられる。コーティングの手法としては、蒸
着・スパッタリング・メッキ等の方法が挙げられ、その
方法にも特に制限は無い。
The positive electrode current collector used in the present invention is not particularly limited as long as it is electrochemically active, that is, a metal dissolution-precipitation reaction accompanying charge / discharge is observed. However, copper is preferred in terms of cost. Examples of such a current collector include, in addition to a pure metal foil, an alloy foil containing the metal as a main component, and a clad foil of another metal which is electrochemically inactive with the metal. it can. Also,
Titanium and stainless steel coated with the metal are also candidates. Examples of the coating method include methods such as vapor deposition, sputtering, and plating, and the method is not particularly limited.

【0008】本発明に用いる正極材料は、目的とする金
属のイオンの沈殿試薬・比色試薬・滴定試薬・抽出試薬
・金属指示薬・重量分析試薬等に分類される一群の有機
化合物の中から適宜選択できる。選定の基準としては、
当該金属イオンに対する適当な錯形成定数を示すのみな
らず、電気化学的酸化還元が期待される官能基を有する
ことが望ましい。更に、電池のエネルギー密度を高める
観点からは、分子量や電気化学等量が小さく、かつ適当
な酸化還元電位を有するものが望ましい。
The positive electrode material used in the present invention is appropriately selected from a group of organic compounds classified into a precipitation reagent, a colorimetric reagent, a titration reagent, an extraction reagent, a metal indicator, a gravimetric analysis reagent, and the like for a target metal ion. You can choose. The criteria for selection are:
It is desirable to have not only an appropriate complex formation constant for the metal ion but also a functional group expected to undergo electrochemical redox. Further, from the viewpoint of increasing the energy density of the battery, a battery having a small molecular weight or electrochemical equivalent and having a suitable oxidation-reduction potential is desirable.

【0009】適当な事例としては、銀イオンに対しては
ジチゾン等を、銅イオンに対してはジチゾン・8−オキ
シキノリンで代表されるキノリノール誘導体・1−(2
−ピリジルアゾ)−2−ナフトールで代表されるピリジ
ルアゾ系試薬・N−ベンゾイル−N−フェニルヒドロキ
シアミンで代表されるフェニルヒドロキシアミン誘導体
・フェナントロリン誘導体等を挙げることができる。
As a suitable example, quinolinol derivatives 1- (2) represented by dithizone or the like for silver ions and dithizone-8-oxyquinoline for copper ions.
-Pyridylazo) -2-naphthol; a phenylhydroxyamine derivative represented by N-benzoyl-N-phenylhydroxyamine; a phenanthroline derivative.

【0010】正極形成時には、適宜選択された有機化合
物をリガンドとしてそのまま利用しても良いし、予め調
製した当該金属イオンとの錯体として利用することもで
きる。錯体を予め調製することの代替法として、該有機
化合物を含む正極スラリーに、対象とする金属イオンの
塩を混合しても良い。
At the time of forming the positive electrode, an organic compound appropriately selected may be used as a ligand as it is, or may be used as a complex with the metal ion prepared in advance. As an alternative to preparing the complex in advance, a salt of the metal ion of interest may be mixed with the positive electrode slurry containing the organic compound.

【0011】また、本発明の正極の一部に用いられる導
電性高分子としては、ポリアニリン・ポリピロール・ポ
リチオフェン・ポリアセチレンおよびそれらの誘導体を
用いることができるものの、特にポリアニリンおよびそ
の誘導体が好適である。本発明の正極形成時のバインダ
ーポリマーとしては特に制約はないものの、ポリフッ化
ビニリデンが好適に用いられる。また、導電剤として炭
素材料等を添加することを忌避することはない。
As the conductive polymer used as a part of the positive electrode of the present invention, polyaniline, polypyrrole, polythiophene, polyacetylene and their derivatives can be used, but polyaniline and its derivatives are particularly preferable. Although there is no particular limitation on the binder polymer for forming the positive electrode of the present invention, polyvinylidene fluoride is preferably used. Further, addition of a carbon material or the like as a conductive agent is not avoided.

【0012】電解液には、プロピレンカーボネート、エ
チレンカーボネート、ジエチルカーボネート、ジメチル
カーボネート、スルホラン、ジメトキシエタン、テトラ
ヒドロフラン、γ−ブチロラクトン等から選ばれる単独
あるいは混合溶媒に、LiClO4,LiBF4, LiPF6, LiAsF6,
LiCF3SO3等から選ばれるリチウム塩を溶解して使用する
ことができる。適当なセパレーターを介して非水電解液
のまま使用することもできるし、ポリアクリロニトリル
系高分子等と組み合わせて高分子ゲル電解質とすること
も可能である。また、LiI, Li3N-LiI-B2O3, LiAl2O3
の固体電解質や、ポリエチレンオキサイド等にリチウム
塩を担持させた高分子電解質も目的に応じて使用するこ
とができる。
[0012] The electrolyte solution may include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF or a mixture of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, sulfolane, dimethoxyethane, tetrahydrofuran, and γ-butyrolactone. 6 ,
A lithium salt selected from LiCF 3 SO 3 or the like can be dissolved and used. The nonaqueous electrolyte can be used as it is via an appropriate separator, or can be used as a polymer gel electrolyte in combination with a polyacrylonitrile polymer or the like. In addition, a solid electrolyte such as LiI, Li 3 N—LiI—B 2 O 3 , and LiAl 2 O 3, or a polymer electrolyte in which a lithium salt is supported on polyethylene oxide or the like can be used according to the purpose.

