JPH1185384A - Visual acuity input method and device using cornea retina potential - Google Patents

Visual acuity input method and device using cornea retina potential

Info

Publication number
JPH1185384A
JPH1185384A JP9238074A JP23807497A JPH1185384A JP H1185384 A JPH1185384 A JP H1185384A JP 9238074 A JP9238074 A JP 9238074A JP 23807497 A JP23807497 A JP 23807497A JP H1185384 A JPH1185384 A JP H1185384A
Authority
JP
Japan
Prior art keywords
potential
corneal
retinal potential
visual acuity
corneal retinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9238074A
Other languages
Japanese (ja)
Inventor
Toru Yagi
透 八木
Yoshiaki Kuno
悦章 久野
Yoshiki Uchikawa
嘉樹 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP9238074A priority Critical patent/JPH1185384A/en
Publication of JPH1185384A publication Critical patent/JPH1185384A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a visual acuity input method and a device capable of inputting by visual acuity at a gazing position in real time, which is easily set up, which gives less fatigue accompanying use of the device, capable of being used for a long time, which is less in malfunction by the change of environmental light and a motion of a subject capable of performing stable measurement, and by which natural sight is hardly obstructed. SOLUTION: The gazing position 3 of a subject 1 is calculated from a potential detector 12 to detect cornea retina potential 2 of the subject 1 and the cornea retina potential 2 detected by the potential detector 12 in real time by this operation controller 14. The relation between the cornea retina potential 2 and plural gazing positions is preliminarily calibrated and stored as an approximated straight line with fixed inclination and the gazing position 3 is calculated from the relation and the cornea retina potential 2 in real time by the operation controller 14. In addition, a fluctuated value of the cornea retina potential 2 at the same gazing position is found for every fluctuation and the cornea retina potential 2 is compensated by differentiating the fluctuated value. Furthermore, a fluctuation waveform of the cornea retina potential 2 is smoothed and rapid change of the gazing position due to a blink and rapid motion of an eyeball is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、角膜網膜電位を用
いた視力入力方法及び装置に関する。
The present invention relates to a method and an apparatus for inputting visual acuity using corneal retinal potential.

【0002】[0002]

【従来の技術】会話、筆談、手話などによるコミュニケ
ーションが困難な重度機能障害を持つ「重度肢体不自由
者」のために、その残存運動機能を活用したコミュニケ
ーション支援装置が求められている。かかる装置とし
て、近年、「眼球運動」を応用した視力入力インターフ
ェースが注目されている。
2. Description of the Related Art For a "severely physically handicapped person" having a severe dysfunction having difficulty in communication by conversation, writing, sign language, etc., a communication support device utilizing the remaining motor function is required. As such a device, a visual acuity input interface utilizing “eye movement” has recently attracted attention.

【0003】これまでに、「角膜反射光法」や「強膜反
射光法」という眼球運動測定法を利用した視力入力イン
ターフェースが提案されてきた(例えば、「眼球運動に
よる文書作成・周辺機器制御装置」,電子通信学会論文
誌(D),Vol.69, No.7, 1986、「頭部装着式ディスプ
レイ装置」,特開平8−160345号、等)。
Hitherto, an eyesight input interface using an eye movement measuring method called "corneal reflected light method" or "scleral reflected light method" has been proposed (for example, "Document creation and peripheral device control by eye movement"). Device ”, IEICE Transactions (D), Vol. 69, No. 7, 1986,“ Head-mounted display device ”, JP-A-8-160345, etc.).

【0004】[0004]

【発明が解決しようとする課題】しかし、かかる従来の
視力入力手段は、装置のセットアップが難しい、装
置使用に疲労が伴う、測定が不安定(誤動作が多
い)、自然視が妨げられる、長時間使用ができな
い、等の問題点があった。すなわち、「角膜反射光法」
を用いた視力入力手段では、目に照射した赤外線の反射
光の動きをセンサで捉えて眼球運動を測定するため、
反射光が得られる位置にセンサを厳密に固定しなければ
ならず、装置のセットアップや較正に時間と労力を要す
る問題点があった。
However, such a conventional visual acuity input means is difficult to set up the apparatus, causes fatigue in use of the apparatus, is unstable in measurement (many malfunctions), hinders natural vision, and has a long time. There was a problem that it could not be used. In other words, "corneal reflection method"
In the eyesight input means using, the eye movement is measured by capturing the movement of the reflected light of the infrared light radiated to the eyes with a sensor,
The sensor must be strictly fixed at the position where the reflected light can be obtained, and there is a problem that it takes time and effort to set up and calibrate the apparatus.

【0005】また、「強膜反射光法」を用いた視力入力
手段では、眼前に固定したフォトダイオードなどの受光
素子で眼の黒目と白目の反射比の違いを検出することに
より眼球運動を測定するため、環境光の変化によって
測定精度が左右される問題点があった。更に、これらの
視力入力手段では、センサが固定位置から数ミリ程度
動いても測定精度に大きな誤差が生じる問題がある。そ
こで実用的な測定精度を得るためには、センサを頭部に
頑丈に固定する必要があり(「非動化」と呼ぶ)、その
結果、被験者に圧迫感を与え、疲労、目眩、嘔吐などの
原因となり、長時間の使用には向かないことが指摘され
ている。
In the visual acuity input means using the "scleral reflection light method", the eye movement is measured by detecting the difference between the reflection ratio of the black eye and the white eye of the eye with a light receiving element such as a photodiode fixed in front of the eye. Therefore, there has been a problem that the measurement accuracy is affected by changes in ambient light. Further, in these visual acuity input means, there is a problem that a large error occurs in the measurement accuracy even if the sensor moves about several millimeters from the fixed position. Therefore, in order to obtain practical measurement accuracy, it is necessary to firmly fix the sensor to the head (referred to as "immobilization"), resulting in a feeling of oppression, fatigue, dizziness, vomiting, etc. It is pointed out that it is not suitable for long-time use.

【0006】本発明は上述した種々の問題点を解決する
ために創案されたものである。すなわち、本発明の目的
は、注視位置をリアルタイムに視力入力でき、かつ装
置のセットアップが容易であり、装置使用に伴う疲労
が少なく、長時間の使用が可能であり、環境光の変化
や被験者の動きによる誤動作が少なく、安定した測定が
でき、自然視がほとんど妨げられない視力入力方法及
び装置を提供することにある。
The present invention has been made to solve the various problems described above. That is, an object of the present invention is to input a gaze position in real-time visual acuity, and to easily set up the apparatus, reduce the fatigue associated with the use of the apparatus, enable long-term use, change environmental light, It is an object of the present invention to provide a visual acuity input method and apparatus in which malfunction due to movement is small, stable measurement can be performed, and natural vision is hardly hindered.

