JPH1181234A - Rigid-frame bridge pier - Google Patents

Rigid-frame bridge pier

Info

Publication number
JPH1181234A
JPH1181234A JP23926397A JP23926397A JPH1181234A JP H1181234 A JPH1181234 A JP H1181234A JP 23926397 A JP23926397 A JP 23926397A JP 23926397 A JP23926397 A JP 23926397A JP H1181234 A JPH1181234 A JP H1181234A
Authority
JP
Japan
Prior art keywords
side plate
beam member
earthquake
sections
bridge pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23926397A
Other languages
Japanese (ja)
Inventor
Shinji Kato
真志 加藤
Tatsumasa Takaku
達將 高久
Yasuo Kobayashi
泰男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23926397A priority Critical patent/JPH1181234A/en
Publication of JPH1181234A publication Critical patent/JPH1181234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the collapse of a bridge pier by arranging side plate elements easily generating plastic strain via external force at the time of an earthquake at the side plate sections of beam members. SOLUTION: A portal rigid-frame bridge pier 1 is constituted of foundation sections 2, leg sections 3, a first beam member 5, column sections 7, and a second beam member 9. The first beam member 5 is constituted of an upper plate, a lower plate, and multiple diaphragms installed at the prescribed distances in the longitudinal direction of the beam member 5, and a front side plate and a back side plate are connected to the upper plate, lower plate, and diaphragms by multiple bolts. When an earthquake occurs, the front side plate and back side plate of the beam member 5 are plastically deformed to absorb earthquake energy at a high ratio, thereby the energy absorbed quantity by corner sections 15 and bridge pier base sections 17 can be reduced. The loads applied to the important corner sections 15 and bridge pier base sections 17 at the time of the earthquake are reduced, the earthquake energy can be concentrically absorbed by the plastic deformations of the side plates of the beam member 5, thus the collapse of the bridge pier 1 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高架橋のラーメン橋
脚に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bridge pier of a viaduct.

【0002】[0002]

【従来の技術】図6は地震時の水平荷重によって倒壊す
る恐れのある従来の高架橋のラーメン橋脚を示す図であ
り、図6(a)が正面図、図6(b)が側面図である。
図6に示したラーメン橋脚は、阪神大震災において、梁
部材の側板(ウェブ)における中央3パネルにせん断座
屈が生じたものであり、論文:中井博、北田俊行、西岡
敬治、狩野正人、迫田治行、森昭紀:巨大地震による鋼
製ラーメン橋脚梁部材腹板のせん断座屈損傷のシミュレ
ーション、鋼製橋脚の非線形数値解析と耐震設計に関す
る論文集、土木学会・構造工学委員会、構造工学震災調
査特別小委員会、pp.223−230、1997年5
月、より引用したものである。
2. Description of the Related Art FIG. 6 is a view showing a conventional viaduct ramen pier that may collapse due to a horizontal load during an earthquake. FIG. 6 (a) is a front view and FIG. 6 (b) is a side view. .
In the ramen pier shown in Fig. 6, shear buckling occurred at the center three panels of the side plates (webs) of the beam members in the Great Hanshin Earthquake. Haruyuki, Akinori Mori: Simulation of shear buckling damage of web members of steel pier bridge members due to huge earthquakes, Non-linear Numerical Analysis of Steel Piers and Seismic Design, JSCE / Structural Engineering Committee, Structural Engineering Earthquake Special Committee on Disaster Investigation, pp. 223-230, 1997 5
The month is more quoted.