【0013】負極には、リチウム箔やリチウム合金箔を
用いてリチウム二次電池を構築することができる。ま
た、リチウムイオンを担持する炭素材料等を負極とし
て、リチウムイオン電池とすることも可能であると思わ
れる。
[0013] A lithium secondary battery can be constructed using a lithium foil or a lithium alloy foil for the negative electrode. Further, it is considered that a lithium ion battery can be formed by using a carbon material supporting lithium ions or the like as a negative electrode.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施例に基づきよ
り詳細に説明する。 [実施例1]東京化成工業(株)のジチゾンと呉羽化学
工業(株)のポリフッ化ビニリデン(PVDF、KFポ
リマー)を重量比で約3:1に混合し、N−メチルピロ
リドン(NMP)を加えて正極剤スラリーとした。この
スラリーをフルウチ化学(株)の銀箔(厚み、50ミク
ロン)上に塗布したものを、85℃で予備乾燥させ、更
に85℃で真空加熱乾燥させることでNMPを除去し、
正極を調製した。有機電解液は、プロピレンカーボーネ
ート(PC)/エチレンカーボネート(EC)、 PC:
EC=1.33:1(重量比)の混合溶媒に溶かした1 M LiBF
4を用いた。日本エクスラン工業(株)のポリアクリロ
ニトリル系高分子の1重量部に対して上記有機電解液
3.3重量部を混合したものを120℃に加熱すること
によりゾル化した。このゾルを−20℃まで冷却しシー
ト状高分子ゲル電解質としたものを、室温に戻して使用
した。負極には本城金属(株)のリチウム箔(厚み、2
00ミクロン)を用い、負極集電体および正極のリード
としてフルウチ化学(株)のステンレス箔(SUS−3
02;厚み、50ミクロン)を使用した。これらの電池
部材を組み合わせ、一対のスライドガラスを支持体とし
て圧着させることで平板状リチウム二次電池(電池A)
を構築した。図1に、本発明の電池の模式図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments. [Example 1] Dithizone of Tokyo Chemical Industry Co., Ltd. and polyvinylidene fluoride (PVDF, KF polymer) of Kureha Chemical Industry Co., Ltd. were mixed at a weight ratio of about 3: 1, and N-methylpyrrolidone (NMP) was mixed. In addition, a positive electrode slurry was prepared. This slurry was applied on a silver foil (thickness, 50 μm) of Furuuchi Chemical Co., Ltd., and was preliminarily dried at 85 ° C. and further dried by heating under vacuum at 85 ° C. to remove NMP.
A positive electrode was prepared. Organic electrolyte is propylene carbonate (PC) / ethylene carbonate (EC), PC:
1M LiBF dissolved in a mixed solvent of EC = 1.33: 1 (weight ratio)
4 was used. A mixture of 1 part by weight of a polyacrylonitrile polymer of Nippon Exlan Industrial Co., Ltd. and 3.3 parts by weight of the above organic electrolyte was heated to 120 ° C. to form a sol. This sol was cooled to −20 ° C. to obtain a sheet-like polymer gel electrolyte, which was returned to room temperature and used. The negative electrode is a lithium foil (thickness, 2
And a stainless steel foil (SUS-3) manufactured by Furuuchi Chemical Co., Ltd. as a negative electrode current collector and a positive electrode lead.
02; thickness, 50 microns). A flat lithium secondary battery (battery A) is obtained by combining these battery members and crimping a pair of slide glasses as a support.
Was built. FIG. 1 shows a schematic diagram of the battery of the present invention.

【0015】電池Aは、定電荷充電−定電流放電モード
で充放電させることで評価した。充電閾値電圧および放
電閾値電圧は、それぞれ4.4および2.0Vに設定し
た。正極の容量に関しては、集電体の一部の銀が活物質
として機能していると考えられることから正確に記述で
きないものの、正極合剤の重量から算出した見かけの正
極活物質重量に対して160mAh/g相当分の充電を
行い、充放電特性を評価した。図2に、0.6mA(電
流密度;0.15mA/cm2)で充放電を行った際
の、電池Aの10〜15サイクルに於ける充放電パター
ンを示した。図2が示すように、この電池の放電パター
ンは、放電初期に電位の遅延が認められ極大値を経て徐
々に電位が低下するものであったが、クーロン効率はほ
ぼ100%であった。
Battery A was evaluated by charging and discharging in a constant charge-constant current discharge mode. The charge threshold voltage and the discharge threshold voltage were set to 4.4 and 2.0 V, respectively. Regarding the capacity of the positive electrode, although it cannot be accurately described because it is considered that some silver of the current collector functions as an active material, the capacity of the positive electrode active material calculated from the weight of the positive electrode mixture is not described. Charging equivalent to 160 mAh / g was performed, and charge / discharge characteristics were evaluated. FIG. 2 shows a charge / discharge pattern of the battery A in 10 to 15 cycles when charge / discharge was performed at 0.6 mA (current density; 0.15 mA / cm 2). As shown in FIG. 2, in the discharge pattern of this battery, although the potential was delayed in the early stage of the discharge and the potential gradually decreased after reaching the maximum value, the Coulomb efficiency was almost 100%.