【0007】[0007]

【課題を解決するための手段】本願発明の発明者等は、
眼球運動と角膜網膜電位との関係を研究し、この角膜網
膜電位が眼球運動とほぼ比例関係にあることを発見し
た。また、この角膜網膜電位は時間と共に変化し、かつ
「瞬き」や眼球の速い動きにより激しく変化するが、こ
れに対する解決策も創案した。本発明はかかる新規の知
見と創案に基づくものである。
Means for Solving the Problems The inventors of the present invention have:
We studied the relationship between eye movement and corneal retinal potential, and found that this corneal retinal potential was almost proportional to eye movement. In addition, the corneal retinal potential changes with time and changes drastically due to "blinking" and rapid movement of the eyeball, and a solution to this has been devised. The present invention is based on such new findings and ideas.

【0008】本発明によれば、角膜網膜電位と複数の注
視位置との関係を予めキャリブレーションして記憶し、
該関係と角膜網膜電位から注視位置をリアルタイムに求
める、ことを特徴とする角膜網膜電位を用いた視力入力
方法が提供される。この方法により、被験者の目をはさ
んで、例えばこめかみに2つの電極を貼り、角膜網膜電
位を検出するだけで視力入力が可能となる。この角膜網
膜電位は、電極間に電圧や電流をなんら印加することな
く検出できるので、使用者に対する影響が全くない。従
って、従来の方法と比較して、装置のセットアップが
容易であり、装置使用に伴う疲労が少なく、長時間の
使用が可能であり、環境光の変化や被験者の動きによ
る誤動作が少なく、安定した測定ができ、自然視がほ
とんど妨げられない、等の特徴を有する。
According to the present invention, the relationship between the corneal retinal potential and the plurality of gaze positions is calibrated in advance and stored.
A visual acuity input method using a corneal retinal potential is provided, wherein a gaze position is obtained in real time from the relationship and the corneal retinal potential. According to this method, visual acuity input can be performed only by detecting two corneal retinal potentials by attaching two electrodes to, for example, a temple with the subject's eyes interposed therebetween. Since the corneal retinal potential can be detected without applying any voltage or current between the electrodes, there is no influence on the user. Therefore, as compared with the conventional method, the apparatus is easy to set up, has less fatigue due to the use of the apparatus, can be used for a long time, has less malfunction due to a change in ambient light and the movement of the subject, and is stable. Measurement is possible and natural vision is hardly obstructed.

【0009】本発明の好ましい実施形態によれば、前記
関係を勾配の一定な近似直線として記憶する。発明者等
は、眼球運動と角膜網膜電位との関係を複数の被験者の
協力で計測し、被験者が相違しても角膜網膜電位は眼球
運動と常にほぼ比例関係にありその関係を勾配の一定な
直線で正確に近似できることを発見した。従って、この
関係を記憶して利用することにより、視力入力をより簡
単なアルゴリズムにより行うことかできる。
According to a preferred embodiment of the present invention, the relation is stored as an approximate straight line having a constant gradient. The inventors measure the relationship between eye movement and corneal retinal potential with the cooperation of a plurality of subjects, and even when subjects differ, the corneal retinal potential is almost always proportional to eye movement and the relationship is constant with a constant gradient. It has been found that a straight line can be approximated exactly. Therefore, by storing and using this relationship, visual acuity input can be performed with a simpler algorithm.

【0010】また、同一の注視位置における角膜網膜電
位の変動値を随時求め、この変動値分を差分して角膜網
膜電位を補償する。角膜網膜電位の絶対値は時間と共に
変化し、その変化の度合は被験者により相違することが
多くの試験結果から明らかとなった。しかし、前述のよ
うに、被験者が相違しても、角膜網膜電位は眼球運動と
常にほぼ比例関係にあるので、同一の注視位置(例えば
正面)における角膜網膜電位の変動値を随時求め、この
変動値分を他の注視位置の場合でも差分することにより
角膜網膜電位を正確に補償することかできる。
Further, a fluctuation value of the corneal retinal potential at the same gaze position is obtained as needed, and the corneal retinal potential is compensated by subtracting the fluctuation value. Many test results have revealed that the absolute value of the corneal retina potential changes with time, and the degree of the change differs depending on the subject. However, as described above, even if the subject is different, the corneal retinal potential is always almost proportional to the eye movement, so that the fluctuation value of the corneal retinal potential at the same gaze position (for example, the front) is obtained as needed. The corneal retinal potential can be accurately compensated by making a difference between the values at other gaze positions.

【0011】更に、角膜網膜電位の変動波形を平滑化
し、瞬きと速い眼球運動による注視位置の急変を低減す
る。瞬きや速い眼球運動(衝動性眼球運動)による角膜
網膜電位の変化は激しく、これをそのまま注視位置とし
て表示するとカーソルがあらぬ方向に飛び跳ねてしま
い、かえって視力入力が困難になる。従って、角膜網膜
電位を遅れ要素を有する信号処理により変動波形を平滑
化して注視位置の急変を低減することにより、視力入力
をより容易に快適に行うことができる。
Furthermore, the fluctuation waveform of the corneal retina potential is smoothed, and a sudden change in the gaze position due to blinking and rapid eye movement is reduced. The change of the corneal retina potential due to blinking or rapid eye movement (impulsive eye movement) is severe, and if this is displayed as the gaze position as it is, the cursor jumps in a new direction, making it difficult to input visual acuity. Therefore, the corneal retinal potential is smoothed by signal processing having a delay element to reduce a sudden change in the gaze position, so that visual acuity input can be performed more easily and comfortably.

【0012】また、本発明によれば、被験者の角膜網膜
電位を検出する電位検出器と、該電位検出器で検出され
た角膜網膜電位と複数の注視位置との関係を予めキャリ
ブレーションして記憶し、該関係と角膜網膜電位から注
視位置をリアルタイムに求める演算制御装置と、を備え
たことを特徴とする角膜網膜電位を用いた視力入力装置
が提供される。
Further, according to the present invention, a potential detector for detecting a corneal retinal potential of a subject, and a relationship between a corneal retinal potential detected by the potential detector and a plurality of gaze positions are calibrated and stored in advance. An eyesight input device using a corneal retinal potential is provided, comprising: an arithmetic and control unit for obtaining a gaze position in real time from the relationship and the corneal retinal potential.