【0003】図6において、1は門形のラーメン橋脚で
あり、二層構造のものである。2は地上に所定の間隔を
離して設けられた基礎部、3は基礎部2に立設された一
対の脚部、5は一対の脚部3の上端側に両脚部3に亘っ
て設置された第1の梁部材、7は一対の脚部3に連続し
て設けられた一対の柱部、9は一対の柱部7の上端に該
柱部7の両方に亘って設置された第2の梁部材である。
21,23はそれぞれ第1の梁部材5,第2の梁部材9
に設置された道路である。
[0003] In Fig. 6, reference numeral 1 denotes a gate-shaped ramen pier having a two-layer structure. Reference numeral 2 denotes a base portion provided at a predetermined interval on the ground, 3 denotes a pair of legs erected on the base portion 2, and 5 denotes a pair of legs installed on the upper end side of the pair of legs 3 across the two legs 3. The first beam member 7 is a pair of pillars continuously provided on the pair of legs 3, and the second beam member 9 is provided at the upper ends of the pair of pillars 7 over both of the pillars 7. Beam member.
21 and 23 are a first beam member 5 and a second beam member 9 respectively.
It is a road installed in.

【0004】図7は梁部材5の構造を説明する説明図で
ある。図7に基づいて梁部材5の構造を説明する。梁部
材5は鋼板を箱状に溶接接合して構成され、内部には剛
性を高めるためのダイアフラム5cが所定の間隔を離し
て設置されている。
FIG. 7 is an explanatory view for explaining the structure of the beam member 5. The structure of the beam member 5 will be described based on FIG. The beam member 5 is formed by welding and joining steel plates in a box shape, and a diaphragm 5c for increasing rigidity is installed inside the beam member 5 at a predetermined interval.

【0005】図8は梁部材の側板を構成するような鋼板
にせん断力が作用した場合のせん断座屈のメカニズムを
説明する説明図である。鋼板25がせん断力Qを受ける
と、板内部の微小要素27はせん断応力τを受ける(図
8(a))。τがせん断座屈応力τcrに達すると、図8
(b)のように鋼板25には板面直角方向の変位による
皺29ができる。このような皺29ができると図8
(c)のように、応力状態はせん断応力から斜め方向の
応力が顕著となる斜張力Pの応力場へと変化する。この
時、鋼板25が降伏すると、斜め方向に多くの塑性ひず
みが生ずるが、斜張力は低下しないので、鋼板25はせ
ん断力に対して多くのエネルギーを吸収できることが多
くの実験から得られている。(例えば武田八郎;繰返し
せん断力を受けるプレート・ガーダーの非弾性座屈実験
(1) ,鶴舞高専紀要,NO.26,pp.82-95,1991 )
FIG. 8 is an explanatory view for explaining a mechanism of shear buckling when a shear force acts on a steel plate constituting a side plate of a beam member. When the steel plate 25 receives the shear force Q, the microelements 27 inside the plate receive the shear stress τ (FIG. 8A). When τ reaches the shear buckling stress τcr, FIG.
As shown in (b), wrinkles 29 are formed on the steel plate 25 due to displacement in the direction perpendicular to the plate surface. When such wrinkles 29 are formed, FIG.
As shown in (c), the stress state changes from a shear stress to a stress field of oblique tension P in which oblique stress is remarkable. At this time, when the steel plate 25 yields, a large amount of plastic strain occurs in the oblique direction, but since the oblique tension does not decrease, it has been obtained from many experiments that the steel plate 25 can absorb much energy with respect to the shearing force. . (For example, Hachiro Takeda; Inelastic buckling test of plate girder subjected to repeated shearing force
(1), Bulletin of Tsurumai National College of Technology, NO.26, pp.82-95,1991)

