JPH118486A - Liquid-cooled device for optical module - Google Patents

Liquid-cooled device for optical module

Info

Publication number
JPH118486A
JPH118486A JP15855997A JP15855997A JPH118486A JP H118486 A JPH118486 A JP H118486A JP 15855997 A JP15855997 A JP 15855997A JP 15855997 A JP15855997 A JP 15855997A JP H118486 A JPH118486 A JP H118486A
Authority
JP
Japan
Prior art keywords
liquid
outer cylinder
optical module
optical modules
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15855997A
Other languages
Japanese (ja)
Inventor
Sakae Hojo
栄 北城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15855997A priority Critical patent/JPH118486A/en
Publication of JPH118486A publication Critical patent/JPH118486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the method for manufacturing a device and reduce the cost therefor by arranging optical modules on a concentric circle and forming tubes for passing liquid refrigerant into axial symmetry, so that the optical modules are brought into almost the same temperature and the oscillating characteristic of a laser is stabilized, and utilizing a screw groove to form a spiral path. SOLUTION: A liquid-cooled device is for mounting a plurality of optical modules 6 thereon and cooling the optical modules 6. The liquid-cooled device comprises an outer cylinder 1 on which the optical modules 6 are mounted, and an inner cylinder 2 which is fit into the outer cylinder 1 in such a manner such that the inner cylinder 2 is brought into contact with the inside of the outer cylinder 1, and has a spiral screw groove 3 on the surface of its circumference. The outer cylinder 1 has an inlet 7 into which liquid is let flow and an outlet 8 from which the liquid is let flow, and the plurality of the optical modules 6 are mounted so that the optical modules 6 are positioned on one circle on the circumference of the outer cylinder 1 at equal intervals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザダイオード
モジュールなどの光モジュールを冷却するための液体冷
却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid cooling device for cooling an optical module such as a laser diode module.

【0002】[0002]

【従来の技術】最近の高度な光半導体技術は、その用途
によって高周波への対応および大出力化という両面性が
混在している。高度情報ネットワークの基幹になる光フ
ァイバー通信においては、マルチメディアで扱われる音
声情報、静止画像、動画像などを短時間でより大量に伝
送するために、高い周波数に対応した発振・受信の光半
導体が求められている。一方、光半導体の大出力化に関
しては、光ファイバー通信の他にも、機械加工などへの
利用も存在し、このような用途にレーザダイオード素子
等を用いる場合は、複数個のレーザダイオード素子の出
力を結集して、さらに他のレーザを励起して大出力を得
るなどの方法が考えられている。
2. Description of the Related Art Recent advanced optical semiconductor technologies have both the characteristics of coping with high frequencies and increasing the output depending on the application. In optical fiber communication, which is the backbone of advanced information networks, in order to transmit voice information, still images, moving images, etc. handled in multimedia in a large amount in a short time, optical semiconductors for oscillation and reception corresponding to high frequencies are required. It has been demanded. On the other hand, regarding the increase in output of optical semiconductors, in addition to optical fiber communication, there are also uses for machining and the like, and when a laser diode element or the like is used for such an application, the output of a plurality of laser diode elements And a method of obtaining a large output by exciting another laser.

【0003】ところで、このように光半導体の素子の出
力が大きくなると、これを冷却するための機構が必要に
なってくる。レーザダイオードなどを例に取ると、通常
は出力の特性を安定させるために室温近傍で温度を一定
にさせる必要があり、ペルチェ素子などの電子冷却素子
を用いて冷却・安定化を図っている。しかし、前述のよ
うに大出力の光半導体を複数個搭載した装置の場合、電
子冷却素子だけでは所定の冷却温度の達成が困難になっ
てくる。しかも、場合によっては複数個の光モジュール
のトータルの出力が数100ワットに及ぶこともあり、
このときは通常の強制空冷でも冷却能力が不足すること
がある。
[0003] By the way, when the output of the optical semiconductor device is increased as described above, a mechanism for cooling the device becomes necessary. Taking a laser diode or the like as an example, it is usually necessary to keep the temperature constant near room temperature in order to stabilize the output characteristics, and cooling and stabilizing are performed using an electronic cooling element such as a Peltier element. However, in the case of an apparatus having a plurality of high-output optical semiconductors mounted thereon as described above, it is difficult to achieve a predetermined cooling temperature only with the electronic cooling element. Moreover, in some cases, the total output of the plurality of optical modules may reach several hundred watts,
At this time, the cooling capacity may be insufficient even with normal forced air cooling.

