JPH1183359A - Ebullient cooler - Google Patents

Ebullient cooler

Info

Publication number
JPH1183359A
JPH1183359A JP9242540A JP24254097A JPH1183359A JP H1183359 A JPH1183359 A JP H1183359A JP 9242540 A JP9242540 A JP 9242540A JP 24254097 A JP24254097 A JP 24254097A JP H1183359 A JPH1183359 A JP H1183359A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
tank
side communication
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9242540A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osakabe
長賀部  博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9242540A priority Critical patent/JPH1183359A/en
Priority to US09/058,211 priority patent/US6076596A/en
Publication of JPH1183359A publication Critical patent/JPH1183359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Abstract

PROBLEM TO BE SOLVED: To provide an ebullient cooler for circulating condensate to a refrigerant tank even at the time of inclining without bringing about a large scale in size of a constitution. SOLUTION: A radiator 4 has a lower tank coupled to an upper part of a refrigerant tank 3, and a plurality of radiating tubes 7 laminated on the upper part of the lower tank. The lower tank is partitioned therein by a refrigerant flow control plate 11 into an inlet chamber 12 and an outlet chamber 13. The laminated tubes 7 communicate with communicating parts 7a, 7b provided at both ends in a longitudinal direction in a laminating direction to form an inlet side communicating part and an outlet side communicating part. And, communicating ports 7a for communicating with refrigerant passages communicate in the laminating direction to form communicating passages between channels at the respective tubes 7. The passages between the channels communicate with the chamber 13 in the lower tank, The plate 11 guides refrigerant vapor obtained by ebullition in the tank 3 to the inlet side communicating part even at the time of inclining, and guides condensate dripping from the passages between the channels to a liquid return passage 5a in the tank 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の沸騰と凝縮
の繰り返しによる熱輸送によって発熱体を冷却する沸騰
冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element by heat transport by repeated boiling and condensation of a refrigerant.

【0002】[0002]

【従来の技術】従来より、冷媒流循環式の沸騰冷却装置
として、例えば実開昭62−151755号公報、及び
特開平6−53376号公報等が公知である。これらの
従来装置は、冷媒槽と放熱器とを連結する蒸気通路と凝
縮液通路とを有し、冷媒槽で発熱体の熱を受けて沸騰し
た冷媒蒸気が蒸気通路を通って放熱器へ流入し、放熱器
で冷却されて液化した凝縮液が凝縮液通路を通って冷媒
槽へ戻ることができる。これにより、冷媒槽から放熱器
へ向かって流れる冷媒蒸気と、凝縮器から冷媒槽へ向か
って流れる凝縮液との干渉を防止して良好な冷媒循環流
を形成できる。
2. Description of the Related Art Conventionally, as a refrigerant circulation type boiling cooling device, for example, Japanese Utility Model Laid-Open No. 62-151755 and Japanese Patent Application Laid-Open No. 6-53376 have been known. These conventional devices have a vapor passage and a condensed liquid passage connecting the refrigerant tank and the radiator, and the refrigerant vapor boiling due to the heat of the heating element in the refrigerant tank flows into the radiator through the vapor path. The condensed liquid cooled and liquefied by the radiator can return to the refrigerant tank through the condensed liquid passage. Thereby, interference between the refrigerant vapor flowing from the refrigerant tank toward the radiator and the condensed liquid flowing from the condenser toward the refrigerant tank can be prevented, and a favorable refrigerant circulation flow can be formed.

【0003】[0003]

【発明が解決しようとする課題】ところが、特開平6−
53376号公報に記載された装置では、凝縮液が逆流
する方向に装置全体が傾くと、凝縮液が冷媒槽へ還流で
きなくなるため、冷媒循環流を形成できなくなる。ま
た、実開昭62−151755号公報には、凝縮液が流
れやすい様に予め放熱器の冷媒通路を傾斜させる例が記
載されている。この場合、冷媒通路の傾斜方向と反対側
へ装置全体が傾いても、冷媒通路が略水平になるまでは
凝縮液を冷媒槽へ戻すことができるが、予め冷媒通路を
傾斜させておくために、装置の全高が高くなったり、幅
が長くなって体格の大型化を招くという問題があった。
本発明は、上記事情に基づいて成されたもので、その目
的は、体格の大型化を招くことなく、傾斜時においても
凝縮液を冷媒槽へ還流させることのできる沸騰冷却装置
を提供することにある。
SUMMARY OF THE INVENTION However, Japanese Patent Laid-Open No.
In the apparatus described in Japanese Patent No. 53376, if the entire apparatus is tilted in the direction in which the condensed liquid flows backward, the condensed liquid cannot be returned to the refrigerant tank, so that the refrigerant circulating flow cannot be formed. Further, Japanese Utility Model Application Laid-Open Publication No. 62-151755 discloses an example in which the refrigerant passage of the radiator is inclined in advance so that the condensate flows easily. In this case, the condensed liquid can be returned to the refrigerant tank until the refrigerant passage becomes substantially horizontal, even if the entire device is inclined to the side opposite to the inclination direction of the refrigerant passage. However, there has been a problem that the overall height of the device is increased or the width thereof is increased, resulting in an increase in physical size.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a boiling cooling device that can return a condensed liquid to a refrigerant tank even when inclined, without increasing the physical size. It is in.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