【0013】本発明の構成によれば、電位検出器で角膜
網膜電位を検出し、演算制御装置で注視位置をリアルタ
イムに求めることができる。電位検出器は、例えば被験
者の目をはさんで、例えばこめかみに貼った2つの電極
であり、電極間に電圧や電流をなんら印加することなく
その間に生じる電位(電圧)から角膜網膜電位を検出で
きる。また、演算制御装置は例えばCRT(ディスプレ
イ)を備えたコンピュータであり、CRT上に注視位置
を表示してこれを被験者に注視させることにより、角膜
網膜電位と複数の注視位置との関係を予めキャリブレー
ションして記憶することができ、次いでこの関係を基に
して、検出された角膜網膜電位から注視位置をリアルタ
イムに求めることができる。
According to the configuration of the present invention, the corneal retinal potential can be detected by the potential detector, and the gaze position can be obtained in real time by the arithmetic and control unit. The potential detector is, for example, two electrodes stuck to the subject's eyes, for example, attached to a temple, and detects a corneal retinal potential from a potential (voltage) generated between the electrodes without applying any voltage or current between the electrodes. it can. The arithmetic and control unit is, for example, a computer having a CRT (display). The gaze position is displayed on the CRT and the subject gazes at the gaze position, thereby preliminarily calibrating the relationship between the corneal retinal potential and the plurality of gaze positions. The gaze position can be determined in real time from the detected corneal retinal potential based on this relationship.

【0014】本発明の好ましい実施形態によれば、前記
演算制御装置は、前記関係を勾配の一定な近似直線とし
て記憶する記憶手段と、同一の注視位置における角膜網
膜電位の変動値を随時求め、この変動値分を差分して角
膜網膜電位を補償する補償手段と、角膜網膜電位の変動
波形を平滑化し、瞬きと速い眼球運動による注視位置の
急変を低減する信号処理手段とを備える。
According to a preferred embodiment of the present invention, the arithmetic and control unit is configured to store the relationship as an approximate straight line having a constant gradient, and to obtain a fluctuation value of a corneal retinal potential at the same gaze position as needed. Compensation means for compensating the corneal retinal potential by differentiating the fluctuation value, and signal processing means for smoothing the fluctuation waveform of the corneal retinal potential and reducing a sudden change in the gaze position due to blinking and fast eye movements.

【0015】この構成により、記憶手段(例えばメモリ
ー)により角膜網膜電位と複数の注視位置との関係を勾
配の一定な近似直線として記憶することができ、補償手
段により長時間使用しても、被験者により相違する角膜
網膜電位の絶対値の変化を補償することができ、信号処
理手段により、カーソルがあらぬ方向に飛び跳ねるのを
防ぎ、注視位置の急変を低減して視力入力をより容易に
快適に行うことができる。
With this configuration, the relationship between the corneal retinal potential and the plurality of gaze positions can be stored as an approximate straight line having a constant gradient by the storage means (for example, a memory). Can compensate for changes in the absolute value of the corneal retinal potential that differ, and the signal processing means prevents the cursor from jumping in unexpected directions, reduces sudden changes in the gaze position, and makes eyesight input easier and more comfortable. It can be carried out.

【0016】[0016]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し、重複した説明を省略す
る。図1は、本発明の視力入力方法を模式的に示す図で
ある。この図に示すように、本発明の視力入力方法で
は、被験者1の角膜網膜電位2を検出し、その角膜網膜
電位2から被験者1の注視位置3をリアルタイムに求め
るようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a diagram schematically showing a visual acuity input method of the present invention. As shown in this figure, in the visual acuity input method of the present invention, the corneal retinal potential 2 of the subject 1 is detected, and the gaze position 3 of the subject 1 is obtained from the corneal retinal potential 2 in real time.

【0017】人や動物の眼球には、その前面である角膜
が後面の網膜に対して正に帯電しているので、目をはさ
むように1対の電極を配置すれば、眼球の動きに応じて
電極間の電位が変動する。この電位を角膜網膜電位2
(corneoretinal potential)といい、このようにして眼
球運動を測定する手法をEOG法 (Electro Oculo Grap
h)と呼ぶ。このEOG法は、医療現場において従来から
目の診断の1手法として用いられていたが、個人差が大
きいため、定量的な計測や長時間の使用は行われていな
かった。本願発明の発明者等は、眼球運動と角膜網膜電
位との関係に注目し、複数の被験者の角膜網膜電位を長
時間にわたって正確に計測し、多くの有用な知見を得
た。本発明はかかる新規の知見と創案に基づくものであ
る。以下、試験結果と併せて本発明を説明する。
In the eyes of humans and animals, the cornea, which is the anterior surface thereof, is positively charged with respect to the retina on the rear side. The potential between the electrodes fluctuates. This potential is referred to as corneal retinal potential 2
(corneoretinal potential), and the method of measuring eye movements in this way is EOG (Electro Oculo Grap
h). This EOG method has been conventionally used as one method of eye diagnosis in medical practice, but quantitative measurement and long-time use have not been performed due to large differences between individuals. The inventors of the present invention focused on the relationship between eye movements and corneal retinal potentials, accurately measured corneal retinal potentials of a plurality of subjects over a long period of time, and obtained many useful findings. The present invention is based on such new findings and ideas. Hereinafter, the present invention will be described in conjunction with test results.

【0018】図2は、図1のシステムにより得られた同
一の注視位置における角膜網膜電位の変化を示す図であ
る。この結果は、ある被験者がCRT(ディスプレイ)
の中央の視覚指標を注視した際、その角膜網膜電位2を
電極貼付後の経過時間に対してプロットしたものであ
る。このように、同一の被験者であってもその角膜網膜
電位が時間とともに変動することは「ドリフト現象」と
して従来から知られていた。
FIG. 2 is a diagram showing changes in corneal retinal potential at the same gaze position obtained by the system of FIG. This result indicates that a subject has a CRT (display)
3 shows the corneal retinal potential 2 plotted with respect to the elapsed time after application of the electrode when the visual indicator at the center of FIG. Thus, the fact that the corneal retinal potential of the same subject fluctuates with time has been conventionally known as "drift phenomenon".

【0019】図2から明らかなように、時間経過に対し
て電位(角膜網膜電位)が大きく変動するが、特に、電
極貼付後の20〜30分までの変動が著しく、その後の
変動は小さくなっている。同様の傾向は被験者全員(7
名)について共通して認められた。その他の点では被験
者ごとに変動の様子が異なり、ドリフト現象に関する共
通点は見出せなかった。
As is apparent from FIG. 2, the potential (corneal retinal potential) fluctuates greatly with the passage of time. In particular, the fluctuation fluctuates remarkably within 20 to 30 minutes after the application of the electrode, and the fluctuation thereafter becomes small. ing. A similar tendency was observed for all subjects (7
Name) was commonly accepted. In other respects, the state of fluctuation varied from subject to subject, and there was no common point regarding the drift phenomenon.