【0016】[実施例2]実施例1で用いたジチゾンを
和光純薬工業(株)の8−オキシキノリンとし、正極集
電体を竹内金属箔粉工業(株)の燐青銅箔(厚み、20
ミクロン)としたことを除けば、実施例1と同様の工程
で電池Bを構築した。正極合剤の重量から算出した見か
けの正極活物質重量に対して180mAh/g相当分の
充電を行い、充放電特性を評価した。図3に、0.6m
A(電流密度;0.15mA/cm2)で充放電を行っ
た際の、電池Bの20〜25サイクルに於ける充放電パ
ターンを示した。図3が示すように、この電池の放電パ
ターンは、放電初期に若干の電位の遅延が認められ極大
値を経て徐々に電位が低下するものであったが、クーロ
ン効率はほぼ100%であった。
Example 2 The dithizone used in Example 1 was 8-oxyquinoline from Wako Pure Chemical Industries, Ltd., and the positive electrode current collector was phosphor bronze foil (thickness, 20
Battery B was constructed in the same process as in Example 1 except that the battery B was used. The charge corresponding to 180 mAh / g was performed with respect to the apparent weight of the positive electrode active material calculated from the weight of the positive electrode mixture, and the charge / discharge characteristics were evaluated. In FIG. 3, 0.6 m
A shows a charge / discharge pattern of battery B in 20 to 25 cycles when charge / discharge was performed at A (current density; 0.15 mA / cm 2). As shown in FIG. 3, in the discharge pattern of this battery, a slight potential delay was observed at the beginning of discharge, and the potential gradually decreased after passing through the maximum value, but the Coulomb efficiency was almost 100%. .

【0017】[実施例3]実施例2で用いた8−オキシ
キノリンを、(株)同仁化学研究所の1−(2−ピリジ
ルアゾ)−2−ナフトールとしたことを除けば、実施例
2と同様の工程で電池Cを構築した。電池Bと同様の評
価を行った際の、充放電パターン(20〜25サイクル
分)を図4に示した。図4が示すように、この電池の放
電パターンは、放電初期に電位の遅延が認められ極大値
を経て徐々に電位が低下するものであったが、クーロン
効率はほぼ100%であった。
Example 3 Example 8 was repeated except that the 8-oxyquinoline used in Example 2 was 1- (2-pyridylazo) -2-naphthol from Dojindo Laboratories Inc. Battery C was constructed in the same process. FIG. 4 shows a charge / discharge pattern (for 20 to 25 cycles) when the same evaluation as that of the battery B was performed. As shown in FIG. 4, in the discharge pattern of this battery, although the potential was delayed at the initial stage of the discharge and the potential gradually decreased after reaching the maximum value, the Coulomb efficiency was almost 100%.

【0018】[実施例4]実施例2で用いた8−オキシ
キノリンを、(株)同仁化学研究所のN−ベンゾイル−
N−フェニルヒドロキシアミンとしたことを除けば、実
施例2と同様の工程で電池Dを構築した。電池Bと同様
の評価を行った際の、充放電パターン(20〜25サイ
クル分)を図5に示した。図5が示すように、この電池
の放電パターンは、放電初期に電位の遅延が認められ極
大値を経て徐々に電位が低下するものであったが、クー
ロン効率はほぼ100%であった。
Example 4 8-Oxyquinoline used in Example 2 was converted to N-benzoyl-
Battery D was constructed in the same manner as in Example 2, except that N-phenylhydroxyamine was used. FIG. 5 shows a charge / discharge pattern (for 20 to 25 cycles) when the same evaluation as that of the battery B was performed. As shown in FIG. 5, in the discharge pattern of this battery, although the potential was delayed in the early stage of the discharge and the potential gradually decreased after reaching the maximum value, the Coulomb efficiency was almost 100%.