【0004】半導体デバイスの分野では、発熱量の特に
大きなデバイスを密に搭載する場合には、従来より水冷
が用いられていた。スーパーコンピュータの冷却に水冷
を用いた例としては、NEC技報Vol.39 No.
1 P.36(1986)などの文献がある。この内容
にあるように、水冷機構としては、配管をジグザグ状に
湾曲させ、それを基板の表面あるいは内部に設置し、基
板の表面に搭載した半導体デバイスを冷却するというも
のである。この液体冷却機構を、前述の大出力光モジュ
ールに応用する場合には、放熱効率の高いアルミニウム
や銅などの材料からなる基板に複数個の光モジュールを
搭載し、基板の内部または裏面には冷媒としての液体を
流すための配管を設置し、光モジュールで発生した大量
の熱を効率よく液体に逃がす方法などが容易に想像でき
る。
[0004] In the field of semiconductor devices, water-cooling has been conventionally used when devices having particularly large heat values are densely mounted. As an example of using water cooling for cooling a supercomputer, see NEC Technical Report Vol. 39 No.
1P. 36 (1986). As described in this content, the water cooling mechanism is to curve a pipe in a zigzag shape, install the pipe on or inside a substrate, and cool a semiconductor device mounted on the surface of the substrate. When this liquid cooling mechanism is applied to the above-described high-power optical module, a plurality of optical modules are mounted on a substrate made of a material such as aluminum or copper having high heat dissipation efficiency, and a coolant is provided inside or on the back of the substrate. It is easy to imagine a method of installing a pipe for flowing a liquid, and efficiently releasing a large amount of heat generated in the optical module to the liquid.

【0005】図3は、従来の半導体デバイスの水冷機構
を応用した光モジュール用液体冷却装置の一例の側面図
である。図において、1は基板で、この上に光モジュー
ルの一種であるレーザダイオードモジュール(以下LD
モジュールと記す)3が3個搭載されている。基板1の
下面には、液体を流すための管2が接着されている。
FIG. 3 is a side view of an example of a conventional liquid cooling device for an optical module to which a water cooling mechanism of a semiconductor device is applied. In the figure, reference numeral 1 denotes a substrate on which a laser diode module (hereinafter referred to as an LD), which is a kind of an optical module, is provided.
3) are mounted. A tube 2 for flowing a liquid is adhered to the lower surface of the substrate 1.

【0006】図4は、図3の従来の光モジュール用液体
冷却装置の上面図である。図において、1は基板、2は
管、3はLDモジュールである。冷媒である液体を流す
ための管2は、冷却効率を上げるためにジグザグ状に湾
曲している。現在、このような構造の光モジュール用液
体冷却装置が本発明者らにより試作されている。
FIG. 4 is a top view of the conventional liquid cooling device for an optical module of FIG. In the figure, 1 is a substrate, 2 is a tube, and 3 is an LD module. The pipe 2 for flowing the liquid as the refrigerant is curved in a zigzag shape to increase the cooling efficiency. At present, the present inventors have prototyped a liquid cooling device for an optical module having such a structure.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
ような構造の光モジュール用液体冷却装置では、液体を
流す管の配置・形状に対称性がなく、液体の流入口の近
くに搭載されているレーザダイオードよりも、液体の流
出口の近くに搭載されているレーザダイオードの方が温
度が高くなってしまい、それぞれの光モジュールのレー
ザの特性が安定しないという欠点を有していた。また、
光モジュールを多数搭載するに場合には、装置が大型化
してしまう問題もあった。
However, in the liquid cooling device for an optical module having the above-described structure, the arrangement and shape of the tube through which the liquid flows are not symmetrical and are mounted near the liquid inlet. The laser diode mounted near the liquid outlet has a higher temperature than the laser diode, and has a disadvantage that the laser characteristics of the respective optical modules are not stable. Also,
When a large number of optical modules are mounted, there is also a problem that the device becomes large.