【0020】図3は、角膜網膜電位と複数の注視位置と
の関係を示す試験結果である。この図は、ディスプレイ
内の様々な位置に提示された視覚指標3を被験者が注視
した際の各視覚指標に対する角膜網膜電位である。この
図はある被験者に対して行った結果であり、下から順に
電極貼付後5分、26分、72分の場合である。なお、
この試験では、ディスプレイ内の左30度から右30度
にかけて3度毎に21個の視覚指標を容易し、ランダム
に1つずつ1秒間提示して行った。
FIG. 3 is a test result showing the relationship between the corneal retinal potential and a plurality of gaze positions. This figure shows the corneal retinal potential for each visual index when the subject gazes at the visual index 3 presented at various positions in the display. This figure shows the results of a test performed on a certain subject, in the order of 5 minutes, 26 minutes, and 72 minutes after electrode application from the bottom. In addition,
In this test, 21 visual indices were facilitated every 3 degrees from the left 30 degrees to the right 30 degrees in the display, and were randomly presented one by one for one second.

【0021】図3において、前述したドリフト現象が原
因で時間の経過とともにグラフの基線が変動している。
一方、各時間においては、視覚指標の各提示位置(横
軸:眼球の偏位角)に対して角膜網膜電位(縦軸)が線
形に変化していることがわかる。すなわち、短時間の測
定ではドリフト現象は大きな問題にならないことが明確
である。更に、各時間の点列がほぼ平行に並んでおり、
眼球の偏位角と角膜網膜電位の線形関係は、時間の経過
に無関係にほぼ同一であることがわかる。
In FIG. 3, the baseline of the graph fluctuates over time due to the drift phenomenon described above.
On the other hand, at each time, it can be seen that the corneal retinal potential (vertical axis) linearly changes with respect to each presentation position of the visual index (horizontal axis: deviation angle of the eyeball). That is, it is clear that the drift phenomenon does not become a significant problem in a short-time measurement. Furthermore, the point sequence at each time is arranged almost in parallel,
It can be seen that the linear relationship between the deviation angle of the eyeball and the corneal retina potential is almost the same regardless of the passage of time.

【0022】図4は、同一の注視位置における角膜網膜
電位の変化の勾配を示す図であり、(A)は単一の被験
者に対するもの、(B)は7名の被験者に対するもので
ある。なお、この図において、縦軸は、各経過時間にお
ける偏位角と角膜網膜電位の関係を最小二乗法により求
めた近似直線の傾きである。この図4(A)から、近似
直線の傾きは電極貼付直後からほぼ一定であり、特に経
過時間が長いほどこの変化が少なくなることが明らかと
なった。また、図4(B)から7名の被験者の全員が、
少なくとも15分以上経過すると傾きがほぼ一定になる
ことがわかった。
FIGS. 4A and 4B are graphs showing the gradient of the change in the corneal retinal potential at the same gaze position. FIG. 4A is for a single subject, and FIG. 4B is for 7 subjects. Note that, in this figure, the vertical axis represents the slope of an approximate straight line obtained by the least square method for the relationship between the deviation angle and the corneal retinal potential at each elapsed time. From FIG. 4 (A), it is clear that the slope of the approximate straight line is almost constant immediately after the application of the electrode, and the change becomes smaller as the elapsed time becomes longer. Also, from FIG. 4 (B), all of the seven subjects
It was found that the slope became substantially constant after at least 15 minutes had elapsed.

【0023】図5は本発明による視力入力装置の全体構
成図である。この図に示すように、本発明の視力入力装
置10は、被験者1の角膜網膜電位2を検出する電位検
出器12と、電位検出器12で検出された角膜網膜電位
2から被験者1の注視位置3をリアルタイムに求める演
算制御装置14とからなる。
FIG. 5 is an overall configuration diagram of a visual acuity input device according to the present invention. As shown in this figure, a visual acuity input device 10 of the present invention includes a potential detector 12 for detecting a corneal retinal potential 2 of the subject 1, and a gaze position of the subject 1 based on the corneal retinal potential 2 detected by the potential detector 12. And an arithmetic and control unit 14 for obtaining the number 3 in real time.

【0024】電位検出器12は、例えば目(眼球)をは
さむように配置された1対の電極とこの電極間に発生す
る電位を演算制御装置14に入力する信号線とからな
る。1対の電極の他に参照電位を計測するために別の部
位の電位を計測する電極を用いてもよい。電極は、導電
性の電極ペーストを塗布したものであり、被験者の目の
周囲の皮膚に貼付けるのがよい。また、導電性粘着シー
トを素材としたものでもよい。更に、電極の貼付け位置
によっては表情を作る顔筋の筋電が角膜網膜電位に混入
することがあるので、好ましくはその影響の少ない「こ
めかみ」へ貼付けるのがよい。また、垂直方向の眼球運
動の測定精度は水平方向よりも劣るので、好ましくは視
覚指標を水平方向に配置し、電極も水平方向を計測する
ように配置するのがよい。なお、電極の貼付けは必ずし
も不可欠ではなく、例えば電極を「眼鏡」の鼻パッド等
に埋め込んだものを用いてもよい。また、ファインダ等
を覗く際に電極が接触して角膜網膜電位を計測するよう
にしてもよい。
The potential detector 12 includes, for example, a pair of electrodes arranged so as to hold an eye (eyeball) therebetween, and a signal line for inputting a potential generated between the electrodes to the arithmetic and control unit 14. In addition to the pair of electrodes, an electrode for measuring the potential of another portion for measuring the reference potential may be used. The electrode is formed by applying a conductive electrode paste, and is preferably attached to the skin around the eyes of the subject. Further, a conductive adhesive sheet may be used as a material. Further, depending on the position where the electrode is attached, the myoelectricity of the facial muscles that make up the facial expression may be mixed into the corneal retinal potential. Therefore, it is preferable to attach the electrode to the "temple" which is less affected. Further, since the measurement accuracy of the eye movement in the vertical direction is inferior to that in the horizontal direction, it is preferable to arrange the visual indices in the horizontal direction and arrange the electrodes so as to measure the horizontal direction. It is to be noted that the attachment of the electrodes is not necessarily indispensable. For example, an electrode embedded in a nose pad or the like of “glasses” may be used. Further, the electrodes may be brought into contact with each other when looking through a finder or the like to measure the corneal retinal potential.