【0019】[実施例5]東京化成工業(株)のジチゾ
ン、ポリアニリン、および呉羽化学工業(株)のポリフ
ッ化ビニリデン(PVDF、KFポリマー)を重量比で
約6:3:1に混合し、N−メチルピロリドン(NM
P)を加えて電極剤スラリーとした。このスラリーを福
田金属箔粉工業(株)の電解銅箔(厚み、12ミクロ
ン)上に塗布したものを、85℃で予備乾燥させ、更に
85℃で真空加熱乾燥させることでNMPを除去し、正
極を調製した。尚、本実施例に用いたポリアニリンは、
アニリンの酸化重合により調製した。この正極を用い
て、実施例2と同様に電池Eを構築した。電池Bと同様
の評価を行った際の、充放電パターン(10〜15サイ
クル分)を図6に示した。図6が示すように、この電池
の放電パターンは、平坦で放電末期に急激に電位が減少
するものであり、クーロン効率はほぼ100%であっ
た。
Example 5 Dithizone and polyaniline from Tokyo Chemical Industry Co., Ltd., and polyvinylidene fluoride (PVDF, KF polymer) from Kureha Chemical Industry Co., Ltd. were mixed at a weight ratio of about 6: 3: 1. N-methylpyrrolidone (NM
P) was added to obtain an electrode agent slurry. This slurry was applied on an electrolytic copper foil (thickness, 12 microns) of Fukuda Metal Foil & Powder Co., Ltd., preliminarily dried at 85 ° C., and further dried by vacuum heating at 85 ° C. to remove NMP. A positive electrode was prepared. The polyaniline used in this example was
It was prepared by oxidative polymerization of aniline. Using this positive electrode, a battery E was constructed in the same manner as in Example 2. FIG. 6 shows the charge / discharge pattern (for 10 to 15 cycles) when the same evaluation as that of the battery B was performed. As shown in FIG. 6, the discharge pattern of this battery was flat and the potential rapidly decreased at the end of discharge, and the Coulomb efficiency was almost 100%.

【0020】[実施例6]実施例5で用いたジチゾン
を、和光純薬工業(株)の8−オキシキノリンとしたこ
とを除けば、実施例5と同様の工程で電池Fを構築し
た。電池Eと同様の評価を行った際の、充放電パターン
(20〜25サイクル分)を図7に示した。図7が示す
ように、この電池の放電パターンは、平坦で放電末期に
急激に電位が減少するものであり、クーロン効率はほぼ
100%であった。
Example 6 A battery F was constructed in the same manner as in Example 5, except that dithizone used in Example 5 was 8-oxyquinoline manufactured by Wako Pure Chemical Industries, Ltd. FIG. 7 shows the charge / discharge patterns (for 20 to 25 cycles) when the same evaluation as that of the battery E was performed. As shown in FIG. 7, the discharge pattern of this battery was flat and the potential rapidly decreased at the end of discharge, and the Coulomb efficiency was almost 100%.

【0021】[実施例7]実施例5で用いたジチゾン
を、(株)同仁化学研究所の1−(2−ピリジルアゾ)
−2−ナフトールとしたことを除けば、実施例5と同様
の工程で電池Gを構築した。電池Eと同様の評価を行っ
た際の、充放電パターン(20〜25サイクル分)を図
8に示した。図8が示すように、この電池の放電パター
ンは、平坦で放電末期に急激に電位が減少するものであ
り、クーロン効率はほぼ100%であった。
[Example 7] The dithizone used in Example 5 was replaced with 1- (2-pyridylazo) by Dojin Chemical Laboratory Co., Ltd.
Battery G was constructed in the same manner as in Example 5, except that -2-naphthol was used. FIG. 8 shows charge / discharge patterns (for 20 to 25 cycles) when the same evaluation as that of the battery E was performed. As shown in FIG. 8, the discharge pattern of this battery was flat and the potential rapidly decreased at the end of discharge, and the Coulomb efficiency was almost 100%.

【0022】[実施例8]実施例5で用いたジチゾン
を、(株)同仁化学研究所のN−ベンゾイル−N−フェ
ニルヒドロキシアミンとしたことを除けば、実施例5と
同様の工程で電池Hを構築した。電池Eと同様の評価を
行った際の、充放電パターン(20〜25サイクル分)
を図9に示した。図9が示すように、この電池の放電パ
ターンは、平坦で放電末期に徐々に電位が減少するもの
であり、クーロン効率はほぼ100%であった。
Example 8 A battery was manufactured in the same manner as in Example 5, except that dithizone used in Example 5 was N-benzoyl-N-phenylhydroxyamine from Dojindo Laboratories. H was constructed. Charge / discharge pattern (20 to 25 cycles) when the same evaluation as that of battery E was performed
Is shown in FIG. As shown in FIG. 9, the discharge pattern of this battery was flat and the potential gradually decreased at the end of discharge, and the Coulomb efficiency was almost 100%.

