JPH1182186A - Cooling device for recirculating exhaust in internal combustion engine - Google Patents

Cooling device for recirculating exhaust in internal combustion engine

Info

Publication number
JPH1182186A
JPH1182186A JP9236211A JP23621197A JPH1182186A JP H1182186 A JPH1182186 A JP H1182186A JP 9236211 A JP9236211 A JP 9236211A JP 23621197 A JP23621197 A JP 23621197A JP H1182186 A JPH1182186 A JP H1182186A
Authority
JP
Japan
Prior art keywords
cooling water
passage
cooling
exhaust gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9236211A
Other languages
Japanese (ja)
Inventor
Shuji Kimura
修二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9236211A priority Critical patent/JPH1182186A/en
Publication of JPH1182186A publication Critical patent/JPH1182186A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve exhaust property during high load operation of an engine. SOLUTION: An internal combustion engine 10 is provided with an EGR pipe 14 taking out a part of exhaust from an exhaust passage 12 and leading exhaust to an inlet part of an intake manifold 13. An intermediate part of the EGR pipe 14 is formed in double pipe structure consisting of the EGR pipe 14 and an outer pipe 18 covering the EGR pipe 14. A main cooling water passage closed at both end parts is formed between the EGR pipe 14 and the outer pipe 18. The EGR pipe 14 on the upperstream and downstream of the main cooling water passage 19 is formed in double pipe structure consisting of the EGR pipe 14 and outer pips 20 covering the EGR pipe 14, and auxiliary cooling water passages 21 closed at both end parts are formed between the EGR pipe 14 and the outer pipes 20, respectively. A cooling water lead-in pipe on the downstream of EGR gas, and a cooling water lead-in pipe 18 on the upperstream of EGR gas are respectively connected to the outer pipe 18 constituting the main cooling water passage 19 that is, the flow direction of cooling water in the main cooling water passage 19 is reverse to the flow direction of EGR gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関における
排気再循環ガスの冷却装置に関し、特に、排気再循環ガ
スの温度を低下させることで、排気性状を向上する技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for cooling exhaust gas recirculation gas in an internal combustion engine, and more particularly to a technique for improving the exhaust gas properties by lowering the temperature of the exhaust gas recirculation gas.

【0002】[0002]

【従来の技術】従来から、排気の一部を排気系から取り
出して吸気系に再循環させ、燃焼温度を下げることによ
って、内燃機関から発生する窒素酸化物(NOx )を低
減するEGR(Exhaust Gas Recirculation ;排気再循
環)装置が知られている。そして、EGR装置において
は、吸気系に再循環させる排気(以下「EGRガス」と
いう)の温度を下げるほど、内燃機関から排出される窒
素酸化物が減少することが実験的に明らかにされてい
る。
2. Description of the Related Art Conventionally, an EGR (Exhaust Gas) for reducing nitrogen oxides (NOx) generated from an internal combustion engine by extracting a part of exhaust gas from an exhaust system and recirculating the exhaust gas to an intake system to lower a combustion temperature. Recirculation (exhaust gas recirculation) devices are known. Further, in the EGR device, it has been experimentally revealed that as the temperature of exhaust gas (hereinafter, referred to as “EGR gas”) recirculated to the intake system is lowered, nitrogen oxides discharged from the internal combustion engine are reduced. .

【0003】そこで、EGRガスの温度を低下させて排
気性状を向上するために、例えば、図4に示すように、
内燃機関1の吸気通路2と排気通路3とを連通するEG
R管4の一部を、EGR管4とこれを覆う外管5との二
重構造として、EGR管4と外管5との間に両端部が閉
塞された冷却水通路6を形成すると共に、冷却水通路6
の両端部に冷却水の導入管7及び導出管8を夫々連結し
て、冷却水でEGR管4を直接冷却してEGRガスの温
度を低下させるようにしたEGRガスの冷却装置が提案
されている(特開平8−261072号公報等参照)。
Therefore, in order to lower the temperature of the EGR gas and improve the exhaust properties, for example, as shown in FIG.
EG that connects the intake passage 2 and the exhaust passage 3 of the internal combustion engine 1
A part of the R pipe 4 has a double structure of the EGR pipe 4 and the outer pipe 5 covering the EGR pipe 4 to form a cooling water passage 6 having both ends closed between the EGR pipe 4 and the outer pipe 5. , Cooling water passage 6
An EGR gas cooling device has been proposed in which a cooling water inlet pipe 7 and an outlet pipe 8 are connected to both ends of the EGR gas, respectively, so that the EGR pipe 4 is directly cooled with the cooling water to lower the temperature of the EGR gas. (See Japanese Patent Application Laid-Open No. 8-261072).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
EGRガスの冷却装置にあっては、単一の冷却水通路6
を流通する冷却水によって、EGR管4を直接冷却する
構成となっていたため、内燃機関1が高負荷運転を行い
多量のEGRが必要となった場合に、EGRガス量の増
大及びEGRガス温度の高温化により冷却水通路6を流
通する冷却水が沸騰し、冷却水の劣化及び気泡発生によ
る冷却効率の低下が生じるおそれがあった。
However, in such an EGR gas cooling device, a single cooling water passage 6 is provided.
When the internal combustion engine 1 is operated under a high load and a large amount of EGR is required, the EGR gas amount is increased and the EGR gas temperature is reduced. The cooling water flowing through the cooling water passage 6 may boil due to the high temperature, and there is a possibility that the cooling water deteriorates and the cooling efficiency is reduced due to the generation of bubbles.

【0005】そこで、本発明は以上のような従来の問題
点に鑑み、機関の高負荷運転時における冷却水の沸騰を
防止することによって、冷却能力の低下を抑制し、排気
性状を向上した内燃機関における排気再循環ガスの冷却
装置を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and thus, by preventing the boiling of cooling water during high-load operation of an engine, a reduction in cooling capacity is suppressed, and an internal combustion engine with improved exhaust characteristics is provided. An object of the present invention is to provide a cooling device for exhaust gas recirculation gas in an engine.