【0006】図9は図6に示した従来の橋脚が地震力を
受けた場合の梁部材に生ずるせん断座屈のメカニズムを
説明する説明図である。ラーメン橋脚1が、図9(a)
に示すように左側からの地震力31を受けた場合、第1
の梁部材5は図9(b)の様な曲げモーメント33を受
ける。従って、梁部材5の中央の3パネル(図9(b)
の破線で囲んだ部位)は図9(c)に示すせん断力Qを
受けてパネルには、図8で説明したメカニズムにより、
右上がり方向の皺29および斜張力Pが発生する。逆に
右側からの地震力を受けた場合には、図9(d)のよう
な左上がりの皺35、および斜張力Rが発生する。この
結果、梁部材5の側板には図9(e)のようなX型の残
留変形が残る結果となる。中井・北田らは、図6のラー
メン橋脚が、地震により崩壊に至らなかった理由とし
て、せん断座屈を起こした側板の斜張力場による著しい
塑性変形によって、地震エネルギーが効率的に吸収され
たことを挙げている。
FIG. 9 is an explanatory view for explaining a mechanism of shear buckling occurring in a beam member when the conventional pier shown in FIG. 6 receives seismic force. Fig. 9 (a)
When seismic force 31 from the left side is received as shown in
9 receives a bending moment 33 as shown in FIG. Therefore, three panels at the center of the beam member 5 (FIG. 9B)
(A portion surrounded by a broken line) receives the shearing force Q shown in FIG.
An upward wrinkle 29 and an oblique tension P are generated. Conversely, when seismic force is applied from the right side, a wrinkle 35 rising to the left and an oblique tension R are generated as shown in FIG. As a result, an X-shaped residual deformation as shown in FIG. 9E remains on the side plate of the beam member 5. Nakai and Kitada et al. Reported that the reason why the ramen pier in Fig. 6 did not collapse due to the earthquake was that seismic energy was efficiently absorbed by the remarkable plastic deformation of the shear buckled side plates caused by the oblique tension field. Are listed.

【0007】[0007]

【発明が解決しようとする課題】上記の事実は阪神大震
災後の解析によるものであるが、従来のラーメン橋脚に
おいては地震力を受けた場合に橋脚が倒壊に至らないよ
うにするための措置は特に講じられていなかった。した
がって、上述の解析で示した側板のせん断座屈、および
塑性変形は、地震エネルギーを全て吸収する訳ではない
ので、エネルギーの吸収等について何らの考慮もされて
いない従来の橋脚の場合には、当然ながら橋脚基部17
や隅角部15(図9参照)にも過大な曲げ変形が生じ、
橋脚が倒壊に至る危険性があるという問題があった。
The above facts are based on the analysis after the Great Hanshin Earthquake. However, in the case of conventional ramen piers, measures to prevent the piers from collapsing when subjected to seismic force are: It was not specifically taken. Therefore, the shear buckling of the side plates and the plastic deformation shown in the above analysis do not absorb all the seismic energy, so in the case of a conventional pier where no consideration is given to energy absorption, etc. Naturally the pier base 17
Excessive bending deformation also occurs at the corner 15 (see FIG. 9),
There was a problem that the pier could fall down.

【0008】また、地震後にラーメン橋脚1の梁部材5
の側板にせん断座屈が生じ、塑性変形を受けた場合、地
震力による塑性ひずみが累積されているので、これ以上
の塑性変形を受けると側板に亀裂が発生し、これ以上地
震エネルギーを吸収できない可能性がある。従って、地
震後には側板を新しいものに交換する必要がある。しか
しながら、従来の側板は溶接接合されているため、側板
を取り替えるには、足場を築いてガス切断、溶接といっ
た作業を行わなくてはならないため、地上の路面の交通
を長期間遮断しなければならないという問題もあった。
Further, after the earthquake, the beam member 5 of the ramen pier 1
If the side plate undergoes shear buckling and undergoes plastic deformation, plastic strain due to seismic force is accumulated, so if further plastic deformation occurs, the side plate will crack and cannot absorb seismic energy anymore there is a possibility. Therefore, it is necessary to replace the side plate with a new one after the earthquake. However, since conventional side plates are welded and joined, replacing the side plates requires the construction of a scaffold, gas cutting, welding, etc., so that road traffic on the ground must be shut off for a long time. There was also a problem.

【0009】本発明はかかる問題点を解決するためにな
されたものであり、地震エネルギーを受けた場合にも、
倒壊に至らないラーメン橋脚を得ることを目的としてい
る。また、地震エネルギーを受けた後の修理が容易なラ
ーメン橋脚を得ることを目的としている。
The present invention has been made in order to solve such a problem, and even when seismic energy is received,
The aim is to obtain a ramen pier that will not collapse. It also aims to obtain a ramen pier that can be easily repaired after receiving seismic energy.