(請求項1の手段)冷媒槽は、液冷媒が発熱体の熱を受
けて沸騰する沸騰領域と、放熱器で凝縮した凝縮液が流
入する液戻り通路とを有し、放熱器は、それぞれ略横方
向へ伸びる複数の冷媒通路と、各冷媒通路の一端側を連
通する流入側連通部と、各冷媒通路の他端側を連通する
流出側連通部と、冷媒槽の沸騰領域と流入側連通部とを
連通する流入室と、冷媒槽の液戻り通路と流出側連通部
とを連通する流出室と、流入側連通部と流出側連通部と
の間で複数の冷媒通路を相互に連通し、且つ流出室に開
口する流路間連通路とを有する。本発明では、凝縮液が
冷媒通路を逆流する方向に装置全体が傾くと、凝縮液の
一部は冷媒通路を流入側連通部から流出側連通部へ向か
って流れる冷媒蒸気の流れに押されて冷媒通路より流出
側連通部へ流れることができるが、残りの凝縮液は、重
力により冷媒通路を逆流することになる。この冷媒通路
を逆流する凝縮液は、流入側連通部と流出側連通部との
間で各冷媒通路を相互に連通する流路間連通路を通って
そのまま流出室へ流れることができる。これにより、冷
媒蒸気の流れに押されて流出側連通部へ流れた凝縮液の
一部、及び流路間連通路を通って流出室へ流れた残りの
凝縮液は、それぞれ流出室より冷媒槽の液戻り通路へ還
流することができる。
(Claim 1) The refrigerant tank has a boiling region in which the liquid refrigerant boils by receiving the heat of the heating element, and a liquid return passage into which the condensed liquid condensed by the radiator flows. A plurality of refrigerant passages extending substantially in the lateral direction, an inflow-side communication portion communicating with one end of each refrigerant passage, an outflow-side communication portion communicating with the other end of each refrigerant passage, a boiling region of the refrigerant tank, and an inflow side. An inflow chamber that communicates with the communication portion, an outflow chamber that communicates the liquid return passage of the refrigerant tank with the outflow communication portion, and a plurality of refrigerant passages that communicate with each other between the inflow communication portion and the outflow communication portion. And a communication passage between flow passages that opens to the outflow chamber. In the present invention, when the entire device is inclined in a direction in which the condensed liquid flows backward in the refrigerant passage, a part of the condensed liquid is pushed by the flow of the refrigerant vapor flowing from the inflow side communication portion to the outflow side communication portion in the refrigerant passage. Although it can flow from the refrigerant passage to the outflow-side communicating portion, the remaining condensate flows back through the refrigerant passage due to gravity. The condensed liquid flowing backward in the refrigerant passage can flow to the outflow chamber as it is through the inter-flow passage communicating the refrigerant passages between the inflow-side communication portion and the outflow-side communication portion. As a result, part of the condensed liquid that has been pushed by the flow of the refrigerant vapor and has flowed to the outflow-side communicating portion, and the remaining condensate that has flowed to the outflow chamber through the inter-flow path communication passage, respectively, has a refrigerant tank from the outflow chamber To the liquid return passage.

【0005】(請求項2の手段)放熱器は、冷媒槽の沸
騰領域で沸騰した冷媒蒸気を流入側連通部へ導くととも
に、流路間連通路より滴下する凝縮液を液戻り通路へ導
く冷媒流制御板を備え、この冷媒流制御板が流入室と流
出室との間を区画している。この場合、流入室と流出室
とを独立に形成する必要はなく、例えば放熱器のタンク
部(冷媒槽との連結部分)内に冷媒流制御板を配置し
て、タンク部内を流入室と流出室とに仕切るだけで良
い。これにより、冷媒通路を逆流して流路間連通路より
滴下した凝縮器は、そのまま冷媒流制御板に沿って流
れ、冷媒槽の液戻り通路へ還流することができる。
The radiator guides the refrigerant vapor boiling in the boiling region of the refrigerant tank to the inflow-side communication portion, and guides the condensed liquid dropped from the inter-channel communication passage to the liquid return passage. A flow control plate is provided, and the refrigerant flow control plate partitions between the inflow chamber and the outflow chamber. In this case, it is not necessary to form the inflow chamber and the outflow chamber independently. For example, a refrigerant flow control plate is arranged in a tank portion (a portion connected to the refrigerant tank) of the radiator, and the inflow chamber and the outflow chamber flow through the tank portion. All you have to do is partition the room. Thus, the condenser flowing backward through the refrigerant passage and dripping from the inter-channel communication passage can flow along the refrigerant flow control plate as it is, and can be returned to the liquid return passage of the refrigerant tank.

【0006】(請求項3の手段)冷媒流制御板は、流入
側連通部側から流出側連通部側へ向かって下方へ傾斜し
た姿勢で配置されている。これにより、冷媒槽の沸騰領
域で沸騰した冷媒蒸気が冷媒流制御板に沿って流入側連
通部へ流れやすくなり、且つ流路間連通路より冷媒流制
御板上に滴下した凝縮液が冷媒流制御板に沿って液戻り
通路へ流れやすくなるため、良好な冷媒循環流を形成す
ることができる。また、凝縮液が冷媒通路を逆流する方
向に装置全体が傾いても、流路間連通路より滴下した凝
縮液が傾斜した姿勢で配置された冷媒流制御板の表面に
沿って液戻り通路へ還流することができる。
(Means of Claim 3) The refrigerant flow control plate is arranged in a posture inclined downward from the inflow side communication portion side to the outflow side communication portion side. This makes it easier for the refrigerant vapor boiling in the boiling region of the refrigerant tank to flow to the inflow-side communication portion along the refrigerant flow control plate, and that the condensed liquid that has dropped onto the refrigerant flow control plate from the inter-channel communication passage is cooled. Since it is easy to flow along the control plate to the liquid return passage, a favorable refrigerant circulation flow can be formed. In addition, even if the entire device is inclined in a direction in which the condensed liquid flows backward in the refrigerant passage, the condensed liquid dropped from the inter-channel communication passage is directed to the liquid return passage along the surface of the refrigerant flow control plate arranged in an inclined posture. Can be refluxed.