【0025】演算制御装置14は、角膜網膜電位と複数
の注視位置との関係を勾配の一定な近似直線として記憶
する記憶手段15と、同一の注視位置における角膜網膜
電位の変動値を随時求め、この変動値分を差分して角膜
網膜電位を補償する補償手段16と、角膜網膜電位の変
動波形を平滑化し、瞬きと速い眼球運動による注視位置
の急変を低減する信号処理手段17とを備え、角膜網膜
電位と複数の注視位置との関係を予めキャリブレーショ
ンして記憶し、この関係と角膜網膜電位から注視位置を
リアルタイムに求めるようになっている。
The arithmetic and control unit 14 stores a relation between the corneal retinal potential and the plurality of gaze positions as an approximate straight line having a constant gradient, and obtains a fluctuation value of the corneal retinal potential at the same gaze position as needed. Compensation means 16 for compensating the corneal retinal potential by differentiating the fluctuation value, and signal processing means 17 for smoothing the fluctuation waveform of the corneal retinal potential and reducing a sudden change in the gaze position due to blinking and fast eye movement, The relationship between the corneal retinal potential and the plurality of gaze positions is calibrated and stored in advance, and the gaze position is determined in real time from this relationship and the corneal retinal potential.

【0026】演算制御装置14は、具体的には、十分な
メモリーを有するコンピュータとディスプレイ装置(C
RT)により構成することができる。このコンピュータ
は所定のプログラムにより、後述するアルゴリズムを実
行するようになっている。
Specifically, the arithmetic and control unit 14 includes a computer having a sufficient memory and a display device (C).
RT). The computer executes an algorithm described later by a predetermined program.

【0027】図6は、本発明による角膜網膜電位を補償
する補償手段を示すフローチャートである。この図にお
いて、多点キャリブレーションとは、角膜網膜電位2と
複数の注視位置3との関係を予めキャリブレーションし
て記憶する工程(ステップ)であり、コンピュータを用
いてディスプレイ内の様々な位置に順次視覚指標を提示
して、被験者にこれを注視させて、その際の角膜網膜電
位を測定して記憶する。前述のように、ドリフト現象
は、被験者ごとに変動の様子が異なるが、短時間の測定
ではドリフト現象は問題にならない。また、眼球の偏位
角と角膜網膜電位の線形関係は、時間の経過に無関係に
あり、かつ勾配の一定な近似直線として近似することが
できる。従って、多点キャリブレーションを行うことに
より、眼球の偏位角と角膜網膜電位の線形関係が定ま
り、少なくとも短時間の間は逆に角膜網膜電位から偏位
角を求め被験者の注視位置を求めることができる。
FIG. 6 is a flowchart showing a compensating means for compensating a corneal retinal potential according to the present invention. In this figure, the multi-point calibration is a step (step) of calibrating and storing a relationship between a corneal retinal potential 2 and a plurality of gaze positions 3 in advance, and using a computer at various positions in a display. The visual indices are sequentially presented, the subject is gazed at this, and the corneal retinal potential at that time is measured and stored. As described above, the drift phenomenon varies depending on the subject, but the drift phenomenon does not matter in a short measurement. The linear relationship between the deviation angle of the eyeball and the corneal retinal potential is independent of the passage of time and can be approximated as an approximate straight line having a constant gradient. Therefore, by performing the multi-point calibration, the linear relationship between the deviation angle of the eyeball and the corneal retinal potential is determined, and at least for a short time, the deviation angle is determined from the corneal retinal potential to obtain the gaze position of the subject. Can be.

【0028】また、図6における1点キャリブレーショ
ンとは、特定(例えば中央)の注視位置3における角膜
網膜電位2を測定する工程(ステップ)であり、この工
程により同一の注視位置における角膜網膜電位の変動値
を随時求め、この変動値分を差分して角膜網膜電位を補
償することができる。従って、ドリフト現象の影響が生
じないように十分短い時間間隔で、1点キャリブレーシ
ョンを行うことにより、ドリフト現象の影響を回避し、
常にリアルタイムで正確に注視位置を求めることができ
る。
The one-point calibration in FIG. 6 is a step (step) of measuring the corneal retinal potential 2 at a specific (eg, center) gaze position 3, and this step performs the corneal retinal potential at the same gaze position. The corneal retinal potential can be compensated by obtaining the fluctuation value of the variance from time to time and subtracting the fluctuation value. Therefore, the influence of the drift phenomenon is avoided by performing the one-point calibration at a sufficiently short time interval so that the influence of the drift phenomenon does not occur.
The gaze position can always be obtained accurately in real time.

【0029】一方、目の瞬きや速い眼球運動による角膜
網膜電位の変化は激しく、上述した視力入力手段だけで
は、実用的な使用が困難な場合がある。すなわち、「瞬
き」は電気ノイズとして角膜網膜電位に混入するため、
そのまま角膜網膜電位から被験者の注視位置を求めカー
ソルで表示すると、瞬きの影響でカーソルがあらぬ方向
へ飛び跳ねてしまう。図7は、この状態を示す角膜網膜
電位の測定結果であり、矢印で示す「瞬き」により、角
膜網膜電位がスパイク状に急変しているのがわかる。
On the other hand, the corneal retina potential changes drastically due to blinking of eyes and rapid eye movement, and it may be difficult to use the above-mentioned visual acuity input means alone for practical use. That is, "blinks" are mixed into the corneal retinal potential as electrical noise,
If the gaze position of the subject is obtained as it is from the corneal retinal potential and displayed by the cursor, the cursor jumps in an unexpected direction due to the effect of blinking. FIG. 7 shows the measurement result of the corneal retinal potential showing this state, and it can be seen that the corneal retinal potential is suddenly changed in a spike shape by “blinking” indicated by an arrow.

【0030】同様に、随意的(急に)に他の物を見よう
として注視点を変える時には、「衝動性眼球運動(サッ
ケード運動)」と呼ぶ急速な眼球運動が生じることがあ
る。この衝動性眼球運動は、数百度/秒の速い角速度を
有するため、この速度に対応してカーソルを移動させる
と、視線でカーソルを思いどおりに動かすことが困難又
は全くできないことが実験から判明した。
Similarly, when changing the point of gaze to look at another object (arbitrarily) suddenly, rapid eye movement called "impulsive eye movement (saccade movement)" may occur. Since this impulsive eye movement has a high angular velocity of several hundred degrees / second, it has been found from experiments that if the cursor is moved in accordance with this velocity, it is difficult or impossible to move the cursor as desired with the line of sight. .