【0010】[0010]

【発明を解決するための手段】本発明に係るラーメン橋
脚は、鋼板を箱型に接合して構成される梁部材を備えた
単層又は多層のものであって、前記梁部材の側板部に、
地震時の外力により塑性ひずみが発生容易な側板要素を
配置したものである。
SUMMARY OF THE INVENTION A rigid frame pier according to the present invention is a single-layer or multilayer structure having a beam member formed by joining steel plates in a box shape, and is provided on a side plate portion of the beam member. ,
Side plate elements where plastic strain easily occurs due to external force during an earthquake.

【0011】また、前記側板要素として極軟鋼を用いる
と共に、該側板要素を側板部に着脱自在に設置したもの
である。
[0011] Further, the mild steel is used as the side plate element, and the side plate element is detachably mounted on the side plate portion.

【0012】さらに、前記側板要素を、前記梁部材の軸
方向中央部に配置したものである。
Further, the side plate element is disposed at an axial center of the beam member.

【0013】[0013]

【発明の実施の形態】図1は本発明の一実施の形態のラ
ーメン橋脚の模式図、図2は図1において破線で囲んだ
梁部材を拡大して示した図、図3は図2の平面図、図4
は図2の矢視A−A断面図、図5は梁部材の分解斜視図
である。図1において従来例を示した図6と同一又は対
応する部分には同一の符号が付してある。1は門形のラ
ーメン橋脚であり、従来技術と同様に二層構造のもので
ある。2は地上に所定の間隔を離して設けられた基礎
部、3は基礎部2に立設された一対の脚部、5は一対の
脚部3の上端側に該一対の脚部3に亘って設置された第
1の梁部材、7は一対の脚部3に連続して設けられた一
対の柱部、9は一対の柱部7の上端に該一対の柱部7に
亘って設置された第2の梁部材である。
FIG. 1 is a schematic view of a ramen pier according to an embodiment of the present invention, FIG. 2 is an enlarged view of a beam member surrounded by a broken line in FIG. 1, and FIG. Plan view, FIG. 4
Is a sectional view taken along line AA of FIG. 2, and FIG. 5 is an exploded perspective view of the beam member. In FIG. 1, the same or corresponding parts as those in FIG. 6 showing the conventional example are denoted by the same reference numerals. Reference numeral 1 denotes a gate-shaped ramen pier having a two-layer structure as in the prior art. Reference numeral 2 denotes a base portion provided on the ground at a predetermined distance, 3 denotes a pair of legs erected on the base portion 2, and 5 denotes a pair of legs 3 on the upper end side of the pair of legs 3. The first beam member 7 installed is a pair of pillars continuously provided on the pair of legs 3, and 9 is installed at the upper end of the pair of pillars 7 over the pair of pillars 7. A second beam member.

【0014】次に、第1の梁部材5の構造について主と
して図5に基くと共に図2乃至図4を参照しながら説明
する。図5において、5aは上面板、5bは下面板、5
cは梁部材5の長手方向に所定の距離を離して複数個設
置されたダイアフラムである。上面板5a及び下面板5
bの両側端、及びダイアフラム5cの側端部には、後述
の正面側板5d及び背面側板5eを取り付けるためのフ
ランジ部5fが形成されており(図4参照)、該フラン
ジ部5fにはボルト挿通穴が多数設けられている。
Next, the structure of the first beam member 5 will be described mainly with reference to FIG. 5 and with reference to FIGS. In FIG. 5, 5a is an upper plate, 5b is a lower plate,
Reference numeral c denotes a plurality of diaphragms installed at a predetermined distance in the longitudinal direction of the beam member 5. Upper plate 5a and lower plate 5
A flange portion 5f for attaching a front side plate 5d and a rear side plate 5e, which will be described later, is formed on both side ends of the b and the side end portion of the diaphragm 5c (see FIG. 4). Many holes are provided.