【0007】(請求項4の手段)流出室に開口する流路
間連通路の通路断面積が冷媒通路の通路断面積より小さ
く設定されている。この場合、流入側連通部より冷媒通
路に流入した冷媒蒸気は、流路間連通路より断面積の大
きい冷媒通路を流れようとするため、冷媒蒸気がそのま
ま流路間連通路を通って流出室へ流れ出てしまうのを抑
制できる。
(Claim 4) The cross-sectional area of the inter-channel communication passage opening to the outflow chamber is set smaller than the cross-sectional area of the refrigerant passage. In this case, the refrigerant vapor that has flowed into the refrigerant passage from the inflow-side communication portion tends to flow through the refrigerant passage having a larger cross-sectional area than the inter-flow passage communication passage. Can be prevented from flowing out.

【0008】(請求項5の手段)流路間連通路は、流入
側連通部と流出側連通部との間で流入側連通部寄りに少
なくとも1箇所設けられている。流路間連通路は、冷媒
通路が傾斜した時に最も下流となる流入側連通路の近く
に設けることが望ましい。これにより、冷媒通路を逆流
する多くの凝縮液が流路間連通路を通って流出室から液
戻り通路へと戻ることができる。また、流路間連通路
は、1箇所である必要はなく、2箇所以上設けても良
い。
[0008] (Means of claim 5) The at least one communication passage between the flow passages is provided between the inflow side communication portion and the outflow side communication portion near the inflow side communication portion. It is desirable that the inter-channel communication path is provided near the inflow-side communication path that is the most downstream when the refrigerant path is inclined. Accordingly, a large amount of condensed liquid flowing backward in the refrigerant passage can return from the outflow chamber to the liquid return passage through the inter-channel communication passage. Further, the communication passage between the flow paths does not need to be provided at one place, and may be provided at two or more places.

【0009】[0009]

【発明の実施の形態】次に、本発明の沸騰冷却装置を図
面に基づいて説明する。 (第1実施例)図1は沸騰冷却装置1の正面図、図2は
沸騰冷却装置1の側面図である。本実施例の沸騰冷却装
置1は、冷媒の沸騰及び凝縮作用を利用して発熱体2を
冷却するもので、内部に液冷媒を溜める冷媒槽3と、こ
の冷媒槽3の上部に設けられる放熱器4とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cooling apparatus according to the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a front view of a boiling cooling device 1, and FIG. 2 is a side view of the boiling cooling device 1. The boiling cooling device 1 of the present embodiment cools the heating element 2 by utilizing the boiling and condensing action of the refrigerant, and includes a refrigerant tank 3 for storing a liquid refrigerant therein, and a heat radiation provided above the refrigerant tank 3. And a vessel 4.

【0010】冷媒槽3は、アルミニウム等の熱伝導性に
優れる金属材料より形成された中空容器5とエンドキャ
ップ6から成る。中空容器5は、例えば押し出し成形品
で、横幅(図1の左右方向の寸法)に対して厚み(図2
の左右方向の寸法)が薄い偏平形状に設けられ、容器内
部には、押し出し方向(図1の上下方向)に伸びるリブ
5a、5b、5cによって区画された複数の通路5d、
5eが形成されている。各リブ5a、5b、5cは、左
右方向の略中央部に設けられた太いリブ5a、左右方向
の両側に設けられた中リブ5b、両方の中リブ5bと太
いリブ5aとの間に設けられた複数の細いリブ5cから
成る。但し、図1の左側に位置する中リブ5b以外は、
上端部が若干短く削除されている。また、太いリブ5a
と両方の中リブ5bには、発熱体2を固定するボルト
(図示しない)を通すための複数の丸孔5fが中空容器
5の幅方向に貫通して空けられている。各通路5d、5
eは、太いリブ5aと両方の中リブ5bとの間で、各細
いリブ5cによって区画された通路5dと、両方の中リ
ブ5bの外側に形成された通路5eから成る。
The coolant tank 3 comprises a hollow container 5 and an end cap 6 made of a metal material having excellent heat conductivity such as aluminum. The hollow container 5 is, for example, an extruded product, and has a thickness (FIG.
Are provided in a thin flat shape, and inside the container, a plurality of passages 5d defined by ribs 5a, 5b, 5c extending in the pushing direction (the vertical direction in FIG. 1),
5e are formed. Each of the ribs 5a, 5b, 5c is provided with a thick rib 5a provided at a substantially central portion in the left-right direction, a middle rib 5b provided on both sides in the left-right direction, and provided between both middle ribs 5b and the thick rib 5a. And a plurality of thin ribs 5c. However, except for the middle rib 5b located on the left side of FIG.
The upper end is slightly shorter and removed. Also, the thick rib 5a
A plurality of round holes 5f for passing bolts (not shown) for fixing the heating element 2 are formed in the middle ribs 5b through both in the width direction of the hollow container 5. Each passage 5d, 5
e is composed of a passage 5d defined by each thin rib 5c between the thick rib 5a and both middle ribs 5b, and a passage 5e formed outside the both middle ribs 5b.

【0011】エンドキャップ6は、例えばプレス成形品
で、中空容器5の下端部に被せられている。但し、エン
ドキャップ6の内側には、中空容器5の下端面との間に
所定の空間が確保されており、この空間を通じて中空容
器5に形成される各通路5d、5eを連通している。発
熱体2は、例えば電気自動車や一般電力制御機器のイン
バータ回路を構成するIGBTモジュールであり、ボル
トとナットの締め付けによって冷媒槽3の表面に密着し
て固定される。冷媒は、例えば水、アルコール、アンモ
ニア、フロロカーボン、フロン等が用いられ、図示しな
い注入パイプを通じて冷媒槽3内に注入されている。
The end cap 6 is, for example, a press-formed product, and is covered on the lower end of the hollow container 5. However, a predetermined space is secured inside the end cap 6 between the lower end surface of the hollow container 5 and the passages 5d and 5e formed in the hollow container 5 through this space. The heating element 2 is, for example, an IGBT module that forms an inverter circuit of an electric vehicle or a general power control device, and is fixed to the surface of the coolant tank 3 by tightening bolts and nuts. As the refrigerant, for example, water, alcohol, ammonia, fluorocarbon, chlorofluorocarbon or the like is used, and is injected into the refrigerant tank 3 through an injection pipe (not shown).