【0031】図8は、本発明による角膜網膜電位の変動
波形を平滑化する信号処理手段を示すブロック図であ
る。この信号処理手段17は、上述した問題点を解決す
るものであり、角膜網膜電位の変動波形を平滑化し、瞬
きと速い眼球運動による注視位置の急変を低減するよう
になっている。すなわち、図8において、u(n)は角
膜網膜電位、y(n)はカーソルの「最終的な」表示位
置であり、aは多点キャリブレーションによって得られ
た近似直線の傾きを表すパラメータ、bは1点キャリブ
レーションによって得たドリフト変動補正分を表すパラ
メータであり、Dは遅れ要素、kはカーソルの移動量を
決めるパラメータである。
FIG. 8 is a block diagram showing signal processing means for smoothing the fluctuation waveform of the corneal retinal potential according to the present invention. This signal processing means 17 solves the above-mentioned problem, and smoothes the fluctuation waveform of the corneal retinal potential, and reduces sudden changes in the gaze position due to blinking and rapid eye movement. That is, in FIG. 8, u (n) is the corneal retinal potential, y (n) is the “final” display position of the cursor, a is a parameter representing the slope of the approximate straight line obtained by the multi-point calibration, b is a parameter representing the drift variation correction obtained by the one-point calibration, D is a delay element, and k is a parameter for determining the amount of movement of the cursor.

【0032】図8の信号処理手段17では、電位検出器
12で測定された角膜網膜電位u(n)は、(数1)に
よりカーソルの表示位置x(n)に変換される。
In the signal processing means 17 of FIG. 8, the corneal retinal potential u (n) measured by the potential detector 12 is converted into a cursor display position x (n) by (Equation 1).

【0033】[0033]

【数1】 (Equation 1)

【0034】この表示位置x(n)をそのままディスプ
レイに表示すると、瞬きや衝動性眼球運動の影響で前述
の問題が生じる。そこで、図8の信号処理手段17で
は、(数2)に示すような1次遅れ要素を用いて信号処
理を施していない場合の1/kにカーソルの移動量を減
らすようになっている。
If the display position x (n) is displayed on the display as it is, the above-mentioned problem occurs due to the effects of blinking and impulsive eye movement. Therefore, the signal processing unit 17 in FIG. 8 reduces the cursor movement amount to 1 / k when signal processing is not performed using a first-order delay element as shown in (Equation 2).

【0035】[0035]

【数2】 (Equation 2)

【0036】図9は、図7の角膜網膜電位に対して、図
8の信号処理手段を適用した結果である。k=1は遅れ
要素を考慮しない場合を示し、k=30はその1/30
の速度でカーソルを動かした場合を示している。この図
から明らかなように、遅れ要素を考慮しないと(k=
1)、カーソルは瞬き等の影響で飛び跳ねるのに対し
て、遅れ要素を考慮すると(k=30)、瞬き等による
スパイク状の波形を平滑化することができ、視線でカー
ソルを思いどおりに動かすことができる。
FIG. 9 shows the result of applying the signal processing means of FIG. 8 to the corneal retinal potential of FIG. k = 1 indicates a case where the delay element is not considered, and k = 30 indicates 1/30 of the case.
The case where the cursor is moved at the speed of is shown. As is clear from this figure, if the delay element is not considered (k =
1) While the cursor jumps under the influence of blinking or the like, considering the delay element (k = 30), a spike-like waveform due to blinking or the like can be smoothed, and the cursor can be moved as desired with a line of sight. be able to.

【0037】図10は、上述した本発明の視力入力装置
による試験結果である。この試験は、7名の被験者に対
して簡単な問題を出し、それを視力入力により答えさせ
たものである。この図において、横軸は試験回数、縦軸
は正答率であり、(A)はk=1の場合、(B)はk=
30の場合である。この図から、本発明の視力入力手段
を完全に使いこなすには多少の「慣れ」が必要である
が、特に、信号処理手段における遅れ要素kを好みに応
じて適切に設定することにより、短時間で短時間で正解
率が飛躍的に向上し(すなわち習得することができ)、
例えば4回程度で90%以上の正解率に達することがわ
かる。
FIG. 10 shows test results obtained by the above-mentioned visual acuity input device of the present invention. In this test, seven subjects were asked a simple question and asked to answer it by visual acuity input. In this figure, the horizontal axis is the number of tests and the vertical axis is the correct answer rate. (A) is for k = 1, (B) is for k =
30. From this figure, it is necessary to use the "sighting" means of the present invention in order to completely utilize the visual acuity input means, but in particular, by setting the delay element k in the signal processing means appropriately according to preference, In a short period of time, the accuracy rate is dramatically improved (that is, can be learned),
For example, it is understood that the correct answer rate reaches 90% or more in about four times.

【0038】言い換えれば、図10において、k=1と
k=30ではカーソルの移動速度が異なり、前者が速い
動き、後者が遅い動きとなるが、k=30すなわち遅い
動きのときほど、正解率が高く、本発明による信号処理
手法が有効であることがわかった。
In other words, in FIG. 10, the moving speed of the cursor is different between k = 1 and k = 30, and the former moves faster and the latter moves slowly. And the signal processing method according to the present invention was found to be effective.

【0039】なお、本発明は上述した実施例に限定され
るものではなく、本発明の要旨を逸脱しない範囲で種々
変更できることは勿論である。なお、上述の説明では、
重度機能障害を有する人を対象として説明したが、本発
明はこれに限定されず、同様な眼球を有する動物にも同
様に適用することができる。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. In the above description,
Although described with respect to a person having severe dysfunction, the present invention is not limited to this, and can be similarly applied to animals having similar eyes.

【0040】[0040]

【発明の効果】上述したように、本発明の視力入力方法
及び装置によれば、被験者から角膜網膜電位を検出する
だけでリアルタイムに視力入力が可能であり、かつこの
角膜網膜電位は、電極間に電圧や電流をなんら印加する
ことなく検出できるので、使用者に対する影響が全くな
い。従って、従来の手段と比較して、装置のセットア
ップが容易であり、装置使用に伴う疲労が少なく、長
時間の使用が可能であり、環境光の変化や被験者の動
きによる誤動作が少なく、安定した測定ができ、自然
視がほとんど妨げられない、等の効果を有する。
As described above, according to the visual acuity input method and apparatus of the present invention, visual acuity input can be performed in real time only by detecting the corneal retinal potential from the subject, and the corneal retinal potential is determined by the distance between the electrodes. Can be detected without applying any voltage or current to the device, so that there is no effect on the user. Therefore, as compared with the conventional means, the setup of the device is easy, the fatigue associated with the use of the device is small, the device can be used for a long time, the malfunction due to the change of ambient light and the movement of the subject is small, and the device is stable. It has the effect that measurement can be performed and natural vision is hardly hindered.