【0015】5d,5eは梁部材の側板を構成する複数
の矩形状の鋼板からなる正面側板、背面側板である。こ
れら正面側板5d,背面側板5eは複数のボルト11に
よって上面板5a,下面板5b及びダイアフラム5cの
フランジ5fに接合されている(図2,図3参照)。な
お、本実施の形態においては、地震エネルギーを効率的
に吸収できる側板を実現するため、側板を構成する正面
側板5d,背面側板5eとして従来の降伏点2,400
kgf/cm2 の普通鋼ではなく、普通鋼の約半分又は
これ以下の降伏点を有するいわゆる極軟鋼を用いてい
る。
Reference numerals 5d and 5e denote a front side plate and a back side plate made of a plurality of rectangular steel plates constituting side plates of the beam member. The front side plate 5d and the rear side plate 5e are joined to the upper surface plate 5a, the lower surface plate 5b, and the flange 5f of the diaphragm 5c by a plurality of bolts 11 (see FIGS. 2 and 3). In the present embodiment, in order to realize a side plate capable of efficiently absorbing seismic energy, a conventional yield point of 2,400 is used as the front side plate 5d and the back side plate 5e constituting the side plate.
Instead of ordinary steel of kgf / cm 2 , so-called ultra-mild steel having a yield point of about half or less of ordinary steel is used.

【0016】上記のように構成されたラーメン橋脚にお
いて、地震力を受けた場合には、図9で説明したような
メカニズムにより梁部材5の正面側板5d,背面側板5
eが塑性変形して高い比率で地震エネルギーの吸収を行
う。このため、構造上重要であり、かつ地震後に交換が
容易でない隅角部15や橋脚基部17(図1参照)によ
るエネルギー吸収量を減少させることができる。つま
り、重要な隅角部15や橋脚基部17への地震時の負担
を減少させ、梁部材5の側板の塑性変形によって地震エ
ネルギーを集中的に吸収できるのである。
When the seismic force is applied to the ramen pier constructed as described above, the front side plate 5d and the rear side plate 5d of the beam member 5 are operated by the mechanism described with reference to FIG.
e plastically deforms and absorbs seismic energy at a high rate. For this reason, it is possible to reduce the amount of energy absorbed by the corners 15 and the pier bases 17 (see FIG. 1), which are structurally important and are not easily replaced after an earthquake. That is, the burden on the important corners 15 and the pier base 17 during an earthquake can be reduced, and seismic energy can be intensively absorbed by plastic deformation of the side plate of the beam member 5.

【0017】地震後には速やかにボルト11を取り外
し、残留変形の残った正面側板5d,背面側板5eを新
しい側板に交換すればよい。このとき、従来例のように
正面側板5d,背面側板5eが溶接接合されていないの
で、作業が迅速にでき、交通を遮断する期間を短くでき
る。
After the earthquake, the bolts 11 may be promptly removed, and the front side plate 5d and the rear side plate 5e having the residual deformation may be replaced with new side plates. At this time, since the front side plate 5d and the rear side plate 5e are not welded as in the conventional example, the work can be performed quickly and the period during which traffic is cut off can be shortened.

【0018】なお、上記の実施の形態においては、正面
側板5d,背面側板5eとして極軟鋼を用いた例を示し
たが、極軟鋼よりも降伏点の高い鋼材であっても普通鋼
よりも降伏点の低い部材であれば一定の効果は得られ
る。
In the above-described embodiment, an example in which extremely mild steel is used as the front side plate 5d and the back side plate 5e has been described. However, even if the steel material has a higher yield point than the extremely mild steel, it yields more than the ordinary steel. If the member has a low point, a certain effect can be obtained.