【0023】[実施例9]塩化第二銅を溶解した水溶液
とジチゾンを溶解したクロロホルム溶液を混合し、形成
された銅−ジチゾン錯体をクロロホルム層に抽出・回収
した。この錯対を乾固させて試験に用いた。この銅−ジ
チゾン錯体、活性炭、ポリピロール、およびポリフッ化
ビニリデン(PVDF、KFポリマー)を重量比で約
4:4:8:1に混合し、N−メチルピロリドン(NM
P)を加えて電極剤スラリーとした。このスラリーを福
田金属箔粉工業(株)の錫銅合金箔(錫含量、2%;厚
み、14ミクロン)上に塗布したものを、85℃で予備
乾燥させ、更に85℃で真空加熱乾燥させることでNM
Pを除去し、正極を調製した。尚、本実施例に用いたポ
リピロールは、ピロールの酸化重合により調製した。こ
の正極を用いて、実施例2と同様に電池Iを構築した。
正極合剤の重量から算出した見かけの正極活物質重量に
対して160mAh/g相当分の充電を行い、充放電特
性を評価した。図10に、0.4mA(電流密度;0.
1mA/cm2)で充放電を行った際の、電池Iの10
〜15サイクルに於ける充放電パターンを示した。ま
た、1〜100サイクルに於けるサイクル特性を図11
に示した。この電池の放電パターンは、途中に段差を有
するものであった。また、図11が示すように、少なく
とも100サイクルは、クーロン効率がほぼ100%で
あった。
Example 9 An aqueous solution in which cupric chloride was dissolved and a chloroform solution in which dithizone was dissolved were mixed, and the formed copper-dithizone complex was extracted and recovered in a chloroform layer. This complex was dried and used for the test. The copper-dithizone complex, activated carbon, polypyrrole, and polyvinylidene fluoride (PVDF, KF polymer) were mixed at a weight ratio of about 4: 4: 8: 1, and N-methylpyrrolidone (NM
P) was added to obtain an electrode agent slurry. This slurry was applied to a tin-copper alloy foil (tin content, 2%; thickness, 14 microns) of Fukuda Metal Foil & Powder Co., Ltd., preliminarily dried at 85 ° C., and further dried under vacuum at 85 ° C. NM
P was removed to prepare a positive electrode. The polypyrrole used in this example was prepared by oxidative polymerization of pyrrole. Using this positive electrode, a battery I was constructed in the same manner as in Example 2.
Charging corresponding to 160 mAh / g was performed with respect to the apparent weight of the positive electrode active material calculated from the weight of the positive electrode mixture, and the charge / discharge characteristics were evaluated. FIG. 10 shows that 0.4 mA (current density;
1 mA / cm 2) when charging and discharging at 10 mA
The charging / discharging pattern in 〜15 cycles was shown. FIG. 11 shows the cycle characteristics at 1 to 100 cycles.
It was shown to. The discharge pattern of this battery had a step in the middle. As shown in FIG. 11, the Coulomb efficiency was at least 100% for at least 100 cycles.

【0024】[実施例10]銅−ジチゾン錯体、活性
炭、ジチゾン単体、およびポリアニリンを重量比で約
4:4:5:3に混合し、N−メチルピロリドン(NM
P)を加えて電極剤スラリーとした。このスラリーを福
田金属箔粉工業(株)の錫銅合金箔(錫含量、2%;厚
み、14ミクロン)上に塗布したものを、85℃で予備
乾燥させ、更に85℃で真空加熱乾燥させることでNM
Pを除去し、正極を調製した。この正極を用いて、実施
例2と同様に電池Jを構築した。正極合剤の重量から算
出した見かけの正極活物質重量に対して200mAh/
g相当分の充電を行い、充放電特性を評価した。図12
に、0.8mA(電流密度;0.2mA/cm2)で充
放電を行った際の、電池Jの10〜15サイクルに於け
る充放電パターンを示した。また、1〜100サイクル
に於けるサイクル特性を図13に示した。この電池の放
電パターンは、平坦で放電末期に急激に電位が減少する
ものであった。また、図13が示すように、当初の10
サイクルを除けば、少なくとも100サイクルまではク
ーロン効率はほぼ100%で安定していた。
Example 10 A copper-dithizone complex, activated carbon, dithizone alone and polyaniline were mixed at a weight ratio of about 4: 4: 5: 3, and N-methylpyrrolidone (NM
P) was added to obtain an electrode agent slurry. This slurry was applied to a tin-copper alloy foil (tin content, 2%; thickness, 14 microns) of Fukuda Metal Foil & Powder Co., Ltd., preliminarily dried at 85 ° C., and further dried under vacuum at 85 ° C. NM
P was removed to prepare a positive electrode. Using this positive electrode, a battery J was constructed in the same manner as in Example 2. With respect to the apparent weight of the positive electrode active material calculated from the weight of the positive electrode mixture, 200 mAh /
g, and the charge / discharge characteristics were evaluated. FIG.
9 shows a charge / discharge pattern of the battery J in 10 to 15 cycles when charge / discharge was performed at 0.8 mA (current density; 0.2 mA / cm 2). FIG. 13 shows cycle characteristics in 1 to 100 cycles. The discharge pattern of this battery was flat and the potential rapidly decreased at the end of discharge. In addition, as shown in FIG.
Except for the cycles, the coulomb efficiency was stable at almost 100% for at least 100 cycles.