【0041】また、角膜網膜電位を用いた視力入力で
は、被験者ごとに異なるドリフト現象、被験者の瞬きや
急速な眼球運動が避けられないが、本発明によれば、こ
れらの影響を回避又は補償して、正確な視力入力をリア
ルタイムに行うことができる。従って、本発明の視力入
力方法及び装置は、会話、筆談、手話などによるコミュ
ニケーションが困難な重度機能障害を持つ「重度肢体不
自由者」のためのコミュニケーション支援装置として活
用することができる。
Further, in the visual acuity input using the corneal retinal potential, drift phenomena that differ for each subject, blinking of the subject and rapid eye movement cannot be avoided. According to the present invention, these effects are avoided or compensated. Thus, accurate visual acuity input can be performed in real time. Therefore, the visual acuity input method and device of the present invention can be utilized as a communication support device for “severely physically handicapped” having severe dysfunction, in which communication by conversation, writing, and sign language is difficult.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の視力入力方法を模式的に示す図であ
る。
FIG. 1 is a diagram schematically showing a visual acuity input method of the present invention.

【図2】同一の注視位置における角膜網膜電位の変化を
示す図である。
FIG. 2 is a diagram showing a change in corneal retinal potential at the same gaze position.

【図3】角膜網膜電位と複数の注視位置との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between a corneal retinal potential and a plurality of gaze positions.

【図4】同一の注視位置における角膜網膜電位の変化の
勾配を示す図である。
FIG. 4 is a diagram showing a gradient of a change in corneal retinal potential at the same gaze position.

【図5】本発明による視力入力装置の全体構成図であ
る。
FIG. 5 is an overall configuration diagram of a visual acuity input device according to the present invention.

【図6】本発明による角膜網膜電位のドリフトを補償す
る補償手段を示すフローチャートである。
FIG. 6 is a flowchart showing a compensating means for compensating for a drift of a corneal retinal potential according to the present invention.

【図7】瞬きと速い眼球運動による角膜網膜電位の変化
を示す図である。
FIG. 7 is a diagram showing changes in corneal retina potential due to blinking and fast eye movement.

【図8】本発明による角膜網膜電位の変動波形を平滑化
する信号処理手段を示すブロック図である。
FIG. 8 is a block diagram showing a signal processing means for smoothing a fluctuation waveform of a corneal retinal potential according to the present invention.

【図9】図7の角膜網膜電位を信号処理手段により処理
した同様の図である。
FIG. 9 is a similar diagram in which the corneal retinal potential of FIG. 7 is processed by a signal processing unit.

【図10】本発明の装置による試験例である。FIG. 10 is a test example using the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 被験者 2 角膜網膜電位 3 注視位置(視覚指標) 10 視力入力装置 12 電位検出器 14 演算制御装置 15 記憶手段 16 補償手段 17 信号処理手段 REFERENCE SIGNS LIST 1 subject 2 corneal retina potential 3 gaze position (visual index) 10 visual acuity input device 12 potential detector 14 arithmetic and control unit 15 storage means 16 compensation means 17 signal processing means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 角膜網膜電位と複数の注視位置との関係
を予めキャリブレーションして記憶し、該関係と角膜網
膜電位から注視位置をリアルタイムに求める、ことを特
徴とする角膜網膜電位を用いた視力入力方法。
1. A corneal retinal potential, wherein a relationship between a corneal retinal potential and a plurality of gaze positions is previously calibrated and stored, and a gaze position is obtained in real time from the relationship and the corneal retinal potential. Eyesight input method.
【請求項2】 前記関係を勾配の一定な近似直線として
記憶する、ことを特徴とする請求項1に記載の視力入力
方法。
2. The visual acuity input method according to claim 1, wherein the relation is stored as an approximate straight line having a constant gradient.
【請求項3】 同一の注視位置における角膜網膜電位の
変動値を随時求め、この変動値分を差分して角膜網膜電
位を補償する、ことを特徴とする請求項1に記載の視力
入力方法。
3. The visual acuity input method according to claim 1, wherein a fluctuation value of the corneal retinal potential at the same gaze position is obtained as needed, and the corneal retinal potential is compensated by subtracting the fluctuation value.
【請求項4】 角膜網膜電位の変動波形を平滑化し、瞬
きと速い眼球運動による注視位置の急変を低減する、こ
とを特徴とする請求項1に記載の視力入力方法。
4. The visual acuity input method according to claim 1, wherein a fluctuation waveform of a corneal retina potential is smoothed, and a sudden change in a gaze position due to blinking and fast eye movement is reduced.
【請求項5】 被験者の角膜網膜電位を検出する電位検
出器と、該電位検出器で検出された角膜網膜電位と複数
の注視位置との関係を予めキャリブレーションして記憶
し、該関係と角膜網膜電位から注視位置をリアルタイム
に求める演算制御装置と、を備えたことを特徴とする角
膜網膜電位を用いた視力入力装置。
5. A potential detector for detecting a corneal retinal potential of a subject, and a relationship between a corneal retinal potential detected by the potential detector and a plurality of gaze positions is calibrated and stored in advance, and the relationship is stored in the cornea. A visual acuity input device using a corneal retinal potential, comprising: an arithmetic and control unit for obtaining a gaze position in real time from a retinal potential.
【請求項6】 前記演算制御装置は、前記関係を勾配の
一定な近似直線として記憶する記憶手段と、同一の注視
位置における角膜網膜電位の変動値を随時求め、この変
動値分を差分して角膜網膜電位を補償する補償手段と、
角膜網膜電位の変動波形を平滑化し、瞬きと速い眼球運
動による注視位置の急変を低減する信号処理手段とを備
える、ことを特徴とする請求項5に記載の視力入力装
置。
6. The arithmetic and control unit obtains a fluctuation value of a corneal retinal potential at the same gaze position as needed from a storage unit that stores the relation as an approximate straight line having a constant gradient, and calculates a difference between the fluctuation values. Compensating means for compensating corneal retinal potential;
The visual acuity input device according to claim 5, further comprising signal processing means for smoothing a fluctuation waveform of a corneal retina potential and reducing a sudden change in a gaze position due to blinking and fast eye movement.
JP9238074A 1997-09-03 1997-09-03 Visual acuity input method and device using cornea retina potential Pending JPH1185384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9238074A JPH1185384A (en) 1997-09-03 1997-09-03 Visual acuity input method and device using cornea retina potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9238074A JPH1185384A (en) 1997-09-03 1997-09-03 Visual acuity input method and device using cornea retina potential