【0008】本発明の目的は、複数個搭載した光モジュ
ールに対して、動作時のそれぞれの光モジュールの温度
をほぼ同じにし、安定したレーザの出力を可能にし、し
かも冷却装置全体の占有体積が小さい冷却装置を提供す
ることにある。
An object of the present invention is to make the temperature of each optical module during operation substantially the same for a plurality of mounted optical modules, to enable stable laser output, and to occupy a small volume in the entire cooling device. It is to provide a small cooling device.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の光モジュール用液体冷却装置においては、
外表面に光モジュールを搭載する外筒と、その筒の内側
に接するように外表面に螺旋状のねじ溝が設けられた内
筒とからなり、外筒は液体を流入させる入口と、液体を
流出させる出口を有しており、外筒、内筒は上面と下面
に蓋をした状態であり、複数個の光モジュールの位置
は、筒の一端面から略同一の距離の外周上に略等間隔に
搭載されている構造であることを特徴とする。
To achieve the above object, a liquid cooling apparatus for an optical module according to the present invention comprises:
An outer cylinder on which an optical module is mounted on the outer surface, and an inner cylinder provided with a helical thread groove on the outer surface so as to be in contact with the inside of the cylinder, the outer cylinder has an inlet through which liquid flows, and a liquid through which the liquid flows. The outer and inner cylinders are covered with lids on the upper and lower surfaces, and the positions of the plurality of optical modules are substantially the same on the outer circumference at approximately the same distance from one end of the cylinder. It is characterized by a structure mounted at intervals.

【0010】外筒の外表面は光モジュールを搭載するた
め正多角形状に形成することができ、また、外筒と内筒
は各々円筒形状にすることができる。
The outer surface of the outer cylinder can be formed in a regular polygonal shape for mounting the optical module, and the outer cylinder and the inner cylinder can each be cylindrical.

【0011】本発明の光モジュール用液体冷却装置で
は、複数個配列されたそれぞれの光モジュールの位置配
置と、冷媒である液体を流すための管の形状が同心円上
にあるため、光モジュールを動作させたときのレーザダ
イオードの温度は、それぞれの光モジュールでほぼ同じ
になる。さらに、搭載する光モジュールの数が大きくな
ったときには、平板上に配置するよりも、円筒上に配置
した方が、装置としても小型化が可能になる。また、冷
媒である液体の流路の形成についても、配管を形成する
よりもネジ状の筒を組み合わせる本発明の構造の方が製
造工程の簡易さの面で優れている。
In the liquid cooling device for an optical module according to the present invention, the position arrangement of each of the plurality of arranged optical modules and the shape of the tube through which the liquid as the refrigerant flows are concentric, so that the optical modules operate. The temperature of the laser diode at this time is substantially the same for each optical module. Furthermore, when the number of optical modules to be mounted becomes large, it is possible to reduce the size of the device by disposing it on a cylinder rather than on a flat plate. Also, regarding the formation of the flow path of the liquid as the refrigerant, the structure of the present invention in which the screw-shaped tube is combined is superior to the formation of the pipe in terms of the simplicity of the manufacturing process.