【0012】放熱器4は、冷媒槽3(中空容器5)の上
端部に連結されるロアタンク(下述する)、このロアタ
ンクの上部に積層される複数の放熱管7(図5参照)、
及び各放熱管7の間に介在される放熱フィン8等より構
成される。ロアタンクは、タンクプレート9とコアプレ
ート10によって形成されている。タンクプレート9
は、例えばプレス成形品で、図3に示す様に細長いカッ
プ状に設けられ、中央部に中空容器5の上端部が嵌合す
る長孔9aが空けられている。コアプレート10は、放
熱管7を形成するコアプレート10(図6参照)と同一
形状にプレス成形され、タンクプレート9の開口部を塞
いでいる。また、ロアタンクの内部には、図4に示す様
な冷媒流制御板11(後述する)が配され、この冷媒流
制御板11によってロアタンクの内部が流入室12と流
出室13とに区画されている。
The radiator 4 includes a lower tank (described below) connected to the upper end of the refrigerant tank 3 (hollow container 5), a plurality of radiator tubes 7 (see FIG. 5) stacked on the lower tank,
And radiation fins 8 interposed between the radiation tubes 7. The lower tank is formed by a tank plate 9 and a core plate 10. Tank plate 9
Is, for example, a press-formed product, which is provided in an elongated cup shape as shown in FIG. 3, and has an elongated hole 9a in the center portion into which the upper end of the hollow container 5 is fitted. The core plate 10 is press-molded in the same shape as the core plate 10 (see FIG. 6) forming the heat radiation tube 7, and covers the opening of the tank plate 9. Further, a refrigerant flow control plate 11 (described later) as shown in FIG. 4 is arranged inside the lower tank, and the inside of the lower tank is divided into an inflow chamber 12 and an outflow chamber 13 by the refrigerant flow control plate 11. I have.

【0013】放熱管7は、図5に示す様に、プレス成形
された2枚のコアプレート10を接合して形成され、長
手方向(図5の左右方向)の両端部に他の放熱管7と連
通する連通部7a、7bが設けられている。また、この
放熱管7は、両連通部7a、7bの間が冷媒通路7cと
して形成され、その冷媒通路7cには、他の放熱管7の
冷媒通路7cと連通する連通口7dが複数形成されてい
る。コアプレート10は、図6(a)に示す様に、長手
方向の両端部に連通部7a、7bを形成する丸孔10
a、10bが開口し、両丸孔10a、10bの間に長孔
状に開口する連通口7dが略等間隔に設けられている。
なお、丸孔10a、10bの周囲及び連通口7dの周囲
は、図6(b)に示す様に、コアプレート10の表面側
(図6(b)の下方)へ所定の高さだけ突出している。
なお、コアプレート10に形成する連通口7dは、図7
に示す様に、コアプレート10の幅方向(図7の上下方
向)に分割して形成しても良い。
As shown in FIG. 5, the heat radiating tube 7 is formed by joining two core plates 10 formed by press forming, and the other heat radiating tubes 7 are provided at both ends in the longitudinal direction (left and right direction in FIG. 5). The communication parts 7a and 7b which are communicated with are provided. In the radiator tube 7, a portion between the communicating portions 7a and 7b is formed as a refrigerant passage 7c. ing. As shown in FIG. 6 (a), the core plate 10 has round holes 10 forming communication portions 7a and 7b at both ends in the longitudinal direction.
a and 10b are open, and communication holes 7d which are open in a long hole shape are provided at substantially equal intervals between the round holes 10a and 10b.
As shown in FIG. 6B, the periphery of the round holes 10a and 10b and the periphery of the communication port 7d protrude toward the surface of the core plate 10 (below the FIG. 6B) by a predetermined height. I have.
The communication port 7d formed in the core plate 10 is the same as that shown in FIG.
As shown in FIG. 7, the core plate 10 may be divided in the width direction (vertical direction in FIG. 7).

【0014】この2枚のコアプレート10によって形成
される放熱管7は、他の複数の放熱管7と厚さ方向に積
層されて、ロアタンクの上に積み重ねられている。積層
された上下の放熱管7は、連通部7a、7b同士および
連通口7d同士がそれぞれ突き合わされて互いに連通し
ている。また、最下部の放熱管7とロアタンクは、放熱
管7のコアプレート10とロアタンクのコアプレート1
0に形成された丸孔10a、10b同士及び連通口7d
同士が突き合わされて互いに連通している。最上部の放
熱管7は、上側のコアプレート10が閉塞されている
(丸孔10a、10b及び連通口7dが形成されていな
い)ことは言うまでもない。なお、以下の説明におい
て、各放熱管7の一方(図1の右側)の連通部7a同士
が積層方向に連通して形成される部位を流入側連通部、
各放熱管7の他方の連通部7b同士が積層方向に連通し
て形成される部位を流出側連通部と呼ぶ。また、図8に
示す様に、各放熱管7の連通口7d同士が積層方向に連
通して形成される1本の連通路を流路間連通路と呼ぶ。
従って、本実施例では、流入側連通部と流出側連通部と
の間に複数の流路間連通路が形成されていることにな
る。
The heat radiating pipe 7 formed by the two core plates 10 is laminated with other plural heat radiating pipes 7 in the thickness direction, and is stacked on the lower tank. In the stacked upper and lower heat radiation tubes 7, the communication portions 7a and 7b and the communication ports 7d abut each other and communicate with each other. The lowermost radiating pipe 7 and the lower tank are composed of the core plate 10 of the radiating pipe 7 and the core plate 1 of the lower tank.
0 and round holes 10a and 10b and a communication port 7d
They are abutted and communicate with each other. It goes without saying that the uppermost heat radiation tube 7 has the upper core plate 10 closed (the round holes 10a and 10b and the communication port 7d are not formed). In the following description, a portion where one of the communication portions 7a (the right side in FIG. 1) of each heat radiation tube 7 communicates in the stacking direction is defined as an inflow side communication portion.
A portion where the other communication portions 7b of the heat radiation tubes 7 are formed to communicate with each other in the stacking direction is referred to as an outflow side communication portion. As shown in FIG. 8, one communication passage formed by connecting the communication ports 7d of the heat radiation tubes 7 to each other in the stacking direction is referred to as an inter-channel communication passage.
Therefore, in this embodiment, a plurality of inter-channel communication paths are formed between the inflow side communication section and the outflow side communication section.