【0019】また、上記の実施の形態においては、梁部
材5の側板の全部について極軟鋼又は通常鋼よりも降伏
点の低い部材を用いた例であったが、最も塑性変形の大
きい梁部材5の中央部にのみこれら極軟鋼又は通常鋼よ
りも降伏点の低い部材を用いるようにしてもよい。この
ようにすれば、地震エネルギーの吸収を集中させること
ができ、地震後に取り替える枚数も少なくてよいので、
交換の作業をより迅速に行うことができる。
Further, in the above-described embodiment, a member having a lower yield point than ultra-mild steel or normal steel is used for all side plates of the beam member 5, but the beam member 5 having the largest plastic deformation is used. A member having a lower yield point than the mild steel or ordinary steel may be used only in the central portion of the steel. In this way, the absorption of seismic energy can be concentrated and the number of replacements after the earthquake can be reduced,
The replacement work can be performed more quickly.

【0020】[0020]

【発明の効果】以上のように本発明においては、梁部材
を構成する側板部に、地震時の外力により塑性ひずみが
発生容易な側板要素を配置したので、該側板要素が高い
比率で地震エネルギーの吸収を行い、構造上重要であ
り、かつ地震後に交換が容易でない隅角部や橋脚基部に
よるエネルギー吸収量を減少させることができ、橋脚の
倒壊を防止することができる。
As described above, according to the present invention, since the side plate element which easily generates a plastic strain due to the external force at the time of the earthquake is arranged on the side plate portion constituting the beam member, the side plate element has a high ratio of seismic energy. It is possible to reduce the amount of energy absorbed by corners and pier bases, which are structurally important and are not easily replaced after an earthquake, and can prevent collapse of piers.

【0021】また、側板要素として極軟鋼を用いたの
で、より効率的にエネルギー吸収ができる。また、側板
要素を側板部に着脱自在に設置したので、地震後にせん
断座屈による残留変形の残った側板要素の交換作業が迅
速にでき、交通を遮断する期間を短くすることができ
る。
Further, since extremely mild steel is used as the side plate element, energy can be absorbed more efficiently. In addition, since the side plate elements are detachably mounted on the side plate portions, it is possible to quickly replace the side plate elements having residual deformation due to shear buckling after an earthquake, thereby shortening a period in which traffic is interrupted.

【0022】さらに、側板要素を、前記梁部材の軸方向
中央部に配置したので、地震エネルギーの吸収を集中さ
せることができ、地震後に取り替える枚数も少なくてよ
いので、交換の作業をより迅速に行うことができる。
Furthermore, since the side plate elements are arranged at the axial center of the beam member, the absorption of seismic energy can be concentrated, and the number of replacements after the earthquake can be reduced, so that the replacement work can be performed more quickly. It can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係るラーメン橋脚の
模式図である。
FIG. 1 is a schematic diagram of a ramen pier according to an embodiment of the present invention.

【図2】 図1に示した本発明の一実施の形態の要部を
拡大して示す正面図である。
FIG. 2 is an enlarged front view showing a main part of the embodiment of the present invention shown in FIG.

【図3】 図1に示した本発明の一実施の形態の要部を
拡大して示す平面図である。
FIG. 3 is an enlarged plan view showing a main part of the embodiment of the present invention shown in FIG. 1;

【図4】 図2における矢視A−A断面図である。FIG. 4 is a sectional view taken along the line AA in FIG. 2;

【図5】 図1に示した本発明の一実施の形態の要部の
分解斜視図である。
FIG. 5 is an exploded perspective view of a main part of the embodiment of the present invention shown in FIG.

【図6】 従来のラーメン橋脚の説明図である。FIG. 6 is an explanatory view of a conventional ramen pier.

【図7】 従来のラーメン橋脚の梁の構造を説明する説
明図である。
FIG. 7 is an explanatory view illustrating a structure of a beam of a conventional ramen pier.

【図8】 板材のせん断座屈のメカニズムの説明図であ
る。
FIG. 8 is an explanatory view of a mechanism of shear buckling of a plate material.

【図9】 ラーメン橋脚の梁部材における側板のせん断
座屈のメカニズムの説明図である。
FIG. 9 is an explanatory view of a mechanism of shear buckling of a side plate in a beam member of a rigid frame pier.