【0006】[0006]

【課題を解決するための手段】このため、請求項1記載
の発明は、内燃機関における排気再循環ガスの冷却装置
において、内燃機関の排気通路と吸気通路とを連通し、
排気の一部を吸気系に再循環させる排気再循環通路の周
囲に、該排気再循環通路に沿って夫々独立した複数の冷
却水通路を設け、各冷却水通路を流通する冷却水により
排気再循環通路を冷却して排気再循環ガスを冷却するよ
うにした。
According to a first aspect of the present invention, there is provided a cooling apparatus for exhaust gas recirculation gas in an internal combustion engine, wherein the exhaust passage and the intake passage of the internal combustion engine communicate with each other.
A plurality of independent cooling water passages are provided along the exhaust recirculation passage around the exhaust recirculation passage for recirculating a part of the exhaust gas to the intake system, and the exhaust water is recirculated by the cooling water flowing through each cooling water passage. The circulation passage is cooled to cool the exhaust gas recirculation gas.

【0007】かかる構成によれば、排気再循環通路を介
して吸気系に再循環される排気再循環ガスは、冷却水通
路を流通する冷却水によって冷却され、排気中の窒素酸
化物(NOx)が低減される。この場合、排気再循環通
路に沿って冷却水通路を複数設ける構成としたので、各
冷却水通路を流通する冷却水が受熱する熱量が減少し、
冷却水の温度上昇が抑制され、冷却水の沸騰が起こりに
くくなる。
With this configuration, the exhaust gas recirculated to the intake system via the exhaust gas recirculation passage is cooled by the cooling water flowing through the cooling water passage, and the nitrogen oxides (NOx) in the exhaust gas are cooled. Is reduced. In this case, since a plurality of cooling water passages are provided along the exhaust gas recirculation passage, the amount of heat received by the cooling water flowing through each cooling water passage is reduced,
The temperature rise of the cooling water is suppressed, and the boiling of the cooling water hardly occurs.

【0008】請求項2記載の発明は、前記排気再循環通
路を構成する配管の一部を、排気再循環ガスが流通する
内管と、該内管を覆う外管と、の内・外二重管構造と
し、内管と外管との間に前記冷却水通路を形成した。か
かる構成によれば、冷却水通路は、排気再循環ガスが流
通する内管と、内管を覆う外管と、の内・外二重管構造
となるので、冷却水通路の形成が容易に行われる。
According to a second aspect of the present invention, a part of a pipe constituting the exhaust gas recirculation passage is formed of an inner pipe and an outer pipe which cover the inner pipe. The cooling water passage was formed between the inner pipe and the outer pipe. According to this configuration, since the cooling water passage has an inner / outer double pipe structure of the inner pipe through which the exhaust gas recirculation gas flows and the outer pipe covering the inner pipe, it is easy to form the cooling water passage. Done.

【0009】請求項3記載の発明は、前記各冷却水通路
の冷却水供給系統は、各冷却水通路毎に夫々独立した構
成とした。かかる構成によれば、各冷却水通路を流通す
る冷却水は、夫々独立した冷却水供給系統を流通するの
で、各冷却水通路毎に、冷却水の流量を適切に設定する
ことで、冷却水の温度上昇が効果的に抑制される。
According to a third aspect of the present invention, the cooling water supply system of each of the cooling water passages has an independent configuration for each of the cooling water passages. According to this configuration, since the cooling water flowing through each cooling water passage flows through the independent cooling water supply system, by appropriately setting the flow rate of the cooling water for each cooling water passage, the cooling water Is effectively suppressed.

【0010】請求項4記載の発明は、前記各冷却水通路
内の冷却水は、前記排気再循環通路内を流通する排気再
循環ガスとは逆方向に流通する構成とした。かかる構成
によれば、各冷却水通路内の冷却水は、排気再循環ガス
とは逆方向、即ち、温度の低い下流から温度の高い上流
へと流通するので、冷却水通路内で冷却水が沸騰するこ
とが抑制される。
According to a fourth aspect of the present invention, the cooling water in each of the cooling water passages flows in a direction opposite to an exhaust gas recirculation gas flowing in the exhaust gas recirculation passage. According to such a configuration, the cooling water in each cooling water passage flows in the opposite direction to the exhaust gas recirculation gas, that is, from the downstream having a lower temperature to the upstream having a higher temperature. Boiling is suppressed.

【0011】請求項5記載の発明は、前記複数の冷却水
通路のうち少なくとも1つを、前記排気再循環通路内を
流通する排気再循環ガスからの受熱量が少なくなるよう
に、他の冷却水通路よりも排気再循環通路の軸方向に対
して短く形成した副冷却水通路とし、該副冷却水通路
を、他の冷却水通路よりも上流に位置させる構成とし
た。
According to a fifth aspect of the present invention, at least one of the plurality of cooling water passages is provided with another cooling water passage so as to reduce the amount of heat received from exhaust gas recirculation gas flowing through the exhaust gas recirculation passage. A sub-cooling water passage is formed shorter in the axial direction of the exhaust gas recirculation passage than the water passage, and the sub-cooling water passage is located upstream of the other cooling water passages.

【0012】かかる構成によれば、副冷却水通路を他の
冷却水通路よりも上流に位置させることで、上流におけ
る温度境界層を発達させ、他の冷却水通路の熱通過率を
低下させて冷却水の温度上昇を抑制する。この場合、副
冷却水通路は、排気再循環ガスからの受熱量が小さくな
るように形成されているので、副冷却水通路を流通する
冷却水の温度上昇が抑制され、冷却水の沸騰が抑制され
る。
According to this configuration, the sub-cooling water passage is located upstream of the other cooling water passages, so that the temperature boundary layer at the upstream is developed, and the heat passage rate of the other cooling water passages is reduced. Suppress temperature rise of cooling water. In this case, since the sub cooling water passage is formed so that the amount of heat received from the exhaust gas recirculation gas is reduced, the temperature rise of the cooling water flowing through the sub cooling water passage is suppressed, and the boiling of the cooling water is suppressed. Is done.