【0015】放熱フィン8は、例えばアルミニウム等の
熱伝導性に優れる金属製の薄板を交互に折り曲げて波状
に成形したコルゲートフィンであり、各放熱管7の冷媒
通路7c間に介在されている(図9参照)。上記の冷媒
流制御板11は、図1に示す様に、ロアタンク内に傾斜
して配され、下端が中空容器5の左側に位置する中リブ
5bの上端面に接続され、上端がロアタンクのコアプレ
ート10に設けられた一方の丸孔10aと連通口7d
(丸孔10aに最も近い連通口7d)との間に接続され
ている。この沸騰冷却装置1は、冷媒槽3と放熱器4と
を組み合わせて、図1に示す様に全体形状を組み立てた
後、一体ろう付けによって各接合箇所が気密に接合され
ている。
The radiating fins 8 are corrugated fins formed by alternately bending thin metal plates made of a material such as aluminum and having excellent thermal conductivity into a corrugated shape, and are interposed between the refrigerant passages 7c of the radiating tubes 7 (see FIG. 1). (See FIG. 9). As shown in FIG. 1, the refrigerant flow control plate 11 is disposed inclined in the lower tank, the lower end is connected to the upper end surface of the middle rib 5b located on the left side of the hollow container 5, and the upper end is the core of the lower tank. One round hole 10a provided in the plate 10 and the communication port 7d
(The communication port 7d closest to the round hole 10a). In the boiling cooling device 1, the refrigerant tank 3 and the radiator 4 are combined to assemble the entire shape as shown in FIG. 1, and then each joint is hermetically joined by integral brazing.

【0016】次に、本実施例の作動を説明する。冷媒槽
3の表面に取り付けられた発熱体2の熱が冷媒槽3内の
液冷媒に伝達されると、冷媒槽3内の沸騰領域で液冷媒
が沸騰し、各通路5d内を気泡となって上昇する。な
お、沸騰領域とは、発熱体2の熱を受けて冷媒が沸騰す
る領域である。沸騰した冷媒蒸気は、冷媒槽3内からロ
アタンクの流入室12を通って各放熱管7の一方の連通
部7a(流入側連通部)へ流入する。この時、ロアタン
ク内を通る冷媒蒸気は、ロアタンク内に配された冷媒流
制御板11に流れを規制されながら流入側連通部へ導か
れる。流入側連通部より各放熱管7の冷媒通路7cへ流
れた冷媒蒸気は、放熱器4に送風される冷却風に冷却さ
れて冷媒通路7cの壁面に凝縮して液滴となる。
Next, the operation of this embodiment will be described. When the heat of the heating element 2 attached to the surface of the refrigerant tank 3 is transmitted to the liquid refrigerant in the refrigerant tank 3, the liquid refrigerant boils in a boiling region in the refrigerant tank 3 and becomes a bubble in each passage 5d. Rise. The boiling region is a region in which the refrigerant boils by receiving heat from the heating element 2. The boiling refrigerant vapor flows from the refrigerant tank 3 through the inflow chamber 12 of the lower tank to one communication portion 7a (inflow-side communication portion) of each of the heat radiation tubes 7. At this time, the refrigerant vapor passing through the lower tank is guided to the inflow side communication part while the flow is regulated by the refrigerant flow control plate 11 arranged in the lower tank. The refrigerant vapor flowing from the inflow side communication portion to the refrigerant passage 7c of each heat radiation pipe 7 is cooled by the cooling air sent to the radiator 4 and condensed on the wall surface of the refrigerant passage 7c to form droplets.

【0017】液滴となった凝縮液の一部は、冷媒通路7
cに設けられた複数の連通口7dより流出し、それぞれ
流路間連通路を通ってロアタンク内まで滴下し、傾斜す
る冷媒流制御板11に沿って冷媒槽3の液戻り通路5e
へ流入する。残りの凝縮液は、冷媒通路7cを流れる冷
媒蒸気の流れに押されながら他方の連通部7b(流出側
連通部)へ流入し、その流出側連通部よりロアタンク内
の流出室13を通って冷媒槽3内の液戻り通路5eへ滴
下する。なお、液戻り通路5eとは、放熱器4で液化し
た凝縮液が流入する通路であり、本実施例では、中空容
器5内の左側に位置する中リブ5bの外側に形成されて
いる通路5eを言う。液戻り通路5eへ流入した凝縮液
は、エンドキャップ6の内側に形成される連通路を通っ
て冷媒槽3内の沸騰領域(通路5d)へ供給される。発
熱体2から冷媒に伝達された熱は、放熱器4内で冷媒蒸
気が凝縮する際に凝縮潜熱として放出され、放熱フィン
8を通じて大気に放出される。
A part of the condensed liquid that has become droplets is
c, flows out from a plurality of communication ports 7d provided in the liquid supply passage 7d, drops through the communication passages between the flow paths into the lower tank, and the liquid return passage 5e of the refrigerant tank 3 along the inclined refrigerant flow control plate 11.
Flows into The remaining condensate flows into the other communication portion 7b (outflow-side communication portion) while being pushed by the flow of the refrigerant vapor flowing through the refrigerant passage 7c, and flows through the outflow chamber 13 in the lower tank from the outflow-side communication portion. The solution is dropped into the liquid return passage 5e in the tank 3. The liquid return passage 5e is a passage into which the condensed liquid liquefied by the radiator 4 flows, and in this embodiment, a passage 5e formed outside the middle rib 5b located on the left side in the hollow container 5. Say The condensed liquid flowing into the liquid return passage 5e is supplied to a boiling region (passage 5d) in the refrigerant tank 3 through a communication passage formed inside the end cap 6. The heat transmitted from the heating element 2 to the refrigerant is released as condensation latent heat when the refrigerant vapor condenses in the radiator 4, and is released to the atmosphere through the radiation fins 8.