【符号の説明】[Explanation of symbols]

1 ラーメン橋脚 3 脚部 5 第1の梁部材 5d 正面側板 5e 背面側板 9 第2の梁部材 11 ボルト 15 隅角部 17 橋脚基部 DESCRIPTION OF SYMBOLS 1 Ramen pier 3 Leg 5 1st beam member 5d Front side plate 5e Back side plate 9 2nd beam member 11 Bolt 15 Corner 17 Bridge pier base

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板を箱型に接合して構成される梁部材
を備えた単層又は多層のラーメン橋脚であって、 前記梁部材の側板部に、地震時の外力により塑性ひずみ
が発生容易な側板要素を配置したことを特徴とするラー
メン橋脚。
1. A single-layer or multi-layer rigid-frame pier having a beam member formed by joining steel plates in a box shape, wherein plastic strain is easily generated in a side plate portion of the beam member due to an external force during an earthquake. A ramen pier with a variety of side plate elements.
【請求項2】 前記側板要素として極軟鋼を用いると共
に、該側板要素を側板部に着脱自在に設置したことを特
徴とする請求項1記載のラーメン橋脚。
2. The ramen pier according to claim 1, wherein extremely soft steel is used as the side plate element, and the side plate element is detachably mounted on the side plate portion.
【請求項3】 前記側板要素を、前記梁部材の軸方向中
央部に配置したことを特徴とする請求項1又は2記載の
ラーメン橋脚。
3. The rigid-frame pier according to claim 1, wherein the side plate element is disposed at an axial center of the beam member.
JP23926397A 1997-09-04 1997-09-04 Rigid-frame bridge pier Pending JPH1181234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23926397A JPH1181234A (en) 1997-09-04 1997-09-04 Rigid-frame bridge pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23926397A JPH1181234A (en) 1997-09-04 1997-09-04 Rigid-frame bridge pier

Publications (1)

Publication Number Publication Date
JPH1181234A true JPH1181234A (en) 1999-03-26

Family

ID=17042171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23926397A Pending JPH1181234A (en) 1997-09-04 1997-09-04 Rigid-frame bridge pier

Country Status (1)

Country Link
JP (1) JPH1181234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132308A (en) * 2004-10-06 2006-05-25 Nippon Steel Corp Stiffening structure of plate-like member and column structure using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132308A (en) * 2004-10-06 2006-05-25 Nippon Steel Corp Stiffening structure of plate-like member and column structure using the same
JP4589789B2 (en) * 2004-10-06 2010-12-01 新日本製鐵株式会社 Structure and its corner structure and column structure

Similar Documents

Publication Publication Date Title
KR101992186B1 (en) A earthquake proof reinforcement construction method installed on the outside and interior face of pillars and beams using a steel flame
KR20040106829A (en) Steel structure equipped with connection damper
JPH1181234A (en) Rigid-frame bridge pier
JP3551095B2 (en) Ramen pier
JP6274792B2 (en) Building ramen frame
JP4181680B2 (en) Damping brace damper, energy absorber used therefor, and design method thereof
JP2001064913A (en) Rigid frame bridge pier
JP3391253B2 (en) Seismic beam of ramen pier
JPH10131543A (en) Vibration-mitigating structural member
JPH10220063A (en) Earthquake resistant wall
JP3391255B2 (en) Seismic beam of ramen pier
JPH10169095A (en) Post with built-in aseismatic damper and rigid-frame structure skeleton with aseismatic post
JP5292881B2 (en) Vibration control panel
KR101031351B1 (en) Column-beam connecting structure with vibration controling structure
JP2002371627A (en) Joining structure of steel column and steel beam
JP2000027297A (en) Joining method for steel framed column and steel framed beam
JPH10306502A (en) Frame structure for building
JP2023045974A (en) Joint section
JP2003049404A (en) Reinforcing structure for steel rigid-frame bridge pier
JP7263677B2 (en) Structure
JP2019065532A (en) Axial force resistant member
JP2004092156A (en) Vibration control construction of structure
CN218405801U (en) Steel frame system that beam column connected node and full bolt curb plate are connected
JP3600995B2 (en) Damping structure
JP7211915B2 (en) Seismic reinforcement structure