【0012】[0012]

【発明の実施の形態】次に、本発明の一実施の形態につ
いて図面を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0013】図1および図2はそれぞれ本発明の液体冷
却装置を示す断面図および上面図である。図において、
1は外筒であり、内面は円柱の形、外面は正多角柱の形
をしており、銅やアルミニウムなどの熱伝導性の高い材
料でできている。2は内筒であり、外周は外筒の内周と
ほぼ同じ大きさであり、螺旋状にネジ溝が形成されてい
る。実際には、外筒1の中に内筒2がはめ込んである構
造を取るため、冷媒である液体が流れる流路3が形成さ
れる。4は、外筒1および内筒2の上面にする上蓋であ
り、同様に5は下蓋である。6は、外筒の外周に設置さ
れた複数個のLDモジュールであり、本実施の形態では
4個のLDモジュールを搭載されており、従って外筒1
の外形は正方形である。また、それぞれのLDモジュー
ルの位置関係は、外筒1の外周の同一円周上に一定間隔
をもって複数個並んでいる。外筒1の上方と下方に、そ
れぞれ液体の入口7と出口8の穴があけてあり、流路3
とつながっている。冷媒としての液体は、入口7から入
って、出口8から出る構造となっており、このような構
造によりLDモジュール6を冷却する。本発明の液体冷
却装置では、それぞれのLDモジュールが同心円上に並
んでおり、しかも液体冷媒を流す管も軸対称に近い形状
であるため、各LDモジュールの温度はほぼ同じにな
り、レーザの発振特性が安定する。また、螺旋状の流路
の形成方法も、外筒1と内筒2をはめ込むのみで形成可
能であり、製造方法も低コストである。本実施の形態で
は外筒の外形が正方形であるが、正多角形状又は円筒状
に形成してもよい。
FIGS. 1 and 2 are a sectional view and a top view, respectively, showing a liquid cooling apparatus according to the present invention. In the figure,
Reference numeral 1 denotes an outer cylinder having an inner surface in the shape of a cylinder and an outer surface in the shape of a regular polygonal prism, and is made of a material having high thermal conductivity such as copper or aluminum. Reference numeral 2 denotes an inner cylinder, the outer circumference of which is approximately the same size as the inner circumference of the outer cylinder, and in which a spiral groove is formed. Actually, since the inner cylinder 2 is inserted into the outer cylinder 1, the flow path 3 through which the liquid as the refrigerant flows is formed. Reference numeral 4 denotes an upper lid provided on the upper surfaces of the outer cylinder 1 and the inner cylinder 2, and similarly, 5 denotes a lower lid. Reference numeral 6 denotes a plurality of LD modules installed on the outer periphery of the outer cylinder. In the present embodiment, four LD modules are mounted.
Is square. The positional relationship between the LD modules is such that a plurality of LD modules are arranged at regular intervals on the same circumference of the outer cylinder 1. Above and below the outer cylinder 1, holes for liquid inlet 7 and outlet 8 are provided, respectively.
It is connected with. The liquid as a refrigerant has a structure that enters from the inlet 7 and exits from the outlet 8, and cools the LD module 6 by such a structure. In the liquid cooling device of the present invention, the LD modules are arranged concentrically, and the pipe through which the liquid refrigerant flows is nearly axially symmetric. Characteristics become stable. Further, the method of forming the spiral flow path can be formed only by fitting the outer cylinder 1 and the inner cylinder 2, and the manufacturing method is low in cost. In the present embodiment, the outer shape of the outer cylinder is square, but may be formed in a regular polygonal shape or a cylindrical shape.