【0018】次に、凝縮液が冷媒通路7c内を逆流する
方向に装置全体が傾斜している時の作動について図10
に示す模式図を参照して説明する。この場合、各冷媒通
路7c内で液化した凝縮液の一部は、図10の矢印aで
示す様に、冷媒通路7cを流れる冷媒蒸気の流れに押さ
れながら流出側連通部へ流入し、そのままロアタンク内
の流出室13を通って冷媒槽3内の液戻り通路5eへ滴
下することができる。しかし、残りの凝縮液は、装置全
体が傾斜しているため、図10の矢印bで示す様に、重
力によって冷媒通路7cを逆流する(図10にて凝縮液
が冷媒通路7c内を左側から右側へ向かって流れる)。
この逆流した凝縮液は、冷媒通路7cに設けられた連通
口7dより流出し、流路間連通路を通ってロアタンク内
の冷媒流制御板11に滴下した後、冷媒流制御板11の
表面上を流れ落ちて冷媒槽3の液戻り通路5eへ流入す
ることができる。
Next, the operation when the entire apparatus is inclined in the direction in which the condensed liquid flows backward in the refrigerant passage 7c will be described with reference to FIG.
This will be described with reference to the schematic diagram shown in FIG. In this case, a part of the condensed liquid liquefied in each refrigerant passage 7c flows into the outflow side communication portion while being pushed by the flow of the refrigerant vapor flowing through the refrigerant passage 7c as shown by an arrow a in FIG. The liquid can be dropped into the liquid return passage 5e in the refrigerant tank 3 through the outflow chamber 13 in the lower tank. However, the remaining condensate flows back through the refrigerant passage 7c due to gravity as shown by an arrow b in FIG. 10 because the entire apparatus is inclined (in FIG. 10, the condensate flows through the refrigerant passage 7c from the left side). Flows to the right).
The condensed liquid that has flowed back flows out from the communication port 7d provided in the refrigerant passage 7c, drops through the communication passage between the flow passages onto the refrigerant flow control plate 11 in the lower tank, and then flows on the surface of the refrigerant flow control plate 11. To flow into the liquid return passage 5e of the refrigerant tank 3.

【0019】(第1実施例の効果)本実施例では、凝縮
液が冷媒通路7c内を逆流する方向に装置全体が傾斜し
て設置された場合でも、その逆流した凝縮液が流入側連
通部まで流れることなく、流路間連通路を通って、ロア
タンク内に傾斜配置されている冷媒流制御板11上に滴
下した後、その冷媒流制御板11の表面上を流れて冷媒
槽3の液戻り通路5eへ戻ることができる。従って、冷
媒通路7cを逆流した凝縮液は、流入側連通部に流入し
てくる冷媒蒸気と干渉することなく、冷媒槽3内の液戻
り通路5eまで還流することができる。これにより、装
置全体が傾斜して設置された場合に、凝縮液が冷媒槽3
へ還流できないために生じるバーンアウトを防止でき、
所要の放熱性能を確保することができる。また、本実施
例では、実開昭62−151755号公報に記載された
例の様に、装置の全高が高くなること、及び幅が長くな
ることもなく、装置の大型化を回避できる。
(Effects of the First Embodiment) In this embodiment, even if the entire apparatus is installed in an inclined manner in the direction in which the condensed liquid flows backward in the refrigerant passage 7c, the condensed liquid flowing backward is supplied to the inflow side communication part. Without flowing to the refrigerant flow control plate 11 that is inclined in the lower tank through the inter-channel communication path, and then flows on the surface of the refrigerant flow control plate 11 to It is possible to return to the return passage 5e. Therefore, the condensed liquid flowing backward in the refrigerant passage 7c can be returned to the liquid return passage 5e in the refrigerant tank 3 without interfering with the refrigerant vapor flowing into the inflow-side communicating portion. Thus, when the entire apparatus is installed at an angle, the condensed liquid flows into the refrigerant tank 3.
Burnout caused by the inability to return to the
Required heat radiation performance can be secured. Further, in this embodiment, as in the example described in Japanese Utility Model Application Laid-Open No. 62-151755, the overall height of the apparatus is not increased and the width is not increased, so that the apparatus can be prevented from being enlarged.

【0020】(第2実施例)図11は沸騰冷却装置1の
正面図である。本実施例は、流路間連通路を流入側連通
部の近傍に1か所だけ設けた場合の一例を示すものであ
る。従って、放熱管7を形成するコアプレート10は、
図12に示す様に、一方の丸孔10aの近傍に長孔状の
連通口7dが1か所だけ設けられている。本実施例の場
合、流路間連通路を1か所とすることにより、その分だ
け放熱フィン8の面積を大きく確保できるため、放熱性
能をより向上できるメリットがある。
(Second Embodiment) FIG. 11 is a front view of the boiling cooling device 1. The present embodiment shows an example in which only one communication path between the flow paths is provided near the inflow-side communication part. Therefore, the core plate 10 forming the heat radiating pipe 7 is
As shown in FIG. 12, a long hole-shaped communication port 7d is provided only at one location near one round hole 10a. In the case of the present embodiment, since the communication passage between the flow paths is provided in one place, the area of the heat radiation fin 8 can be increased by that much, so that there is a merit that the heat radiation performance can be further improved.