【0013】請求項6記載の発明は、前記副冷却水通路
には、該副冷却水通路に直交した略一直線上に冷却水導
入管と冷却水導出管とが接続され、冷却水導入管から導
入された冷却水は、前記排気再循環通路の周囲を周って
冷却水導出管から導出される構成とした。かかる構成に
よれば、副冷却水通路を流通する冷却水は、冷却水導入
管を介して導入された後、排気再循環通路の周囲を周っ
て冷却水導出管から排出される構成としたので、冷却水
の流通抵抗が小さくなり、副冷却水通路を流通する冷却
水の流量を増大させるのに、ウォータポンプ等の能力を
増大させる必要がない。
According to a sixth aspect of the present invention, a cooling water inlet pipe and a cooling water outlet pipe are connected to the sub cooling water passage in a substantially straight line orthogonal to the sub cooling water passage. The introduced cooling water is configured to be led out of the cooling water outlet pipe around the periphery of the exhaust gas recirculation passage. According to this configuration, the cooling water flowing through the sub-cooling water passage is introduced through the cooling water introduction pipe, and then is discharged around the periphery of the exhaust gas recirculation passage from the cooling water discharge pipe. Therefore, the flow resistance of the cooling water is reduced, and it is not necessary to increase the capacity of the water pump or the like to increase the flow rate of the cooling water flowing through the sub cooling water passage.

【0014】請求項7記載の発明は、前記副冷却水通路
の冷却水供給系統は、周囲の大気と熱交換をして冷却水
を冷却する熱交換手段と、冷却水を循環させる循環手段
と、を含んで構成した。かかる構成によれば、副冷却水
通路を流通する冷却水は、熱交換手段によって大気温度
近くまで低下するので、排気再循環ガスの冷却能力が大
幅に向上される。
According to a seventh aspect of the present invention, the cooling water supply system of the sub-cooling water passage includes a heat exchange means for exchanging heat with the surrounding atmosphere to cool the cooling water, and a circulating means for circulating the cooling water. , Including. According to such a configuration, the cooling water flowing through the sub-cooling water passage is reduced to near the ambient temperature by the heat exchange means, so that the cooling capacity of the exhaust gas recirculation gas is greatly improved.

【0015】請求項8記載の発明は、内燃機関の温度を
検出する温度検出手段と、前記副冷却水通路を流通する
冷却水を貯溜する貯溜手段と、該副冷却水通路の冷却系
統を切り換える切換手段と、を含んで構成され、前記切
換手段は、検出された内燃機関の温度が所定温度以上の
ときに、前記副冷却水通路に冷却水を流通させ、検出さ
れた内燃機関の温度が所定温度未満のときに、前記副冷
却水通路を流通する冷却水を貯溜手段に貯溜する制御を
行うようにした。
According to an eighth aspect of the present invention, a temperature detecting means for detecting a temperature of the internal combustion engine, a storage means for storing cooling water flowing through the sub cooling water passage, and a cooling system for the sub cooling water passage are switched. Switching means, wherein the switching means causes the cooling water to flow through the sub-cooling water passage when the detected temperature of the internal combustion engine is equal to or higher than a predetermined temperature, and the detected temperature of the internal combustion engine is When the temperature is lower than the predetermined temperature, control for storing the cooling water flowing through the sub cooling water passage in the storage means is performed.

【0016】かかる構成によれば、冷間時、即ち、内燃
機関の温度が所定温度未満のときには、副冷却水通路を
流通する冷却水が貯溜手段に貯溜され、冷却能力が低下
するので、排気再循環ガスの過冷却が防止される。請求
項9記載の発明は、内燃機関における排気再循環ガスの
冷却装置において、内燃機関の排気の一部を吸気系に再
循環させる排気再循環通路を冷却して、該排気再循環通
路を流通する排気再循環ガスを冷却する冷却系統を、排
気再循環通路に沿って複数独立させて設けた。
With this configuration, when the engine is cold, that is, when the temperature of the internal combustion engine is lower than the predetermined temperature, the cooling water flowing through the sub cooling water passage is stored in the storage means, and the cooling capacity is reduced. Subcooling of the recirculated gas is prevented. According to a ninth aspect of the present invention, in the cooling system for exhaust gas recirculation gas in the internal combustion engine, the exhaust gas recirculation passage for recirculating a part of the exhaust gas of the internal combustion engine to the intake system is cooled and the exhaust gas recirculation passage is circulated. A plurality of cooling systems for cooling the exhaust gas recirculation gas are provided independently along the exhaust gas recirculation passage.

【0017】かかる構成によれば、排気再循環通路を介
して吸気系に再循環される排気再循環ガスが冷却され、
排気中の窒素酸化物(NOx)が低減される。この場
合、排気再循環通路を冷却する冷却系統を複数独立させ
て設ける構成としたので、各冷却系統において排気再循
環ガスからの受熱量が減少し、例えば、冷却水によって
排気再循環通路を冷却するものでは、冷却水の温度上昇
が抑制され、冷却水の沸騰が起こりにくくなる。
According to this structure, the exhaust gas recirculated to the intake system through the exhaust gas recirculation passage is cooled,
Nitrogen oxides (NOx) in the exhaust gas are reduced. In this case, since a plurality of cooling systems for cooling the exhaust gas recirculation passage are provided independently, the amount of heat received from the exhaust gas recirculation gas in each cooling system is reduced.For example, the exhaust gas recirculation passage is cooled by cooling water. In such a case, the temperature rise of the cooling water is suppressed, and the boiling of the cooling water hardly occurs.