【0025】[実施例11]8−オキシキノリン、ポリ
アニリン、およびPVDFを重量比で約6:3:1に混
合し、N−メチルピロリドン(NMP)を加えて電極剤
スラリーとした。このスラリーを竹内金属箔粉工業
(株)の燐青銅箔(厚み、20ミクロン)上に塗布した
ものを、85℃で予備乾燥させ、更に85℃で真空加熱
乾燥させることでNMPを除去し、正極を調製した。こ
の正極を用いて、実施例2と同様に電池Kを構築した。
正極合剤の重量から算出した見かけの正極活物質重量に
対して200mAh/g相当分の充電を行い、充放電特
性を評価した。図14に、0.6mA(電流密度;0.
15mA/cm2)で充放電を行った際の、電池Kの1
0〜15サイクルに於ける充放電パターンを示した。ま
た、1〜100サイクルに於けるサイクル特性を図15
に示した。この電池の放電パターンは、平坦で放電末期
に急激に電位が減少するものであった。また、図15が
示すように、当初の10サイクルを除けば、少なくとも
100サイクルまではクーロン効率はほぼ100%で安
定していた。
Example 11 8-oxyquinoline, polyaniline, and PVDF were mixed at a weight ratio of about 6: 3: 1, and N-methylpyrrolidone (NMP) was added to prepare an electrode agent slurry. The slurry was applied on a phosphor bronze foil (thickness, 20 microns) of Takeuchi Metal Foil & Powder Co., Ltd., which was pre-dried at 85 ° C., and further dried under vacuum at 85 ° C. to remove NMP. A positive electrode was prepared. Using this positive electrode, a battery K was constructed in the same manner as in Example 2.
The charge corresponding to 200 mAh / g was performed with respect to the apparent weight of the positive electrode active material calculated from the weight of the positive electrode mixture, and the charge / discharge characteristics were evaluated. FIG. 14 shows that 0.6 mA (current density;
15 mA / cm 2)
The charge / discharge pattern in 0 to 15 cycles is shown. FIG. 15 shows the cycle characteristics at 1 to 100 cycles.
It was shown to. The discharge pattern of this battery was flat and the potential rapidly decreased at the end of discharge. Further, as shown in FIG. 15, except for the initial 10 cycles, the Coulomb efficiency was stable at almost 100% for at least 100 cycles.

【0026】[比較例1]実施例11で用いた正極集電
体の燐青銅箔を、添川理化学(株)のニッケル箔(厚
み、10ミクロン)としたことを除けば、実施例11と
同様の工程で電池Lを構築した。電池Lは、初期のみ充
電は可能であった。但し、放電の行わせると閾値である
2Vまで速やかに電位が低下し、放電容量はほぼ0であ
った。
Comparative Example 1 Same as Example 11 except that the phosphor bronze foil of the positive electrode current collector used in Example 11 was a nickel foil (thickness: 10 μm) of Soekawa Rikagaku Co., Ltd. The battery L was constructed in the process described above. Battery L could be charged only at the beginning. However, when the discharge was performed, the potential immediately decreased to the threshold value of 2 V, and the discharge capacity was almost zero.

【0027】[比較例2]実施例11で用いた正極集電
体の燐青銅箔を、フルウチ化学(株)のチタン箔(厚
み、50ミクロン)としたことを除けば、実施例11と
同様の工程で電池Mを構築した。電池Mも、初期のみ充
電は可能であった。但し、放電を行わせると閾値である
2Vまで速やかに電位が低下し、放電容量は、ほぼ0で
あった。
Comparative Example 2 The same procedure as in Example 11 was performed except that the phosphor bronze foil of the positive electrode current collector used in Example 11 was a titanium foil (thickness, 50 μm) of Furuuchi Chemical Co., Ltd. The battery M was constructed in the process described above. Battery M was also chargeable only at the beginning. However, when the discharge was performed, the potential immediately decreased to the threshold value of 2 V, and the discharge capacity was almost 0.

【0028】実施例1〜11に示した電池では、サイク
ルの進行に伴って、程度の差こそあれ、正極集電体の劣
化が認められた。このことは、換言すれば電極金属の溶
解−析出が部位的に不均一に生じている為と考えられ
る。錫を含む合金箔を用いた実施例2〜4および9〜1
1と、銅箔を用いた実施例5〜8を比較した場合、箔の
厚みの差を差し引いても前者の方で顕著に集電体の劣化
の程度が抑制された。また、各種銅合金箔を用いて比較
検討した結果も、錫を含む銅合金で良好な結果が得られ
た。
In the batteries shown in Examples 1 to 11, deterioration of the positive electrode current collector was recognized to some degree as the cycle progressed. This is considered to be because in other words, the dissolution-precipitation of the electrode metal is locally uneven. Examples 2 to 4 and 9 to 1 using alloy foil containing tin
1 and Examples 5 to 8 using copper foil, the former significantly suppressed the degree of deterioration of the current collector even when the difference in foil thickness was subtracted. In addition, as a result of comparative study using various copper alloy foils, good results were obtained with a copper alloy containing tin.

【0029】[0029]

【発明の効果】以上のように、本発明に従う、電気化学
的に活性な金属を主成分とする正極集電体と該金属イオ
ンと錯形成能を有する有機化合物を正極活物質の主たる
成分とすることを特徴としたリチウム系二次電池を組み
上げることで、良好な充放電特性を示す二次電池を構成
することができる。
As described above, according to the present invention, a positive electrode current collector containing an electrochemically active metal as a main component and an organic compound capable of forming a complex with the metal ion are used as main components of the positive electrode active material. By assembling a lithium secondary battery characterized by performing the above, a secondary battery exhibiting good charge / discharge characteristics can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に関する二次電池の構造を示した図で
ある。
FIG. 1 is a view showing a structure of a secondary battery according to the present invention.