【0021】(第3実施例)図13は沸騰冷却装置1の
正面図である。本実施例は、流路間連通路を第2実施例
の場合より更に流入側連通部の近くに設けた場合の一例
を示すものである。従って、放熱管7を形成するコアプ
レート10は、図14に示す様に、一方の丸孔10aの
直ぐ近くに長孔状の連通口7dが1か所だけ設けられて
いる。流路間連通路は、凝縮液が逆流する方向に装置全
体が傾斜した時に、その逆流する方向の最も下流となる
流入側連通路の近くにあることが望ましい。これによ
り、冷媒通路7cを逆流する多くの凝縮液が流路間連通
路を通って冷媒槽3へ還流することができる。
(Third Embodiment) FIG. 13 is a front view of the boiling cooling device 1. This embodiment shows an example in which the inter-channel communication passage is provided closer to the inflow-side communication portion than in the second embodiment. Therefore, as shown in FIG. 14, the core plate 10 forming the heat radiating tube 7 has only one long-hole-shaped communication port 7d in the immediate vicinity of one of the round holes 10a. When the entire apparatus is inclined in the direction in which the condensed liquid flows backward, the inter-channel communication path is preferably located near the inflow-side communication path that is the most downstream in the direction in which the condensed liquid flows. Accordingly, a large amount of condensed liquid flowing backward in the refrigerant passage 7c can be returned to the refrigerant tank 3 through the inter-flow passage.

【0022】上記の各実施例では、流出室13に開口す
る流路間連通路の通路断面積が冷媒通路7cの通路断面
積より小さく設定されていることが望ましい。この場
合、流入側連通部より冷媒通路7cに流入した冷媒蒸気
は、流路間連通路より断面積の大きい冷媒通路7cを流
れようとするため、冷媒蒸気がそのまま流路間連通路を
通って流出室13へ流れ出てしまうのを抑制できる。但
し、流路間連通路を構成する全ての連通口7dの通路断
面積を冷媒通路7cの通路断面積より小さく設定する必
要はなく、少なくとも流出室13に開口する連通口7d
(最下部の連通口7d)のみ冷媒通路7cより通路断面
積が小さく設定されていれば良い。
In each of the above embodiments, it is desirable that the cross-sectional area of the inter-flow path communicating with the outlet chamber 13 is set smaller than the cross-sectional area of the refrigerant passage 7c. In this case, the refrigerant vapor that has flowed into the refrigerant passage 7c from the inflow-side communication portion tends to flow through the refrigerant passage 7c having a larger cross-sectional area than the inter-flow passage communication passage. It is possible to suppress the outflow into the outflow chamber 13. However, it is not necessary to set the cross-sectional area of all the communication ports 7d constituting the inter-channel communication path to be smaller than the cross-sectional area of the refrigerant path 7c.
It is sufficient that the passage cross-sectional area of only the (lowest communication port 7d) is smaller than that of the refrigerant passage 7c.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の正面図である(第1実施例)。FIG. 1 is a front view of a boiling cooling device (first embodiment).

【図2】沸騰冷却装置の側面図である(第1実施例)。FIG. 2 is a side view of the boiling cooling device (first embodiment).

【図3】タンクプレートの平面図(a)と側面図(b)
である(第1実施例)。
FIG. 3 is a plan view (a) and a side view (b) of a tank plate.
(First embodiment).

【図4】冷媒流制御板の正面図(a)と側面図(b)で
ある(第1実施例)。
FIG. 4 is a front view (a) and a side view (b) of a refrigerant flow control plate (first embodiment).

【図5】放熱管の側面図である(第1実施例)。FIG. 5 is a side view of the radiator tube (first embodiment).

【図6】コアプレートの平面図(a)と側面図(b)で
ある(第1実施例)。
FIG. 6 is a plan view (a) and a side view (b) of a core plate (first embodiment).

【図7】コアプレートの平面図である(第1実施例)。FIG. 7 is a plan view of a core plate (first embodiment).

【図8】図1のA−A断面図である(第1実施例)。FIG. 8 is a sectional view taken along line AA of FIG. 1 (first embodiment).

【図9】図1のB−B断面図である(第1実施例)。FIG. 9 is a sectional view taken along line BB of FIG. 1 (first embodiment).

【図10】装置が傾斜している時の凝縮液の流れを示す
模式図である。
FIG. 10 is a schematic diagram showing the flow of condensate when the device is inclined.

【図11】沸騰冷却装置の正面図である(第2実施
例)。
FIG. 11 is a front view of a boiling cooling device (second embodiment).

【図12】コアプレートの平面図(a)と側面図(b)
である(第2実施例)。
FIG. 12 is a plan view (a) and a side view (b) of a core plate.
(Second embodiment).

【図13】沸騰冷却装置の正面図である(第3実施
例)。
FIG. 13 is a front view of a boiling cooling device (third embodiment).

【図14】コアプレートの平面図(a)と側面図(b)
である(第3実施例)。
FIG. 14 is a plan view (a) and a side view (b) of a core plate.
(Third Example)