【0018】[0018]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、冷却水通路を流通する冷却水の沸騰が抑制
され、冷却水の劣化及び冷却能力の低下が防止されるの
で、機関の高負荷運転時においても、排気性状の向上を
図ることができる。請求項2記載の発明によれば、冷却
水通路の形成が容易に行われるので、コスト上昇を抑制
することができる。。
As described above, according to the first aspect of the present invention, the boiling of the cooling water flowing through the cooling water passage is suppressed, and the deterioration of the cooling water and the reduction of the cooling capacity are prevented. Even during high-load operation of the engine, it is possible to improve the exhaust properties. According to the second aspect of the present invention, since the cooling water passage is easily formed, it is possible to suppress an increase in cost. .

【0019】請求項3記載の発明によれば、冷却水の温
度上昇を効果的に抑制することができる。請求項4記載
の発明によれば、冷却水通路内で冷却水が沸騰すること
が抑制されるので、冷却能力を向上することができる。
請求項5記載の発明によれば、副冷却水通路を設けるこ
とにより、他の冷却水通路を流通する冷却水の温度上昇
が抑制されるので、他の冷却水通路を流通する冷却水の
沸騰を効果的に抑制することができる。
According to the third aspect of the invention, it is possible to effectively suppress the temperature rise of the cooling water. According to the fourth aspect of the invention, the boiling of the cooling water in the cooling water passage is suppressed, so that the cooling capacity can be improved.
According to the fifth aspect of the present invention, the provision of the sub cooling water passage suppresses a rise in the temperature of the cooling water flowing through the other cooling water passage, so that the cooling water flowing through the other cooling water passage boils. Can be effectively suppressed.

【0020】請求項6記載の発明によれば、冷却水の流
通抵抗が小さくなり、副冷却水通路を流通する冷却水の
流量を増大させるのに、ウォータポンプ等の能力を増大
させる必要がなく、コスト上昇を抑制することができ
る。請求項7記載の発明によれば、熱交換手段によって
冷却水の温度が大気温度近くまで低下するので、排気再
循環通路を流通する排気の冷却能力を大幅に向上するこ
とができる。
According to the sixth aspect of the present invention, the flow resistance of the cooling water is reduced, and it is not necessary to increase the capacity of the water pump or the like in order to increase the flow rate of the cooling water flowing through the sub cooling water passage. In addition, cost increase can be suppressed. According to the seventh aspect of the present invention, since the temperature of the cooling water is reduced to near the atmospheric temperature by the heat exchange means, the cooling capacity of the exhaust flowing through the exhaust recirculation passage can be greatly improved.

【0021】請求項8記載の発明によれば、排気再循環
通路を流通する排気再循環ガスの過冷却が防止されるの
で、冷間時における排気性状の低下を防止することがで
きる。請求項9記載の発明によれば、機関の高負荷運転
時においても、排気性状の向上を図ることができる。
According to the eighth aspect of the present invention, since the exhaust gas recirculation gas flowing through the exhaust gas recirculation passage is prevented from being supercooled, it is possible to prevent the deterioration of the exhaust properties at the time of cold. According to the ninth aspect of the invention, it is possible to improve the exhaust properties even during the high load operation of the engine.

【0022】[0022]

【発明の実施の形態】以下、添付された図面を参照して
本発明を詳述する。図1は、本発明に係るEGRガスの
冷却装置の一実施形態の構成を示している。内燃機関1
0には、排気マニホルド11に接続された排気通路12
から排気の一部を取り出し、吸気マニホルド13の入口
部に排気を導入するEGR管14(内管)が取り付けら
れ、EGR管14と吸気マニホルド13との連結部近傍
に、EGR管14の開口面積を変化させるEGR弁15
が介装されている。EGR弁15は、マイクロコンピュ
ータを内蔵したコントロールユニット16によって駆動
制御されるアクチュエータ17により、その開度を変化
させるものである。そして、各種センサにより検出され
た機関運転状態に応じてEGR量を演算し、演算された
EGR量に基づいて、アクチュエータ17を駆動してE
GR管14の開度を変化させ、EGR量が制御される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the attached drawings. FIG. 1 shows a configuration of an embodiment of an EGR gas cooling device according to the present invention. Internal combustion engine 1
0, the exhaust passage 12 connected to the exhaust manifold 11
An EGR pipe 14 (inner pipe) for taking out a part of the exhaust gas from the exhaust manifold and introducing the exhaust gas to the inlet of the intake manifold 13 is attached. EGR valve 15 that changes pressure
Is interposed. The opening of the EGR valve 15 is changed by an actuator 17 that is driven and controlled by a control unit 16 containing a microcomputer. Then, the EGR amount is calculated in accordance with the engine operating state detected by the various sensors, and the actuator 17 is driven based on the calculated EGR amount to drive E.
The EGR amount is controlled by changing the opening of the GR tube 14.

【0023】EGR管14の中間部は、EGR管14と
これを覆う外管18とからなる内・外二重管構造となっ
ており、EGR管14と外管18との間に両端部が閉塞
された主冷却水通路19が形成されている。また、主冷
却水通路19の上流及び下流のEGR管14は、夫々、
EGR管14とこれを覆う外管20からなる内・外二重
管構造となっており、EGR管14と外管20との間に
両端部が閉塞された副冷却水通路21が夫々形成されて
いる。なお、主冷却水通路19のEGR管14に沿った
長さL1 と副冷却水通路21のEGR管14に沿った長
さL2 との関係は、L1 >L2 、即ち、副冷却水通路2
1の長さL2 の方が小さくなるように設定されている。
An intermediate portion of the EGR tube 14 has an inner / outer double tube structure including the EGR tube 14 and an outer tube 18 covering the EGR tube 14, and both ends are disposed between the EGR tube 14 and the outer tube 18. A closed main cooling water passage 19 is formed. The EGR pipes 14 upstream and downstream of the main cooling water passage 19 are respectively
It has an inner / outer double pipe structure including an EGR pipe 14 and an outer pipe 20 that covers the EGR pipe 14, and sub cooling water passages 21 whose both ends are closed are formed between the EGR pipe 14 and the outer pipe 20. ing. The main coolant length L 1 along the EGR pipe 14 of the passage 19 and the relationship between the length L 2 along the EGR pipe 14 of the secondary cooling water passage 21, L 1> L 2, i.e., sub-cooling Water passage 2
Found the following first length L 2 is set to be smaller.