Publications (1)

Publication Number Publication Date
JPH1185384A true JPH1185384A (en) 1999-03-30

Family

ID=17024779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9238074A Pending JPH1185384A (en) 1997-09-03 1997-09-03 Visual acuity input method and device using cornea retina potential

Country Status (1)

Country Link
JP (1) JPH1185384A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252879A (en) * 2006-02-27 2007-10-04 Univ Of Electro-Communications Method for measuring eyeball position and instrument for measuring eyeball position
WO2009107371A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Sight line detector and method for detecting sight line
WO2009142008A1 (en) * 2008-05-20 2009-11-26 パナソニック株式会社 Line-of-sight detecting device, imaging device, line-of-sight detecting method, program, and integrated circuit
JP2010205099A (en) * 2009-03-05 2010-09-16 Univ Of Miyazaki Mouse cursor control system using ocular potential
JP2011120887A (en) * 2009-11-12 2011-06-23 Panasonic Corp Eye potential measuring device, ophthalmic diagnosis apparatus, visual line detector, wearable camera, head-mounted display, electronic glasses, and eye potential measuring method, and program
JP2011125691A (en) * 2009-11-19 2011-06-30 Panasonic Corp Noise reduction device, eye potential measuring device, ophthalmology diagnostic apparatus, visual line detector, wearable camera, head-mounted display, electronic glasses, noise reduction method and program
JP2011125692A (en) * 2009-11-18 2011-06-30 Panasonic Corp Visual axis detector, visual axis detecting method, instrument for measuring eye potential, wearable camera, head mounted display, electronic glasses, and ophthalmologic diagnostic apparatus
US8357101B2 (en) 2008-05-20 2013-01-22 Panasonic Corporation Electro-oculography apparatus, imaging apparatus, electro-oculography method, program, and integrated circuit
JP2019058667A (en) * 2017-09-27 2019-04-18 株式会社Qdレーザ Ophthalmologic examination apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252879A (en) * 2006-02-27 2007-10-04 Univ Of Electro-Communications Method for measuring eyeball position and instrument for measuring eyeball position
US8259169B2 (en) 2008-02-28 2012-09-04 Panasonic Corporation Eye-gaze detecting device and eye-gaze detecting method
WO2009107371A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Sight line detector and method for detecting sight line
WO2009142008A1 (en) * 2008-05-20 2009-11-26 パナソニック株式会社 Line-of-sight detecting device, imaging device, line-of-sight detecting method, program, and integrated circuit
JP5204781B2 (en) * 2008-05-20 2013-06-05 パナソニック株式会社 Gaze detection apparatus, imaging apparatus, gaze detection method, program, and integrated circuit
US8419654B2 (en) 2008-05-20 2013-04-16 Panasonic Corporation Eye gaze tracking apparatus, imaging apparatus, eye gaze tracking method, program, and integrated circuit
US8357101B2 (en) 2008-05-20 2013-01-22 Panasonic Corporation Electro-oculography apparatus, imaging apparatus, electro-oculography method, program, and integrated circuit
JP2010205099A (en) * 2009-03-05 2010-09-16 Univ Of Miyazaki Mouse cursor control system using ocular potential
US8333475B2 (en) 2009-11-12 2012-12-18 Panasonic Corporation Electro-oculography measuring device, ophthalmological diagnosis device, eye-gaze tracking device, wearable camera, head-mounted display, electronic eyeglasses, electro-oculography measuring method, and recording medium
JP2011120887A (en) * 2009-11-12 2011-06-23 Panasonic Corp Eye potential measuring device, ophthalmic diagnosis apparatus, visual line detector, wearable camera, head-mounted display, electronic glasses, and eye potential measuring method, and program
JP2011125692A (en) * 2009-11-18 2011-06-30 Panasonic Corp Visual axis detector, visual axis detecting method, instrument for measuring eye potential, wearable camera, head mounted display, electronic glasses, and ophthalmologic diagnostic apparatus
JP2011125691A (en) * 2009-11-19 2011-06-30 Panasonic Corp Noise reduction device, eye potential measuring device, ophthalmology diagnostic apparatus, visual line detector, wearable camera, head-mounted display, electronic glasses, noise reduction method and program
US8430510B2 (en) 2009-11-19 2013-04-30 Panasonic Corporation Noise reduction device, electro-oculography measuring device, ophthalmological diagnosis device, eye-gaze tracking device, wearable camera, head-mounted display, electronic eyeglasses, noise reduction method, and recording medium
JP2019058667A (en) * 2017-09-27 2019-04-18 株式会社Qdレーザ Ophthalmologic examination apparatus

Similar Documents

Publication Publication Date Title
US10908683B2 (en) Eye-tracking calibration
CN110520824B (en) Multimode eye tracking
US5726916A (en) Method and apparatus for determining ocular gaze point of regard and fixation duration
Bockisch et al. Three-dimensional eye position during static roll and pitch in humans
US20090295683A1 (en) Head mounted display with variable focal length lens
Schuler et al. Precision and accuracy of the subjective haptic vertical in the roll plane
JP2017093984A (en) Eye potential detection device, eye potential detection method, eyewear and frame
Hutton Eye tracking methodology
JP6774975B2 (en) Eye rotation detectors, electronic devices and systems
Hernandez et al. How does saccade adaptation affect visual perception?
KR20140072524A (en) Apparatus for measuring fatigue degree of driver's eye
Ghasia et al. Uncorrected myopic refractive error increases microsaccade amplitude
JPH1185384A (en) Visual acuity input method and device using cornea retina potential
Jones et al. Stress and visual function in infantile nystagmus syndrome
CN111067474B (en) Apparatus and method for objective visual acuity measurement using dynamic velocity threshold filter
Harrar et al. A nonvisual eye tracker calibration method for video-based tracking
JP6687639B2 (en) Information processing method, information processing device, program, and eyewear
CN110462494A (en) It is adapted to be the Optical devices worn by wearer
Hess et al. Vestibular contributions to gaze stability during transient forward and backward motion
JP2021009719A (en) Electronic apparatus and display method
Satgunam et al. The influence of vergence adaptation on open-loop vergence dynamics
KR101297330B1 (en) Eye movement measuring method using electrooculogram signal based on reference voltage feedback
CN114364302A (en) Device and method for measuring at least one visual refractive characteristic of a subject
CN110049710B (en) Method and system for measuring refraction, method for optical design of an ophthalmic lens and spectacles comprising such an ophthalmic lens
Miyashita et al. Implementation of EOG-based gaze estimation in HMD with head-tracker