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 発熱体 3 冷媒槽 4 放熱器 5d 通路(沸騰領域) 5e 液戻り通路 7a 一方の連通部(流入側連通部) 7b 他方の連通部(流出側連通部) 7c 冷媒通路 7d 連通口(流路間連通路) 11 冷媒流制御板 12 流入室 13 流出室 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Heating element 3 Refrigerant tank 4 Radiator 5d Passage (boiling region) 5e Liquid return passage 7a One communication part (inflow side communication part) 7b The other communication part (outflow side communication part) 7c Refrigerant path 7d communication Port (communication passage between flow paths) 11 Refrigerant flow control plate 12 Inflow chamber 13 Outflow chamber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷媒の沸騰と凝縮の繰り返しによる熱輸送
によって発熱体を冷却する沸騰冷却装置であって、 内部に液冷媒を溜める冷媒槽と、 この冷媒槽の上部に設けられ、前記冷媒槽で前記発熱体
の熱を受けて沸騰した冷媒蒸気が流入し、その冷媒蒸気
を外部流体との熱交換によって凝縮液化させる放熱器と
を備え、 前記冷媒槽は、液冷媒が前記発熱体の熱を受けて沸騰す
る沸騰領域と、前記放熱器で凝縮した凝縮液が流入する
液戻り通路とを有し、 前記放熱器は、それぞれ略横方向へ伸びる複数の冷媒通
路と、各冷媒通路の一端側を連通する流入側連通部と、
各冷媒通路の他端側を連通する流出側連通部と、前記冷
媒槽の沸騰領域と前記流入側連通部とを連通する流入室
と、前記冷媒槽の液戻り通路と前記流出側連通部とを連
通する流出室と、前記流入側連通部と前記流出側連通部
との間で前記複数の冷媒通路を相互に連通し、且つ前記
流出室に開口する流路間連通路とを有することを特徴と
する沸騰冷却装置。
1. A boiling cooling device for cooling a heating element by heat transport by repeated boiling and condensation of a refrigerant, comprising: a refrigerant tank for storing a liquid refrigerant therein; A radiator that receives the heat of the heating element and causes the refrigerant vapor that has boiled to flow in, and that condenses and liquefies the refrigerant vapor by heat exchange with an external fluid. And a liquid return passage into which the condensed liquid condensed by the radiator flows.The radiator has a plurality of refrigerant passages extending substantially in the lateral direction, and one end of each refrigerant passage. An inflow-side communication portion that communicates the sides;
An outflow-side communication portion that communicates the other end of each refrigerant passage, an inflow chamber that communicates the boiling region of the refrigerant tank with the inflow-side communication portion, a liquid return passage of the refrigerant tank, and the outflow-side communication portion. And an outflow chamber communicating the plurality of refrigerant passages between the inflow side communication portion and the outflow side communication portion, and an interflow passage communication passage opening to the outflow chamber. Characterized boiling cooling device.
【請求項2】前記放熱器は、前記冷媒槽の沸騰領域で沸
騰した冷媒蒸気を前記流入側連通部へ導くとともに、前
記流路間連通路より滴下する凝縮液を前記液戻り通路へ
導く冷媒流制御板を備え、この冷媒流制御板が前記流入
室と前記流出室との間を区画していることを特徴とする
請求項1に記載した沸騰冷却装置。
2. The refrigerant radiator guides a refrigerant vapor boiling in a boiling region of the refrigerant tank to the inflow-side communication part, and guides a condensed liquid dropped from the inter-channel communication path to the liquid return path. The boiling cooling device according to claim 1, further comprising a flow control plate, wherein the refrigerant flow control plate partitions between the inflow chamber and the outflow chamber.
【請求項3】前記冷媒流制御板は、前記流入側連通部側
から前記流出側連通部側へ向かって下方へ傾斜した姿勢
で配置されていることを特徴とする請求項2に記載した
沸騰冷却装置。
3. The boiling according to claim 2, wherein the refrigerant flow control plate is disposed in a posture inclined downward from the inflow side communication portion side toward the outflow side communication portion side. Cooling system.
【請求項4】前記流出室に開口する前記流路間連通路の
通路断面積が前記冷媒通路の通路断面積より小さく設定
されていることを特徴とする請求項1〜3に記載した何
れかの沸騰冷却装置。
4. The cross-sectional area of the inter-channel communication passage opening to the outlet chamber is set smaller than the cross-sectional area of the refrigerant passage. Boiling cooling device.
【請求項5】前記流路間連通路は、前記流入側連通部と
前記流出側連通部との間で前記流入側連通部寄りに少な
くとも1箇所設けられていることを特徴とする請求項1
〜4に記載した何れかの沸騰冷却装置。
5. The communication path between flow paths is provided at at least one position between the inflow side communication section and the outflow side communication section near the inflow side communication section.
5. The boiling cooling device according to any one of items 1 to 4.
JP9242540A 1996-03-14 1997-09-08 Ebullient cooler Pending JPH1183359A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9242540A JPH1183359A (en) 1997-09-08 1997-09-08 Ebullient cooler
US09/058,211 US6076596A (en) 1996-03-14 1998-04-10 Cooling apparatus for high-temperature medium by boiling and condensing refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242540A JPH1183359A (en) 1997-09-08 1997-09-08 Ebullient cooler

Publications (1)

Publication Number Publication Date
JPH1183359A true JPH1183359A (en) 1999-03-26

Family

ID=17090637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242540A Pending JPH1183359A (en) 1996-03-14 1997-09-08 Ebullient cooler

Country Status (1)

Country Link
JP (1) JPH1183359A (en)

Similar Documents

Publication Publication Date Title
US6527045B1 (en) Cooling apparatus boiling and condensing refrigerant
JP2002164486A (en) Vapor cooling system
JP2003130561A (en) Boiling cooler
US6076596A (en) Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US6279649B1 (en) Cooling apparatus using boiling and condensing refrigerant
JPH09326582A (en) Boiling cooling device and case cooling device equipped therewith
JPH1098142A (en) Boiling cooler
JPH1183359A (en) Ebullient cooler
JP3501911B2 (en) Boiling cooling device
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
JP3511777B2 (en) Boiling cooling device
JP2000065454A (en) Ebullient cooler
JPH11204709A (en) Boiling/cooling device
JP2001068611A (en) Boiling cooler
JP3663689B2 (en) Boiling cooler
JP4253987B2 (en) Boiling cooler
JP3807017B2 (en) Boiling cooler
JP2000049265A (en) Boiling cooler
JP2000156445A (en) Boiling cooling device
JP2000205721A (en) Evaporative cooling device
JPH1183358A (en) Ebullient cooler
JPH1050909A (en) Boiling cooler
JP2000269393A (en) Boiling/cooling device
JP2000065455A (en) Ebullient cooler
JP3975252B2 (en) Boiling cooler for electric vehicles