【0014】本発明の、筒の上にLDモジュールを搭載
する構造の液体冷却装置と、平板上にLDモジュールを
搭載する構造の液体冷却装置において、LDを動作させ
た時の温度を測定し、それぞれのモジュールでのばらつ
きを測定し比較した。平板上にLDモジュールを搭載す
る構造の液体冷却装置では、各LD間での温度差は8℃
であった。これに対して、本発明の筒の上にLDモジュ
ールを搭載する構造の液体冷却装置では、各LD間での
温度差は1℃であった。以上より、平板上にLDモジュ
ールを搭載する構造の液体冷却装置よりも、本発明の筒
の上にLDモジュールを搭載する構造の液体冷却装置の
方が、複数個搭載されているLD間での温度のばらつき
が小さいことがわかった。
In the liquid cooling device having the structure in which the LD module is mounted on the cylinder and the liquid cooling device having the structure in which the LD module is mounted on the flat plate of the present invention, the temperature when the LD is operated is measured. The variation in each module was measured and compared. In a liquid cooling device having a structure in which an LD module is mounted on a flat plate, the temperature difference between the LDs is 8 ° C.
Met. On the other hand, in the liquid cooling device of the present invention in which the LD module is mounted on the cylinder, the temperature difference between the LDs was 1 ° C. As described above, the liquid cooling device having the structure in which the LD module is mounted on the cylinder according to the present invention is more effective than the liquid cooling device having the structure in which the LD module is mounted on a flat plate between the LDs in which a plurality of LDs are mounted. It was found that the temperature variation was small.

【0015】なお、上記実施例においては、搭載するL
Dモジュールの数が4個の場合について説明してきた
が、搭載するモジュール数については任意であり同じ効
果が得られる。
In the above embodiment, the L
Although the case where the number of D modules is four has been described, the number of mounted modules is arbitrary and the same effect can be obtained.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
複数個の光モジュールのそれぞれの温度がほぼ同じにな
り、光半導体の特性が向上するという効果が得られる。
さらに、冷却装置の占有体積も小さくなり装置の小型化
が可能になる。また、冷却装置の形成方法も簡単で低コ
ストである。
As described above, according to the present invention,
The temperature of each of the plurality of optical modules becomes substantially the same, and the effect of improving the characteristics of the optical semiconductor is obtained.
Furthermore, the volume occupied by the cooling device is reduced, and the size of the device can be reduced. In addition, the method of forming the cooling device is simple and inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】図1に示す実施例の上面図である。FIG. 2 is a top view of the embodiment shown in FIG.

【図3】従来の光モジュール用液体冷却装置の側面図で
ある。
FIG. 3 is a side view of a conventional liquid cooling device for an optical module.

【図4】図3に示す従来例の上面図である。FIG. 4 is a top view of the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

1 外筒 2 内筒 3 流路 4 上蓋 5 下蓋 6 LDモジュール 7 入口 8 出口 DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Inner cylinder 3 Flow path 4 Upper lid 5 Lower lid 6 LD module 7 Inlet 8 Outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の光モジュールを搭載して冷却す
るための液体冷却装置であって、外表面に光モジュール
を搭載する外筒と、前記外筒と同軸に、その内側に接す
るように外表面に螺旋状のねじ溝が設けられた内筒とか
らなり、前記外筒は液体を流入させる入口と、液体を流
出させる出口を有しており、これら外筒と内筒の各端面
は蓋により閉鎖されており、光モジュールは、外筒の一
端面から略同一の距離の外周上に、略等間隔に搭載され
ていることを特徴とする光モジュール用液体冷却装置。
1. A liquid cooling device for mounting and cooling a plurality of optical modules, comprising: an outer cylinder on which an optical module is mounted on an outer surface; It has an inner cylinder provided with a helical thread groove on the outer surface, the outer cylinder has an inlet through which liquid flows in, and an outlet through which liquid flows out, and each end face of these outer cylinder and inner cylinder is A liquid cooling device for an optical module, wherein the optical module is closed by a lid, and is mounted at substantially equal intervals on the outer circumference at substantially the same distance from one end surface of the outer cylinder.
【請求項2】 外筒の外表面が正多角柱状に形成され、
各柱面に光モジュールが搭載される請求項1記載の光モ
ジュール用液体冷却装置。
2. The outer surface of the outer cylinder is formed in a regular polygonal column shape,
2. The liquid cooling device for an optical module according to claim 1, wherein an optical module is mounted on each of the pillar surfaces.
【請求項3】 外筒と内筒とが各々円筒形状をなしてい
る請求項1記載の光モジュール用液体冷却装置。
3. The liquid cooling device for an optical module according to claim 1, wherein the outer cylinder and the inner cylinder each have a cylindrical shape.
JP15855997A 1997-06-16 1997-06-16 Liquid-cooled device for optical module Pending JPH118486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15855997A JPH118486A (en) 1997-06-16 1997-06-16 Liquid-cooled device for optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15855997A JPH118486A (en) 1997-06-16 1997-06-16 Liquid-cooled device for optical module