【0024】主冷却水通路19を構成する外管18に
は、EGRガスの下流側に冷却水導入管18aが接続さ
れ、また、EGRガスの上流側に冷却水導出管18bが
接続される。即ち、主冷却水通路内19の冷却水の流通
方向が、EGRガスの流通方向と逆になっている。一
方、副冷却水通路21を構成する外管20には、ここに
導入された冷却水が、EGR管14の周囲を一周して排
出されるように、冷却水導入管20a及び冷却水導出管
20bが接続される。即ち、冷却水導入管20aと冷却
水導出管20bとが、略一直線上に配置されるように、
外管20に接続されることによって、冷却水の流通抵抗
を最小にしている。また、副冷却水通路21を流通する
冷却水は、主冷却水通路19を流通する冷却水に比べ
て、その流量が多くなるように設定される。
The outer pipe 18 constituting the main cooling water passage 19 is connected to a cooling water introducing pipe 18a downstream of the EGR gas and a cooling water outlet pipe 18b upstream of the EGR gas. That is, the flowing direction of the cooling water in the main cooling water passage 19 is opposite to the flowing direction of the EGR gas. On the other hand, the cooling water inlet pipe 20a and the cooling water outlet pipe are connected to the outer pipe 20 constituting the sub cooling water passage 21 so that the cooling water introduced here is discharged around the periphery of the EGR pipe 14. 20b is connected. That is, the cooling water inlet pipe 20a and the cooling water outlet pipe 20b are arranged substantially in a straight line,
By being connected to the outer tube 20, the flow resistance of the cooling water is minimized. The flow rate of the cooling water flowing through the sub cooling water passage 21 is set to be larger than that of the cooling water flowing through the main cooling water passage 19.

【0025】次に、かかる構成からなるEGRガスの冷
却装置の作用について説明する。図2は、EGRガスを
冷却水で冷却する内・外二重管構造の冷却水通路の熱通
過率線図を示し、図2(a) は従来の冷却水通路、図2
(b) は本発明の冷却水通路の実験データを表わしたもの
である。従来の熱通過率線図を示す図2(a) において、
熱通過率が最大となる場所は、温度境界層が発達してい
ないEGRガスの入口部であり、ここで、EGRガスか
ら冷却水に多量の熱量が放出される。従って、EGRガ
スの入口部で、冷却水の沸騰が最も発生し易い。
Next, the operation of the cooling device for the EGR gas having the above configuration will be described. FIG. 2 shows a heat transfer rate diagram of a cooling water passage having an inner / outer double pipe structure for cooling EGR gas with cooling water, and FIG. 2 (a) shows a conventional cooling water passage, and FIG.
(b) shows experimental data of the cooling water passage of the present invention. In FIG. 2 (a) showing a conventional heat transmittance diagram,
The location where the heat transfer rate is maximum is the inlet of the EGR gas where the temperature boundary layer has not developed, where a large amount of heat is released from the EGR gas to the cooling water. Therefore, boiling of the cooling water is most likely to occur at the inlet of the EGR gas.

【0026】本実施形態では、図1に示すように、主冷
却水通路19における冷却水の流通方向を、EGRガス
の流通方向とは逆に、即ち、EGRガスの温度が低い下
流側から上流側になるように構成したので、EGRガス
の入口部で冷却水の沸騰が起こりにくくなっている。ま
た、主冷却水通路19の上流及び下流に、EGRガスと
の接触面積が小さい副冷却水通路21を設けることで、
温度境界層を発達させ、主冷却水通路19における熱通
過率を低下させている。さらに、副冷却水通路21を流
通する冷却水の流量を増加させ、かつ、副冷却水通路2
1を流通する冷却水を、内燃機関10の冷却水を冷却す
るラジエータ(図示せず)に戻すことで、副冷却水通路
21における冷却水の沸騰も抑制している。
In the present embodiment, as shown in FIG. 1, the flow direction of the cooling water in the main cooling water passage 19 is opposite to the flowing direction of the EGR gas, that is, from the downstream side where the temperature of the EGR gas is low to the upstream side. The cooling water is not easily boiled at the inlet of the EGR gas. Further, by providing the sub cooling water passage 21 having a small contact area with the EGR gas upstream and downstream of the main cooling water passage 19,
The temperature boundary layer is developed, and the heat transfer rate in the main cooling water passage 19 is reduced. Further, the flow rate of the cooling water flowing through the sub cooling water passage 21 is increased, and
By returning the cooling water flowing through 1 to a radiator (not shown) for cooling the cooling water of the internal combustion engine 10, the boiling of the cooling water in the sub cooling water passage 21 is also suppressed.

【0027】このため、主冷却水通路19及び副冷却水
通路21における冷却水は、図2(b) に示すように、沸
騰温度以下になるように保たれ、機関の高負荷運転領域
まで、EGRガスの冷却を可能とし、排気性状を向上す
ることができる。この他には、副冷却水通路21を流通
する冷却水は、EGR管14を一周して導出される構成
であるため、冷却水の流通抵抗が小さく、冷却水の流量
を増加させるのに、ウォータポンプ等の能力を大きくす
る必要がない。即ち、コスト上昇を抑制することができ
る。
For this reason, the cooling water in the main cooling water passage 19 and the sub-cooling water passage 21 is maintained at a temperature not higher than the boiling temperature as shown in FIG. The EGR gas can be cooled, and the exhaust properties can be improved. In addition, since the cooling water flowing through the sub-cooling water passage 21 is led out around the EGR pipe 14, the cooling water flow resistance is small, and the cooling water flow rate is increased. There is no need to increase the capacity of the water pump or the like. That is, cost increase can be suppressed.