【図2】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 2 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図3】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 3 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図4】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 4 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図5】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 5 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図6】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 6 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図7】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 7 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図8】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 8 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図9】 本発明に関する二次電池の定電荷充電−定電
流放電モ−ドで充放電したときの充放電パタ−ンを示し
た。
FIG. 9 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図10】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 10 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図11】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 11 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図12】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 12 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図13】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 13 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図14】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 14 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【図15】 本発明に関する二次電池の定電荷充電−定
電流放電モ−ドで充放電したときの充放電パタ−ンを示
した。
FIG. 15 shows a charge / discharge pattern when the secondary battery according to the present invention is charged / discharged in a constant charge / constant current discharge mode.

【符号の説明】[Explanation of symbols]

1 ガラス支持体 2 ステンレスリ−ド 3 正極集電体 4 正極合剤 5 高分子ゲル電解質 6 リチウム箔 DESCRIPTION OF SYMBOLS 1 Glass support 2 Stainless steel lead 3 Positive electrode collector 4 Positive electrode mixture 5 Polymer gel electrolyte 6 Lithium foil

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも電気化学的に活性な金属を主
成分とする正極集電体と該金属イオンと錯形成能を有す
る有機化合物を正極の主たる成分とすることを特徴とし
たリチウム系二次電池。
1. A lithium secondary battery comprising, as main components of a positive electrode, a positive electrode current collector containing at least an electrochemically active metal as a main component and an organic compound capable of forming a complex with the metal ion. battery.
【請求項2】 少なくとも電気化学的に活性な金属を主
成分とする正極集電体を有し、該金属イオンと錯形成能
を有する有機化合物を主たる成分とする正極、有機溶媒
およびリチウム塩を含むポリアクリロニトリル系ゲル電
解質、リチウム金属負極および負極集電体を構成要素と
して含むリチウム二次電池。
2. A positive electrode, comprising a positive electrode current collector containing at least an electrochemically active metal as a main component, and an organic compound having an ability to form a complex with the metal ion, an organic solvent and a lithium salt. A lithium secondary battery comprising, as constituents, a polyacrylonitrile-based gel electrolyte, a lithium metal negative electrode and a negative electrode current collector.
【請求項3】 少なくとも電気化学的に活性な金属を主
成分とする正極集電体を有し、該金属イオンと錯形成能
を有する有機化合物と導電性高分子の混合物を主たる正
極の構成成分とすることを特徴としたリチウム系二次電
池。
3. A positive electrode comprising a positive electrode current collector containing at least an electrochemically active metal as a main component, and a mixture of an organic compound having a complex forming ability with the metal ion and a conductive polymer. A lithium secondary battery characterized by the following.
【請求項4】 少なくとも電気化学的に活性な金属を主
成分とする正極集電体を有し、該金属イオンと錯形成能
を有する有機化合物と導電性高分子の混合物を主たる構
成成分とする正極、有機溶媒およびリチウム塩を含むポ
リアクリロニトリル系ゲル電解質、リチウム金属負極お
よび負極集電体を構成要素として含むリチウム二次電
池。
4. A mixture comprising an organic compound having at least an electrochemically active metal as a main component and an organic compound capable of forming a complex with the metal ion and a conductive polymer as a main component. A lithium secondary battery comprising, as constituent elements, a positive electrode, a polyacrylonitrile-based gel electrolyte containing an organic solvent and a lithium salt, a lithium metal negative electrode and a negative electrode current collector.
【請求項5】 銅ないしは銀を主成分とする正極集電体
とし、前記正極の主たる構成成分をジチゾン 【化1】 あるいはその誘導体とする請求項1および2の二次電
池。
5. A positive electrode current collector containing copper or silver as a main component, wherein the main component of the positive electrode is dithizone. 3. The secondary battery according to claim 1, which is a derivative thereof.
【請求項6】 銅ないしは銀を主成分とする正極集電体
とし、前記正極の主たる構成成分をジチゾンあるいはそ
の誘導体とポリアニリンの混合物とする請求項3および
4の二次電池。
6. The secondary battery according to claim 3, wherein the positive electrode current collector comprises copper or silver as a main component, and a main component of the positive electrode is a mixture of dithizone or a derivative thereof and polyaniline.
【請求項7】 銅を主成分とする正極集電体とし、前記
正極の主たる構成成分を8−オキシキノリン 【化2】 あるいはその誘導体とする請求項1および2の二次電
池。
7. A positive electrode current collector containing copper as a main component, and a main component of the positive electrode is 8-oxyquinoline. 3. The secondary battery according to claim 1, which is a derivative thereof.
【請求項8】 銅を主成分とする正極集電体とし、前記
正極の主たる構成成分を8−オキシキノリンあるいはそ
の誘導体とポリアニリンの混合物とする請求項3および
4の二次電池。
8. The secondary battery according to claim 3, wherein the secondary battery is a positive electrode current collector containing copper as a main component, and a main component of the positive electrode is a mixture of 8-oxyquinoline or a derivative thereof and polyaniline.
【請求項9】 銅を主成分とする正極集電体とし、前記
正極の主たる構成成分を1−(2−ピリジルアゾ)−2
−ナフトール 【化3】 あるいはその誘導体とする請求項1および2の二次電
池。
9. A positive electrode current collector containing copper as a main component, and a main component of the positive electrode is 1- (2-pyridylazo) -2.
-Naphthol 3. The secondary battery according to claim 1, which is a derivative thereof.
【請求項10】 銅を主成分とする正極集電体とし、前
記正極の主たる構成成分を1−(2−ピリジルアゾ)−
2−ナフトールあるいはその誘導体とポリアニリンの混
合物とする請求項3および4の二次電池。
10. A positive electrode current collector containing copper as a main component, wherein a main component of the positive electrode is 1- (2-pyridylazo)-
5. The secondary battery according to claim 3, which is a mixture of 2-naphthol or a derivative thereof and polyaniline.
【請求項11】 銅を主成分とする正極集電体とし、前
記正極の主たる構成成分をN−ベンゾイル−N−フェニ
ルヒドロキシアミン 【化4】 あるいはその誘導体とする請求項1および2の二次電
池。
11. A positive electrode current collector containing copper as a main component, wherein a main component of the positive electrode is N-benzoyl-N-phenylhydroxyamine. 3. The secondary battery according to claim 1, which is a derivative thereof.
【請求項12】 銅を主成分とする正極集電体とし、前
記正極の主たる構成成分をN−ベンゾイル−N−フェニ
ルヒドロキシアミンあるいはその誘導体とポリアニリン
の混合物とする請求項3および4の二次電池。
12. A secondary current collector according to claim 3, wherein said positive electrode current collector comprises copper as a main component, and a main component of said positive electrode is a mixture of N-benzoyl-N-phenylhydroxyamine or a derivative thereof and polyaniline. battery.
【請求項13】 正極集電体に錫の含有量が10%以下
である錫銅合金あるいは燐青銅箔を用いる請求項5、
6、7、8、9、10、11、12の二次電池。
13. A tin-copper alloy or phosphor bronze foil having a tin content of 10% or less for the positive electrode current collector.
6, 7, 8, 9, 10, 11, and 12 secondary batteries.
JP9254121A 1997-09-04 1997-09-04 Lithium secondary battery Pending JPH1186863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9254121A JPH1186863A (en) 1997-09-04 1997-09-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9254121A JPH1186863A (en) 1997-09-04 1997-09-04 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1186863A true JPH1186863A (en) 1999-03-30