Publications (1)

Publication Number Publication Date
JPH118486A true JPH118486A (en) 1999-01-12

Family

ID=15674360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15855997A Pending JPH118486A (en) 1997-06-16 1997-06-16 Liquid-cooled device for optical module

Country Status (1)

Country Link
JP (1) JPH118486A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051631A (en) * 2001-08-06 2003-02-21 Nidek Co Ltd Manufacturing method of heat exchanger and laser apparatus using the heat exchanger
JP2007049090A (en) * 2005-08-12 2007-02-22 Toshiba Corp Cooling structure of laser generator
CN105140776A (en) * 2015-09-24 2015-12-09 泰州市姜堰奥威机械有限公司 Precision water cooling machine for laser device
WO2024080431A1 (en) * 2022-10-13 2024-04-18 레이저닉스 주식회사 Laser amplification medium cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051631A (en) * 2001-08-06 2003-02-21 Nidek Co Ltd Manufacturing method of heat exchanger and laser apparatus using the heat exchanger
JP2007049090A (en) * 2005-08-12 2007-02-22 Toshiba Corp Cooling structure of laser generator
JP4602193B2 (en) * 2005-08-12 2010-12-22 株式会社東芝 Laser generator cooling structure
CN105140776A (en) * 2015-09-24 2015-12-09 泰州市姜堰奥威机械有限公司 Precision water cooling machine for laser device
CN105140776B (en) * 2015-09-24 2018-11-13 泰州市梦之谷科技发展有限公司 A kind of accurate water chiller of laser
WO2024080431A1 (en) * 2022-10-13 2024-04-18 레이저닉스 주식회사 Laser amplification medium cooling device

Similar Documents

Publication Publication Date Title
US10905029B2 (en) Cooling structure for electronic boards
JP6164304B2 (en) Manufacturing method of semiconductor module cooler, semiconductor module cooler, semiconductor module, and electrically driven vehicle
US11610832B2 (en) Heat transfer for power modules
US20080190586A1 (en) Carbon-based waterblock with attached heat exchanger for cooling of electronic devices
JPH1123091A (en) Liquid circulation thermoelectric cooler/heater
KR101170005B1 (en) Temperature adjusting mechanism and semiconductor manufacturing apparatus using temperature adjusting mechanism
JP2006511787A (en) Channel flat fin heat exchange system, apparatus and method
US20100118902A1 (en) Unitized cooling module for laser diode array
US20220007551A1 (en) Impinging jet coldplate for power electronics with enhanced heat transfer
JPH118486A (en) Liquid-cooled device for optical module
US11876036B2 (en) Fluid cooling system including embedded channels and cold plates
CA2285390A1 (en) Semiconductor laser apparatus
KR20180027283A (en) Small heatsink
JPH09223845A (en) Liquid cooling system for optical module
US6837059B2 (en) Temperature adjustment device and laser module
JP2008106958A (en) Heat exchanger
JP2005019454A (en) Power converter
EP3406446A1 (en) Led print curing apparatus
CN115663571A (en) Low-power-consumption heat dissipation cooling device and cooling method for laser
CN212350763U (en) Liquid cooling laser cutting head
JP2870618B2 (en) Ion laser tube
EP3231650A1 (en) Rotary machine and vehicle including the same
JP2007335669A (en) Motor control device
US20030053496A1 (en) Cooling block, ld device with the cooling block, and solid laser device having the ld device as excitation light source
US20050189089A1 (en) Fluidic apparatus and method for cooling a non-uniformly heated power device