【0028】図3は、本発明に係るEGRガスの冷却装
置の他の実施形態の構成を示している。本実施形態は、
先の一実施形態とは異なり、主冷却水通路19の冷却水
供給系統と副冷却水通路21の冷却水供給系統とを、別
系統としたものである。即ち、主冷却水通路19の冷却
水供給系統は、EGR管14を冷却して温度が上昇した
冷却水をラジエータ22で冷却する構成であるのに対し
て、副冷却水通路21の冷却水供給系統は、冷却水を冷
却する小型の空冷式熱交換器23(熱交換手段)と、冷
却水を循環させるための循環ポンプ24と、循環用ポン
プ24(循環手段)の上流及び下流に夫々配設される電
磁式の三方弁25,26と、冷却水を貯溜するタンク2
7(貯溜手段)と、を含んで構成される。三方弁25,
26は、図示しないコントロールユニット16(図1参
照)からの指示により、副冷却水通路21を流通する冷
却水をタンク27に抜いたり、或いは、タンク27から
副冷却水通路21に冷却水を戻したりする。
FIG. 3 shows the configuration of another embodiment of the EGR gas cooling device according to the present invention. In this embodiment,
Unlike the first embodiment, the cooling water supply system of the main cooling water passage 19 and the cooling water supply system of the sub cooling water passage 21 are different systems. That is, the cooling water supply system of the main cooling water passage 19 is configured to cool the EGR pipe 14 to cool the rising temperature of the cooling water by the radiator 22, whereas the cooling water supply system of the sub cooling water passage 21 The system includes a small air-cooled heat exchanger 23 (heat exchange means) for cooling the cooling water, a circulation pump 24 for circulating the cooling water, and upstream and downstream of the circulation pump 24 (circulation means). Provided electromagnetic three-way valves 25 and 26 and a tank 2 for storing cooling water
7 (storage means). Three-way valve 25,
The reference numeral 26 indicates that the cooling water flowing through the sub cooling water passage 21 is drained into the tank 27 or the cooling water is returned from the tank 27 to the sub cooling water passage 21 according to an instruction from the control unit 16 (not shown) (see FIG. 1). Or

【0029】ここで、三方弁25,26の作動制御は、
内燃機関10の温度を代表するラジエータ22の冷却水
温度を水温センサ等(温度検出手段)で検出し、検出さ
れた冷却水温度に基づいて、コントロールユニット16
に格納されたプログラムがソフトウエア的に実行する。
即ち、検出された冷却水温度が所定温度以上のときに
は、副冷却水通路21に冷却水を流通させ、検出された
冷却水温度が所定温度未満のときには、冷却水をタンク
27に抜いて貯溜する。
Here, the operation control of the three-way valves 25 and 26 is as follows.
The coolant temperature of the radiator 22 representing the temperature of the internal combustion engine 10 is detected by a water temperature sensor or the like (temperature detecting means), and the control unit 16 is controlled based on the detected coolant temperature.
Is executed by software.
That is, when the detected cooling water temperature is equal to or higher than the predetermined temperature, the cooling water is circulated through the sub cooling water passage 21, and when the detected cooling water temperature is lower than the predetermined temperature, the cooling water is drained and stored in the tank 27. .

【0030】なお、三方弁25,26とコントロールユ
ニット16に格納された前記プログラムとによって、切
換手段が構成される。かかる構成によれば、機関の暖機
が完了した通常運転時には、EGRガスを冷却した副冷
却水通路21内の冷却水は、熱交換器23によって冷却
され、内燃機関の冷却水温度にかかわらず、大気温度近
くまでその温度が低下する。従って、EGRガスの冷却
能力は、大幅に向上することとなる。
The three-way valves 25 and 26 and the program stored in the control unit 16 constitute switching means. According to such a configuration, at the time of the normal operation in which the warm-up of the engine is completed, the cooling water in the sub-cooling water passage 21 that has cooled the EGR gas is cooled by the heat exchanger 23, regardless of the cooling water temperature of the internal combustion engine. , Its temperature drops to near ambient temperature. Therefore, the cooling capacity of the EGR gas is greatly improved.

【0031】一方、機関の始動時等のように冷却水温度
が低い冷間時には、EGRガスを冷却しすぎると、排気
中に白煙やSOF(Soluble Organic Fraction;可溶性
有機物質)が発生するので、三方弁25,26を作動さ
せてタンク27に冷却水を抜き、EGRガスの冷却能力
を低下させて、EGRガスの過冷却を防止する。従っ
て、先の一実施形態の効果に加え、機関の冷間時におけ
る排気性状をさらに向上させることができる。
On the other hand, when the cooling water temperature is low, such as when the engine is started, if the EGR gas is excessively cooled, white smoke and SOF (Soluble Organic Fraction) are generated in the exhaust gas. By operating the three-way valves 25 and 26, the cooling water is drained into the tank 27 to reduce the cooling capacity of the EGR gas, thereby preventing the EGR gas from being excessively cooled. Therefore, in addition to the effects of the first embodiment, it is possible to further improve the exhaust properties when the engine is cold.