Family

ID=17260525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9254121A Pending JPH1186863A (en) 1997-09-04 1997-09-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1186863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051312A (en) * 2001-08-06 2003-02-21 Nec Corp Secondary battery
JP2009209216A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Electro-conductive polymer composition and electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051312A (en) * 2001-08-06 2003-02-21 Nec Corp Secondary battery
JP2009209216A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Electro-conductive polymer composition and electrode material

Similar Documents

Publication Publication Date Title
Peled et al. The effect of binders on the performance and degradation of the lithium/sulfur battery assembled in the discharged state
JP6402174B2 (en) Positive electrode for lithium battery
US6815121B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
EP2927996B1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
KR100496642B1 (en) Composite polymer electrolytes including single-ion conductor for lithium rechargeable battery and method for preparing the same
US11011321B2 (en) Electrochemical energy storage device
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
CN101667640B (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2008147015A (en) Electrode for battery, nonaqueous solution based battery, and manufacturing method of nonaqueous solution based battery
JP2009064714A (en) Electrode and lithium secondary battery using the same
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
KR101776244B1 (en) Composite electrode, method for manufacturing the same, and electrochemical device including the same
JP2003242965A (en) Two sheets of positive electrode collectors for alkaline metal ion electrochemical battery
KR100496641B1 (en) Composite polymer electrolytes having different morphology for lithium rechargeable battery and method for preparing the same
CN102195073A (en) Nonaqueous electrolyte battery
KR20210037849A (en) Positive electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the positive electrode
JP2003168427A (en) Nonaqueous electrolyte battery
JP5676886B2 (en) Non-aqueous secondary battery positive electrode and non-aqueous secondary battery using the same
KR102280793B1 (en) Density controlled organic compounds-based lithium secondary batteries and methods of forming the same
JPH1186863A (en) Lithium secondary battery
US20160254547A1 (en) Underlayer for cell electrodes, current collector using the same, electrode, and lithium ion secondary cell
KR102611099B1 (en) Method for Anode for lithium secondary battery comprising silicon-metal silicide-carbon composition and Anode for lithium secondary battery manufactured thereby
US11322779B1 (en) Electrolyte for Li secondary batteries
EP4078711B1 (en) Electrolyte for li secondary batteries
WO2023210232A1 (en) Lithium sulfur battery positive electrode, lithium sulfur battery, and charging/discharging method for same