【0032】なお、以上説明した実施形態では、主冷却
水通路19を1つ、副冷却水通路21を2つ設ける構成
としたが、主冷却水通路19は1つ以上、副冷却水通路
21は少なくとも主冷却水通路19の上流に1つ設ける
構成とすればよい。主冷却水通路19を複数設ける構成
とすれば、各主冷却水通路におけるEGRガスからの受
熱量が低減し、より冷却水が沸騰しにくくなるという効
果がある。
In the embodiment described above, one main cooling water passage 19 and two sub cooling water passages 21 are provided, but one or more main cooling water passages 19 are provided. May be provided at least one upstream of the main cooling water passage 19. With the configuration in which a plurality of main cooling water passages 19 are provided, the amount of heat received from the EGR gas in each main cooling water passage is reduced, and the cooling water is more difficult to boil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す全体構成図FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】 同上の作用及び効果を説明し、(a) は従来の
特性図、(b) は本発明の特性図
FIGS. 2A and 2B illustrate the operation and effects of the present invention, wherein FIG. 2A is a conventional characteristic diagram, and FIG.

【図3】 本発明の他の実施形態を示す部分構成図FIG. 3 is a partial configuration diagram showing another embodiment of the present invention.

【図4】 従来のEGRガスの冷却装置の構成図FIG. 4 is a configuration diagram of a conventional EGR gas cooling device.

【符号の説明】[Explanation of symbols]

10 内燃機関 11 排気マニホールド 12 排気通路 13 吸気マニホールド 14 EGR管 16 コントロールユニット 18 外管 19 主冷却水通路 20 外管 21 副冷却水通路 23 空冷式熱交換器 24 循環用ポンプ 25,26 三方弁 27 タンク DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Exhaust manifold 12 Exhaust passage 13 Intake manifold 14 EGR pipe 16 Control unit 18 Outer pipe 19 Main cooling water passage 20 Outer pipe 21 Sub cooling water passage 23 Air-cooled heat exchanger 24 Circulation pump 25, 26 Three-way valve 27 tank

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気通路と吸気通路とを連通
し、排気の一部を吸気系に再循環させる排気再循環通路
の周囲に、該排気再循環通路に沿って夫々独立した複数
の冷却水通路を設け、各冷却水通路を流通する冷却水に
より排気再循環通路を冷却して排気再循環ガスを冷却す
るようにしたことを特徴とする内燃機関における排気再
循環ガスの冷却装置。
An exhaust passage and an intake passage of an internal combustion engine communicate with each other, and a plurality of independent exhaust passages are provided along the exhaust recirculation passage around an exhaust recirculation passage for recirculating a part of exhaust gas to an intake system. An exhaust gas recirculation gas cooling device for an internal combustion engine, comprising: a cooling water passage; and cooling the exhaust gas recirculation passage by cooling water flowing through each cooling water passage.
【請求項2】前記排気再循環通路を構成する配管の一部
を、排気再循環ガスが流通する内管と、該内管を覆う外
管と、の内・外二重管構造とし、内管と外管との間に前
記冷却水通路を形成したことを特徴とする請求項1記載
の内燃機関における排気再循環ガスの冷却装置。
2. A part of a pipe constituting the exhaust gas recirculation passage has an inner / outer double pipe structure of an inner pipe through which exhaust gas recirculation gas flows, and an outer pipe covering the inner pipe. 2. The cooling device for exhaust gas recirculation gas in an internal combustion engine according to claim 1, wherein said cooling water passage is formed between a pipe and an outer pipe.
【請求項3】前記各冷却水通路の冷却水供給系統は、各
冷却水通路毎に夫々独立した構成であることを特徴とす
る請求項1又は2に記載の内燃機関における排気再循環
ガスの冷却装置。
3. The exhaust gas recirculation gas for an internal combustion engine according to claim 1, wherein a cooling water supply system of each of the cooling water passages has an independent configuration for each of the cooling water passages. Cooling system.
【請求項4】前記各冷却水通路内の冷却水は、前記排気
再循環通路内を流通する排気再循環ガスとは逆方向に流
通する構成であることを特徴とする請求項1〜3のいず
れか1つに記載の内燃機関における排気再循環ガスの冷
却装置。
4. The cooling system according to claim 1, wherein the cooling water in each of the cooling water passages flows in a direction opposite to an exhaust gas recirculation gas flowing in the exhaust gas recirculation passage. An apparatus for cooling exhaust gas recirculation gas in an internal combustion engine according to any one of the preceding claims.
【請求項5】前記複数の冷却水通路のうち少なくとも1
つを、前記排気再循環通路内を流通する排気再循環ガス
からの受熱量が少なくなるように、他の冷却水通路より
も排気再循環通路の軸方向に対して短く形成した副冷却
水通路とし、該副冷却水通路を、他の冷却水通路よりも
上流に位置させる構成であることを特徴とする請求項1
〜4のいずれか1つに記載の内燃機関における排気再循
環ガスの冷却装置。
5. At least one of said plurality of cooling water passages.
One auxiliary cooling water passage formed shorter in the axial direction of the exhaust recirculation passage than the other cooling water passages so that the amount of heat received from the exhaust recirculation gas flowing in the exhaust recirculation passage is reduced. Wherein the sub-cooling water passage is located upstream of other cooling water passages.
The cooling device for exhaust gas recirculation gas in an internal combustion engine according to any one of claims 1 to 4.
【請求項6】前記副冷却水通路には、該副冷却水通路に
直交した略一直線上に冷却水導入管と冷却水導出管とが
接続され、冷却水導入管から導入された冷却水は、前記
排気再循環通路の周囲を周って冷却水導出管から導出さ
れる構成であることを特徴とする請求項5記載の内燃機
関における排気再循環ガスの冷却装置。
6. A cooling water inlet pipe and a cooling water outlet pipe are connected to the sub cooling water passage substantially in a straight line orthogonal to the sub cooling water passage. 6. The cooling system for exhaust gas recirculation gas in an internal combustion engine according to claim 5, wherein the cooling device is configured to extend around a periphery of the exhaust gas recirculation passage and to be led out from a cooling water discharge pipe.
【請求項7】前記副冷却水通路の冷却水供給系統は、周
囲の大気と熱交換をして冷却水を冷却する熱交換手段
と、冷却水を循環させる循環手段と、を含んで構成され
ることを特徴とする請求項5又は6に記載の内燃機関に
おける排気再循環ガスの冷却装置。
7. The cooling water supply system of the sub cooling water passage includes heat exchange means for exchanging heat with the surrounding atmosphere to cool the cooling water, and circulating means for circulating the cooling water. The cooling device for exhaust gas recirculation gas in an internal combustion engine according to claim 5 or 6, wherein
【請求項8】内燃機関の温度を検出する温度検出手段
と、前記副冷却水通路を流通する冷却水を貯溜する貯溜
手段と、該副冷却水通路の冷却系統を切り換える切換手
段と、を含んで構成され、 前記切換手段は、検出された内燃機関の温度が所定温度
以上のときに、前記副冷却水通路に冷却水を流通させ、
検出された内燃機関の温度が所定温度未満のときに、前
記副冷却水通路を流通する冷却水を貯溜手段に貯溜する
制御を行うことを特徴とする請求項7記載の内燃機関に
おける排気再循環ガスの冷却装置。
8. A cooling system comprising: a temperature detecting means for detecting a temperature of an internal combustion engine; a storage means for storing cooling water flowing through the sub cooling water passage; and a switching means for switching a cooling system of the sub cooling water passage. The switching means, when the detected temperature of the internal combustion engine is equal to or higher than a predetermined temperature, allows the cooling water to flow through the sub-cooling water passage,
8. The exhaust gas recirculation in an internal combustion engine according to claim 7, wherein when the detected temperature of the internal combustion engine is lower than a predetermined temperature, control for storing the cooling water flowing through the sub-cooling water passage in the storage means is performed. Gas cooling device.
【請求項9】内燃機関の排気の一部を吸気系に再循環さ
せる排気再循環通路を冷却して、該排気再循環通路を流
通する排気再循環ガスを冷却する冷却系統を、排気再循
環通路に沿って複数独立させて設けたことを特徴とする
内燃機関における排気再循環ガスの冷却装置。
9. A cooling system for cooling an exhaust gas recirculation passage for recirculating a part of exhaust gas of an internal combustion engine to an intake system and cooling an exhaust gas recirculated gas flowing through the exhaust gas recirculation passage. A cooling device for exhaust gas recirculation gas in an internal combustion engine, wherein a plurality of cooling devices are provided independently along a passage.
JP9236211A 1997-09-01 1997-09-01 Cooling device for recirculating exhaust in internal combustion engine Pending JPH1182186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9236211A JPH1182186A (en) 1997-09-01 1997-09-01 Cooling device for recirculating exhaust in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9236211A JPH1182186A (en) 1997-09-01 1997-09-01 Cooling device for recirculating exhaust in internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1182186A true JPH1182186A (en) 1999-03-26

Family

ID=16997431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9236211A Pending JPH1182186A (en) 1997-09-01 1997-09-01 Cooling device for recirculating exhaust in internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1182186A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140704A (en) * 1999-10-07 2001-05-22 Cummins Engine Co Inc High temperature cooling agent loop for recirculating cooling exhaust gas for internal combustion engine
JP2004156585A (en) * 2002-09-09 2004-06-03 Usui Kokusai Sangyo Kaisha Ltd Egr gas cooling device and its cooling method
JP2008528877A (en) * 2005-02-02 2008-07-31 スカニア シーブイ アクチボラグ(パブル) Device for exhaust gas recirculation of an internal combustion engine in a vehicle
JP2010038068A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Internal combustion engine, and control device for the same
KR100993761B1 (en) 2004-12-22 2010-11-11 현대자동차주식회사 Exhaust Gas Recirculation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140704A (en) * 1999-10-07 2001-05-22 Cummins Engine Co Inc High temperature cooling agent loop for recirculating cooling exhaust gas for internal combustion engine
JP2004156585A (en) * 2002-09-09 2004-06-03 Usui Kokusai Sangyo Kaisha Ltd Egr gas cooling device and its cooling method
KR100993761B1 (en) 2004-12-22 2010-11-11 현대자동차주식회사 Exhaust Gas Recirculation
JP2008528877A (en) * 2005-02-02 2008-07-31 スカニア シーブイ アクチボラグ(パブル) Device for exhaust gas recirculation of an internal combustion engine in a vehicle
JP2010038068A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Internal combustion engine, and control device for the same

Similar Documents

Publication Publication Date Title
JP5223389B2 (en) Cooling device for internal combustion engine
JP6051989B2 (en) Engine cooling system
JP5993759B2 (en) Engine intake cooling system
JP2007023911A (en) Exhaust gas re-circulation device
JP4372799B2 (en) Internal combustion engine control system
EP1846651B1 (en) Arrangement for recirculation of exhaust gases of an internal combustion engine in a vehicle
WO2012081081A1 (en) Engine cooling apparatus
JP5321419B2 (en) EGR gas cooling device
JP6007128B2 (en) Exhaust recirculation system cooling system
JP2007100665A (en) Exhaust gas passage structure for internal combustion engine
JP2007315231A (en) Exhaust emission control system of internal combustion engine
JPH1182186A (en) Cooling device for recirculating exhaust in internal combustion engine
JP2010229878A (en) Cooling system of internal combustion engine
JP3240795B2 (en) EGR gas cooling structure
JP2002147291A (en) Exhaust gas recirculation device with cooler
WO2009048408A1 (en) Arrangement and method for recirculation of exhaust gases from a combustion engine
JP6641941B2 (en) Air intake cooling system for internal combustion engine
JP2003278544A (en) Air bleeding structure for vehicular water cooling system
JP7347138B2 (en) vehicle cooling water system
JP5282003B2 (en) Exhaust gas recirculation device
JP2008111374A (en) Egr gas recirculating device of engine
JP5304573B2 (en) Engine warm-up promotion system
JP2005330863A (en) Egr device
JPH08261072A (en) Egr device for diesel engine
JP2011094537A (en) Cooling device for engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906